

Critical Design Review

2015

MASTER OF ROBTIC SYSTEMS DEVELOPMENT, FALL 2015 | FRIDAY, OCTOBER 2, 2015

UAV PACKAGE DELIVERY SYSTEM

TEAM AVENGERS
• Tushar Agrawal (Software Lead and Project Manager)

• Sean Bryan (Mechanical and Communications Lead)

• Pratik Chatrath (Sensor Lead and Software Developer)

• Adam Yabroudi (Systems Engineer and Electrical Lead)

1/38

Contents
1. Project Overview ... 3

1.1 Objectives .. 3

1.1.1 Background ... 3

1.1.2 Problem Summary Delivering packages to a house using UAVs. .. 3

1.1.3 Project Description .. 3

2. Use Case... 3

3. System-Level Requirements .. 7

3.1. Mandatory .. 7

3.1.1 Functional Requirements ... 7

3.2.2 Non-Functional Requirements ... 7

3.2. Desired ... 7

3.2.1 Functional Requirements ... 7

3.2.2 Non-Functional Requirements ... 8

3.3 Performance Requirements .. 8

3.4 Subsystem Requirements: ... 8

4. Functional Architecture ... 9

5. Cyberphysical Architecture.. 10

5.1 Mechanical System .. 10

5.2 Electrical System ... 11

5.3 Software ... 11

6. Current System Status .. 11

6.1 Obstacle Avoidance Subsystem ... 11

6.1.1 Sensors Overview .. 11

6.1.2 Sensor Modeling, Test, and Analysis .. 1

6.2 Master-Slave Sensor Boards ... 4

6.2.1 PCB Overview .. 4

6.2.2 PCB Modeling, Test and Analysis ... 6

6.3 Vision Subsystem .. 6

6.3.1 Single Board Computer .. 6

6.3.2 Marker ... 7

6.3.3 Detection Algorithm ... 8

6.3.4 Vision Subsystem - Testing and Analysis ... 10

6.4 UAV and Flight Control System ... 11

2/38

7. Project Management .. 13

7.1 Work Breakdown Structure ... 14

7.2 Schedule ... 16

8. Test Plan... 17

8.1 Capability Milestone for spring-semester Progress Review ... 17

8.2 Spring Validation Experiment .. 18

8.3 Budget .. 22

9. Conclusion ... 23

10. References ... 24

3/38

1. Project Overview

1.1 Objectives

1.1.1 Background

Currently, package delivery truck drivers hand-carry packages door to door. This model is used by

Federal Express (FedEx), United Postal Service (UPS), United States Postal Service (USPS), and

Deutsche Post DHL Group (DHL). We believe that drones have the potential to expedite this system.

 Amazon is developing Prime Air with the same intent. However, we believe the most efficient

system combines delivery trucks with Unmanned Aerial Vehicles (UAV’s) which saves time, expense,

and improves customer’s satisfaction.

1.1.2 Problem Summary Delivering packages to a house using UAVs.

1.1.3 Project Description

Given the coordinates of the house, a UAV with a package takes off from point A, autonomously reaches

close to the house, scans the outside of the house for a visually marked drop point, lands, drops off the

package, then takes off again to land on another platform at point B.

2. Use Case
Sam drives a package delivery truck for one of the largest parcel delivery companies. He arrives each

morning to a preloaded truck and is handed his route for the day. Even though he has an assigned route,

he sometimes is tasked with delivery packages to additional streets. These are often the packages that

should have been delivered the day before. Thus it’s critical that packages make it to the right house on

time today.

Now that his company uses drones, Sam can cover more area in less time. He drives out to his first

neighborhood for the day with two packages to deliver. He can quickly deliver the first package, which is

heavier. The second package is lighter but a street over. After parking, he quickly attaches the second

package to a drone and selects the address on the base station computer. The drone takes off and

disappears over a rooftop as Sam unloads the first package.

4/38

Figure 1: Artist Rendition of Sam and one of his drones

Having delivered the first package, Sam gets back in the truck and starts driving. In the past, he would

have driven to the next house and dropped off the package. Nowadays, Sam knows that the drone will

deliver the package to the right house and catch up. This saves him a few minutes which adds up over the

course of the day to real time savings. This makes Sam a little happy.

Meanwhile, the drone has moved within vicinity of the second house. It begins scanning around for the

visual marker outside the house. The drone finds the marker and moves in for a landing. It’s able to avoid

people on the sidewalk and the large tree outside the house. The drone lands on the marker and does a

quick confirmation, it checks the RFID code embedded in the marker. Confirming the correct house has

been found, the drone releases the package and notifies the package delivery truck’s base station. The

base station then updates the drone on the delivery truck’s position.

5/38

Figure 2: Artist’s Redition of Drone Delivering Packages to End Customer

The drone catches up to Sam at a red light and they continue on their way. Sam’s day continues this way.

On a major street, he has several packages to deliver in the area. He quickly loads up a few drones, selects

the addresses, and watches to drones do all the work. Sam had to get a gym membership since he’s no

longer walking as much, but he’s happy to be getting through neighborhoods substantially faster. Because

the drones allow one driver to do more, the delivery company is able to offer package delivery at a more

competitive rate with more margin. This makes customers happy in addition to getting their packages

faster. In turn, they are more likely to use the delivery company, which makes the company pleased with

their investment.

Late in the day, the base station on Sam’s delivery truck notifies him that an adjacent route wasn’t able to

deliver a package. In the past, this would have meant that the package would be driven back to the

warehouse to be resorted and delivered with tomorrow’s load. This was a substantial waste of fuel and

manpower. Today, routes can be dynamically updated. A drone will deliver the package to Sam’s truck.

Once he’s in the area, the drone will deliver the package. The customer will never know there was a

problem, and the delivery company saves money.

6/38

Figure 3: Full Scope of Delivery System

Sam arrives back at the warehouse, his truck empty. He’s satisfied in the work he’s accomplished,

customers are happy that received their packages on time, and the delivery company is exceptionally

happy with the improved efficiency and customer retention.

7/38

3. System-Level Requirements
The critical requirements for this project are listed below under Mandatory Requirements. These are the

‘needs’ of the project. Additionally, the team identified several value-added requirements during

brainstorming. These ‘wants’ are listed below under Desired Requirements.

3.1. Mandatory

3.1.1 Functional Requirements

M.F.1 Hold and carry packages.

M.F.2 Autonomously take off from a visually marked platform.

M.F.3 Navigate to a known position close to the house.

M.F.4 Detect and navigate to the drop point at the house.

M.F.5 Land at visually marked drop point.

M.F.6 Drop package within 2m of the target drop point.

M.F.7 Take off, fly back to and land at another visually marked platform.

M.F.8 Takes coordinates as input from the user.

M.F.9 Communicates with platform to receive GPS updates (intermittently).

3.2.2 Non-Functional Requirements

M.N.1 Operates in an outdoor environment.

M.N.2 Operates in a semi-known map. The GPS position of the house is known, but the exact

location of the visual marker is unknown and is detected on the fly.

M.N.3 Avoids static obstacles.

M.N.4 Not reliant on GPS. Uses GPS to navigate close to the house. Does not rely on GPS to

detect the visual marker at the drop point.

M.N.5 Sub-systems should be well documented and scalable.

M.N.6 UAV should be small enough to operate in residential environments.

M.N.7 Package should weigh at most 400g and fit in a cuboid of dimensions 30cm x 30cm x

20cm.

3.2. Desired

3.2.1 Functional Requirements

D.F.1 Pick up packages.

8/38

D.F.2 Simulation with multiple UAVs and ground vehicles.

D.F.3 Ground vehicle drives autonomously.

D.F.4 UAV and ground vehicle communicate continuously.

D.F.5 UAV confirms the identity of the house before dropping the package (RFID Tags).

D.F.6 Drop package within 1m of the target drop point.

3.2.2 Non-Functional Requirements

D.N.1 Operates in rains and snow.

D.N.2 Avoids dynamic obstacles

D.N.3 Operates without a GPS system.

D.N.4 Has multiple UAVs to demonstrate efficiency and scalability.

D.N.5 Compatible with higher weights of packages and greater variations in sizes.

D.N.6 Obstacles with a cross section of 0.5m x 0.5m are detected and actively avoided.

D.N.7 A landing column with 2m radius exists around the visual marker

3.3 Performance Requirements
P.1 UAV places the package within 2m of the target drop point.

P.2 UAV flies for at least 10 mins without replacing batteries.

P.3 UAV carries packages weighing at least 400g.

P.4 UAV carries packages that fit in a cube of 30cm x 30cm x 20cm.

P.5 One visual markers exists per house.

P.6 Visual markers between houses are at least 10m apart.

P.7. A landing column with 3m radius exists around the visual marker

P.8 Obstacles with a minimum cross section of 1.5m x 0.5m are detected and actively avoided.

P.9 An edifice with a minimum cross section of 8m x 5m is required to navigate through.

3.4 Subsystem Requirements:
S.1 Vision

S.1.1 The size of the marker must be within a square of side 1.5m.

S.1.2 Error in the X,Y,Z position of the marker from the camera should be correct upto 10% of

distance from it.

9/38

S.2 Obstacle Detection and Avoidance

S.2.1 Obstacles must be detected with a range of 50 cm to 150 cm from the UAV.

S.2.2 Obstacles should be at least in 90% of the situations/positions.

S.2.3 Distance to the obstacle should be correct with a maximum error of 20cm.

S.2.4 Natural obstacles around a residential neighborhood should be detected.

S.3 Flight control

S.3.1 UAV must reach the GPS waypoint with a maximum error of 3m.

S.3.2 UAV should be able to fly 10 minutes without replacing the batteries.

4. Functional Architecture

Figure 4: Functional Architecture Diagram

The revised functional architecture of our system is as shown in Fig 2. Viewing the whole system as a

black-box there are 2 inputs – package to be delivered and GPS coordinates of customer location. The

output of the system is the package successfully delivered at destination.

Looking in the black box now, the UAV initially holds the package by activating an electro-permanent

magnet. Coordinates of the customer location are input to the User Interface. The developed Plan

Mission software decides the navigation waypoints and plans path to destination. This information is then

relayed to the UAV by the communication interface. The plan mission software continuously receives the

current coordinates from UAV and send updated coordinates back to the UAV.

 Meanwhile the UAV checks the battery status. If there is sufficient battery UAV arms the motor and

takes off. UAV navigates using the waypoint to the vicinity of the destination using GPS input. It then

switches to the marker detection code. UAV takes input from the camera and starts to scan the vicinity of

the customer destination for the marker put up by the customer. It moves in a predetermined trajectory for

scanning. Once the marker is detected the vision algorithm maps the size of marker in image to actual

distance of the UAV from the marker. The UAV continuously receives this information and moves

10/38

towards the marker. UAV finally lowers it landing gear and lands. It drops the package by disengaging

the electro-permanent magnet and flies back to base station using waypoint navigation.

During ‘Detect Marker’ &’ Navigate to Marker’ function UAV continuously runs an obstacle avoidance

algorithms on-board. The obstacle-avoidance algorithm continuously receives data from sensors, fuses the

data and asks the flight controller to alter its trajectory if there is an obstacle in its path.

5. Cyberphysical Architecture
The high level cyberphysical architecture can best be understood by Figure 3. On a high level, the system

can be broken down into three major categories: mechanical components, electrical components, and

software. The electrical components are the bridge between the software and the mechanical actuation.

The obstacle avoidance and vision system architecture show the flow of information between the

software, electrical and mechanical components for their corresponding systems.

Figure 3: Cyberphysical Architecture Diagram

5.1 Mechanical System
We are using FireFLY6 UAV for our project. The mechanical system of our project consists of the

landing gear, the propulsion system, and the gripper. The landing gear and propulsion system are part of

the FireFLY6 kit that we purchased but must be controlled appropriately by our software. The gripper is

NicaDrone - an electro-permanent magnet. This gripper is the interface between the vehicle and the

package and must allow the package to be dropped off upon arriving at the destination. It will be

controlled by our flight control system which is the brain of the UAV.

11/38

5.2 Electrical System
The electrical system is composed on a high level by flight control board, the vision subsystem hardware,

sensors, and communication hardware. The flight controller is Pixhawk the brain of the entire system and

runs all critical flight control software. The flight controller interacts with all the sensors on the vehicle

except for the cameras. These sensors include the IMU, GPS, and 14 ultrasonic sensors for obstacle

detection. The flight takes inputs through communication to the base platform, from the obstacle detection

algorithms, and also from the vision processing board. The output from the flight controller goes to the

motor controller and is then converted into appropriate signals to control the propulsion system.

Odroid - microprocessor for running visual algorithms connects to the camera and optical flow sensors on

board the UAV. Odroid runs vision algorithms and outputs the result to the flight controller.

5.3 Software
The software of our system can be broken into two categories, software that is computed on the platform

and software computed on board the UAV. The software on the platform performs two functions. The

first is that it is a user interface for human input and control. The second function is path planning

algorithms used to optimize the takeoff and return locations for the UAV. This information is then

conveyed to the UAV by their communication channel.

The code that is occurring onboard the UAV can be broken down into three major functions. The first is

flight control software - Advanced VTOL Autonomy (AVA) code written by FireFly manufacturers. The

second major software function is obstacle avoidance. The UAV must avoid obstacles in flight and must

sense its changing environment while in flight. The last set of algorithms revolves around computer

vision and visual processing. This code converts visual inputs into meaningful outputs for the flight

control.

6. Current System Status

6.1 Obstacle Avoidance Subsystem

6.1.1 Sensors Overview

This semester, the following parts of obstacle avoidance subsystem were achieved:

 Selecting appropriate sensors

 Deciding sensor layout

 Gather data from multiple ultrasonic sensor simultaneously by serially pinging the

sensors

We are mounting fourteen Maxbotix LV EZ MB1010 ultrasonic sensors around the UAV to cover area of

1.5 m around the UAV. The flowchart of the way obstacle avoidance subsystem will work is shown

below in Figure 4.

12/38

Figure 4: Flowchart for the Obstacle Avoidance Subsystem

Data from 14 ultrasonic sensors will be passed to Pixhawk through the I2C serial circuit described in the

PCB Subsystem. Flight controller will run obstacle avoidance algorithm and correspondingly generate

motor commands for the propulsion system.

The CAD design of the sensor layout of obstacle avoidance system are as follows. 7 ultrasonic sensors are

facing horizontally while 7 ultrasonic sensors are mounted at 42 degree angle. With this arrangement any

obstacle that comes at an angle to the UAV will also be detected.

Figure 5: Arrangement of 14 Ultrasonic Sensors

around The UAV

Figure 6: Top View of Sensor Layout showing

arrangement of 14 ultrasonic sensors

For the fall validation experiment we demo simultaneous functioning of 6 ultrasonic sensors mounted at

the nose of the UAV [Figures 7 & 8]. Figure below shows the arrangement of the sensors and the sensor

visualization in Rviz [Figure 9].

Collect data from 14

ultrasonic sensors

Flight Controller –

Pixhawk

Pi

I2C serial bus

Obstacle

Avoidance

Algorithm

Propulsion System

1/38

Figure 7: Close Up of 6 Ultrasonic Sensors

Mounted at the Nose of UAV

Figure 8: Image Showing 6 Ultrasonic Sensors

Mounted at the Nose of the UAV

Figure 1 Rviz Visualization of 6 ultrasonic sensors

The flowchart below explains the experiment arrangement of sensors [Figure 10]. 6 ultrasonic sensors

were connected to the arduino. Sensor readings from arduino were passed to a laptop on which sensor

visualization was shown in Rviz.

1/38

Figure 10: Flowchart of Sensor Experiment Arrangement

6.1.2 Sensor Modeling, Test, and Analysis

According to our system requirements we wish to detect any obstacle that comes within an area of 1.5m

radius around the UAV. For this our first step was to decide the type of sensors to be used. We did tests

with IR, ultrasonic and lidar to decide which sensor was best for our system. Following are the analysis of

the tests we did.

Sensor Analysis

IR For our system requirement we need 39 IR

sensors to cover the whole area.

Too many sensors.

Lidar Can detect only in one plane.

3D Lidar are too costly

Mounting lidar on servo and rotating

introduces more complexity

Ultrasonic Need 14 ultrasonic sensors to meet the

system requirement.

Cost within budget
Table 1: Analysis of Sensor Tests

Based on the above analysis we decided to use ultrasonic sensors. In the above analysis we mentioned we

required 14 ultrasonic sensors. This number of sensors was obtained by geometry. We divided the area to

be covered around the UAV with the detection area of each sensor (obtained from sensor datasheet) and

obtained the number of sensors required.

Collect data from 6

ultrasonic sensors

Arduino

Pi Rviz- Visualization

2/38

Figure 11: Detection Area of Maxbotix MB1010 Ultrasonic Sensor. Source: Sensor Datasheet

Ultrasonic sensors face issue with interference. Hence, we serially ping each sensor using the pinging

hardware arrangement provided by Maxbotix as shown in the figure below.

Figure 12: Maxbotix serially pinging arrangement. TX pin of one sensor is connected to RX pin of another.

Once one sensor collects reading it pings next sensor to take reading.

3/38

Next we performed test to find out the time taken by each sensor to take 1 reading. As shown below in

figure 13, each sensor requires 42ms to take one reading.

Figure 13: Cycle Length of Sensor Ping

As the time it takes for 1 sensor to collect reading is 42 ms other sensor should not collect readings during

the same time or interference issue will cause incorrect reading. The total time taken by 14 sensors if they

are all pinged one after the other: 42 X 14 = 588ms. Now we use a median filter of size 5 on top of it.

Hence total time taken to take one reading: 588 X 3 = 1.76s 1.76s update rate isn’t acceptable for the

system. Hence we subdivided the 14 ultrasonic sensors into geometrically 3 subsystem facing in different

direction so that they do not interfere with each other as shown in figure below.

4/38

Figure 14: Dividing the sensors into 3 subsystems to reduce update rate of the system

We further divided each subsystem into sensors on the top layer in one group and other system consisting

of sensors in bottom layer.

Analysis of the serial pinging arrangement are:

 Serially pinging sensors helps to get rid of interference

 Pinging sensors facing in different direction simultaneously helps reduce update

rate

 Using pinging pattern a subsystem of 6 sensors achieves around 250 ms update

rate

6.2 Master-Slave Sensor Boards

6.2.1 PCB Overview

As mentioned in the obstacle avoidance subsystem we are using I2C communication for connecting 14

ultrasonic sensors to the flight controller. Hence we designed master board to handle combining of I2C

lines and 5V regulator. Slave boards were designed to take sensor inputs and reduce analog line noise by

converting it straight to digital.

5/38

The flowchart below explains the connection of sensors with the master-slave board.

Figure 15: Flowchart of Sensor Interface using Master-Slave Boards

Figure 26: Fall Validation Senosr Setup.

In the FVE, 2 sensor connected to 2 slave board. Slave board pass data to master board which relays data

to Arduino. Data received by Arduino is visualized on laptop through serial terminal

4 Ultrasonic

Sensors

6Ultrasonic Sensors

4 Ultrasonic

Sensors

 Slave Board 1 Slave Board 2

Slave Board 3

Master Board

Flight Controller -

Pixhawk

6/38

6.2.2 PCB Modeling, Test and Analysis

Design of master-slave board is made in Eagle. The schematic of the board are as bellow.

Figure 37: Two Printed Slave Boards Figure 4 Schematic of four slave boards

Printed circuit boards are populated. Power and data lines are tested. No significant errors detected.

6.3 Vision Subsystem

6.3.1 Single Board Computer

The Single Board Computer is responsible for high level control of the UAV. This includes instructions

for navigation and determining the drop point for accurate landing and delivery. After trying multiple

SBCs, we have finalized on the Odroid XU4. It has two quad core processors each core with more

processing power compared to the Beagleboard xM and the BeagleBone Black, and is light enough to be

mounted on the vehicle.

As seen in the Cyber-Physical Architecture, the Odroid shall directly communicate with the Pixhawk

(Flight controller) and control the UAV. When the UAV is near the house, the camera connected to the

Odroid with identify the visual marker near the house and instruct the pixhawk on landing accurately on

it.

For the Fall Validation, the architecture replaced the Pixhawk with a laptop to see the output data from

the Odroid (refer figure XX).

7/38

6.3.2 Marker

We considered various markers that would be simple and robust for our application. Finally, we have

developed a custom marker which uses one small AprilTag nested into another larger one.

Figure 20: Nested AprilTag marker. Outer AprilTag can be seen from far-off distances, and the inner one

from nearby distances. (Tag id 166 outer, 138 inner, rotated -45 degrees)

As seen in the figure above, the inner marker is one-tenth the size of the outer marker and is rotated 45

degrees counter-clockwise so it does not hinder the detection of the larger one. The nested AprilTag helps

in increasing the range of a simple AprilTag.

Detection code

Logitech
C270
Webcam

Odroid XU4

USB

Laptop

Serial Console

5V Power
Battery
Eliminator Circuit

Figure 19: Testing and Validation Platform for the Vision Subsystem

8/38

Different sizes of nested tags were tested to determine upto what ranges they can be detected. Table 2

depicts the final comparisons

Table 2: Table depicting tested size-range relationships for nested AprilTags

6.3.3 Detection Algorithm

The most important part of the vision system is the marker detection algorithms which read and detect the

markers. These algorithms needed to be robust to noise as the environment around the house may be

cluttered, but they also need to be fast so that fast updates can be sent to the control algorithms after state

estimation.

S.No. Detection distances for different nested apriltag markers

Outer AprilTag Inner AprilTag

 Size Range Size Range

 1 3.6cm 8cm to 1.8m 0.36cm Not detected

2 14.4cm 40cm to 7.2m 1.44cm 4cm to 50cm

3 57.5cm 1.6m to 30m 5.75cm 16cm to 2m

9/38

After trying multiple algorithms and markers, we finally settled with an AprilTag detection algorithm as

developed by University of Michigan [1] and its C++ version as developed in MIT [2]. The Apriltag

detection gives upto 8 fps on the Odroid. This rate is too slow for controlling the UAV. As a workaround,

we tried to combine the AprilTag detection with Lucas-Kanade tracking algorithm. The basic idea of the

same is illustrated in the flowchart [Figure 21].

We use the AprilTag detection as the primary algorithm. After the first frame in which the tag is detected,

the features were obtained from this frame and tracked in the following frames using the Lucas Kanade

tracking. The output obtained from the tracking results was be verified for correctness*. In case no tag is

obtained or the tag obtained is incorrect, we shifted back to the AprilTag detection for the next frame. As

tracking results may start deviating from the actual detections, it is good idea to refresh the estimates

using the AprilTag detection once every few frames**.

*correctness of the tag can be verified in multiple ways: (the basic version has been tested to be a good

enough measure of correctness)

1. Basic: verify that the tracked points form a sensible quadrilateral.

2. Advanced: also include using the decoding logic of apriltags to verify the tag

Figure 51: Flowchart depicting the algorithm for detection and tracking

for apriltag

For

next

frame

For next frame

For next

frame
No

Ye

s

No

Ye

s

Run

AprilTag

detection

Is Tag

found?

Find features in the

tag area found

If tracked tag incorrect*

or refresh time** has

been reached?

Track features using

Lucas Kanade

Use LK output for

further calculations

10/38

**use a refresh time (or number of frames) after which the full detection is run to refresh the tracking

results. This is done as the tracking results can deviate due to errors and occlusions. A refresh every 30-60

frames gives a good output.

Different algorithms were tested for speed on the laptop and the Odroid. The speeds have been compared

in Table 3.

Table 3: Speed comparisons for different algorithms

The resulting FPS can be taken up to around 29fps on the Odroid, which makes the state estimation and

subsequent control possible. A few tracking results can be seen in these videos.

 Marker Detection Test #1 [https://youtu.be/zJ2rNg4Q4Vc]

 Marker Detection Test #2 [https://youtu.be/0qn28RghF_o]

 Marker Detection Test #3 [https://youtu.be/5TkUyuMBI2E]

6.3.4 Vision Subsystem - Testing and Analysis

Algorithm FPS on Laptop

(i3 4th gen)

FPS on Odroid

(Quad core ARM)

AprilTag detection 14 8

Lucas Kanade Tracking 30 29

Merged

(LK + AprilTag detection)

29 28

Camera mount for calibration Marker setup

Figure 22: The testing setup used for comparing detection results.

https://youtu.be/zJ2rNg4Q4Vc
https://youtu.be/0qn28RghF_o
https://youtu.be/5TkUyuMBI2E

11/38

The testing system was tried in multiple conditions to test for robustness and error. Following were some

of the inferences drawn

With different lighting conditions, exposure adjustments are required. Automatic exposure control works

best in outdoor conditions whereas high exposure work better in indoor conditions.

Marker is detected and tracked with high precision in all orientations (changes in pitch roll and yaw).

The primary constraint for finding error in detected X,Y,Z values has been the calibration of the setup to

obtain ground truth.

Errors in X,Y,Z offsets were recorded and plotted. An error of <5% from the distance to the marker is

seen in each X,Y and Z. These results exceeds the expectations set in the requirements (10%).

As viewed from the camera, X axis is the camera view axis, Y axis is sideways axis (longer side in the

image captured) and Z axis is the upwards axis (shorter side in the image captured).

Figure 23: Graph depicting error in detection distances to Marker

6.4 UAV and Flight Control System
 The primary focus for the UAV and flight control system this semester was to get it to fly via RC

control and waypoint navigation. The system had to be procured, assembled, tested, programmed, and

tuned to achieve this goal.

12/38

Figure 24: Electronics Installed in FireFLY6

 Our current status is that the vehicle is procured, assembled, and semi-functional. The electronics

can be seen inside the vehicle in Figure 24. Due to the fact that we are using beta code from

BirdsEyeView Aerobotics, they have many significant changes from the traditional Pixhawk code found

online. BirdsEyeView sent us their own version of Mission Planner and their own compiled version of

their firmware which has a controller to combine Arduplane and Arducopter Y6 configuration code. Their

code has stronger PreArm safety checks than the traditional Ardupilot code and it requires an external

compass to be present to arm the motors.

 Our major bottleneck in getting this vehicle up and running was the PreArm software checks. Due

to faulty hardware, the Pixhawk was unable to find or calibrate the external compass. Even when we

successfully calibrated, the readings would be lost when we power cycled the vehicle. We were able to

get the vehicle flying on the night before the FVE but it failed to arm after that.

 We worked with BirdsEyeView Aerobotics’ head firmware engineer and performed many tests to

attempt to fix the issue. We tried removing connectors and soldering wires directly into ports, placing

aluminum foil under the compass as a homemade faraday cage, attempting to calibrate indoors and out in

open fields, and many other tests. Ultimately we were unable to bypass this bug no matter what solution

we attempted to throw at it and consequently we were unable to meet our FVE requirements.

 Currently we realize that the FireFly6 is the weakest subsystem of our project at this point in

time. The UAV is also the most important subsystem of our project and must be made operational as soon

as possible to meet Spring validation tests. Due to this realization, we are contemplating as part of our risk

mitigation to change platforms entirely and go with a octocopter capable of doing everything the FireFly6

13/38

does just at slower speeds and with less flight time. Cutting our losses and modifying our project will be

the best thing for our project long term and so we believe it is the right move to take at this time.

7. Project Management
The following section outlines the high-level Work Breakdown Structure and schedule. For this project,

we made a concerted effort to integrate existing technologies wherever appropriate. To ensure project

success, great attention has been given to integration testing leading toward a full scenario test. The work

for this project has been broken down at the highest level into Systems Engineering, Fabrication and

Procurement, Systems Integration, and Testing.

7.1 Work Breakdown Structure
1 Systems Design

2 Procurement and Assembly

3 Testing & Integration

 1.1 Project Planning

2.1 Drone

3.1 Project Planning
 1.1.1 Design System Architecture 25 days

2.1.1 Procure Drone 2 wks

3.1.1 Build Test Environment 1 week

1.1.2 Design Test Environment 4 days

2.1.2 Assemble Drone 1 wk

3.1.2 Full Scenario Test 2 weeks

2.1.3 Procure Flight Controller 2 wks
 1.2 Drone

2.1.4 Mount obstacle sensors 1 wk

3.2 Drone
 1.2.1 Choose Drone 1 day

2.1.5 Fabricate underbelly 1 wk

3.2.1 Test Flight Controller 1 week

1.2.2 Select Flight Controller 1 day

3.2.2 Test Drone R/C-only Control 4 days

1.2.3 Design Drone Underbelly 2 wks

2.3 Ground Platform

3.2.3 Tune and test forward flight 2 wks

1.2.4 Design Marker Search Algorithm 4 weeks

2.3.1 Build Ground Platform 3 wks

3.2.4 Understand code 1.5 wks

3.2.5 Waypoint using hover 4 days

1.3 Ground Platform

2.4 Vision System

3.2.6 Waypoint using FF 1.5 wks

1.3.1 Design Base Station 1 week

2.4.1 Procure Camera 2 wks

3.2.7 Autonomously control UAV 1 wk

2.4.2 Procure Vision Board 1 week

3.2.8 Test Visual Landing of Drone 1 wk

1.4 Vision System

2.4.3 Fabricate Visual Markers 1 wk
 1.4.1 Design Vision System 1 day

3.3 Vision System
 1.4.2 Select Camera 3 days

2.5 Obstacle Avoidance

3.3.1 Test Camera and Board 3 days

1.4.3 Select Vision Board 1 day

2.5.2 Procure Obstacle Sensors 1 week

3.3.2 Integrate and test Visual system on board 4 days

1.4.4 Design Visual Markers 1 day

2.5.3 Procure Optical Flow 1 week

3.3.3 Test Visual Markers with Vision System 3 days

2.5.4 PCB iterations 2 wks

3.3.4 Integrate vision info into control 4 days

1.5 Obstacle Avoidance
 1.5.1 Analyze Obstacle Sensors 1 wk

2.6 Communications System

3.4 Obstacle Avoidance
 1.5.2 Design Obstacle Avoidance 2

2.6.1 Procure Radio Module 2 wks

3.4.1 Integrate Optical Flow 2 wks

1.5.3 Design Sensor Layout 1 wk

3.4.2 Integrate obstacle avoidance system 1.5 wks

2.7 User Interface

3.4.3 Table Test Obstacle Avoidance Sensors 3 wks

1.6 Communications System

2.7.1 Build User Interface 1 week

3.4.4 Test Waypoint Following with Obstacle Avoidance 1 mo

1.6.1 Design Communications 3 days

3.4.5 Test Visual Landing with Obstacle Avoidance 2 mo

1.6.2 Select Radio Module 1 day

2.8 Package Handling

2.8.1 Build/Procure Gripper 2 mo

3.5 Communications System
 1.7 User Interface

3.5.1 Electronic Test of Radio Module 1 day

1.7.1 Determine User I/O 4 days

3.5.3 Data Test of Radio Module 2 days

1.7.2 Design User Interface 2 weeks

15/38

3.6 User Interface
 1.8 Package Handling

3.6.1 Test User Interface 3 days

1.8.1 Design Gripper System 3 weeks
 1.8.2 Select Gripper Mechanism 1 wk

3.7 Package Handling
 1.8.3 Design Package Modifications 1 wk

3.7.1 Test Gripper Electronics 4 days

3.7.2 Test Gripper and Package Modifications 1 week

3.7.3 Integrate and test gripper with drone 1 week

Figure 25: Work Breakdown Structure

As you can see, the vision system is nearly complete. Work has started on both the drone and obstacle avoidance has started. Team A has yet to

start work sections related to the gripper, user interface, and final integration.

7.2 Schedule
The following schedule was made using a Gantt chart and our best estimates of both development time

and system dependencies.

Current priorities include fixing current UAV problems, initiating obstacle avoidance code, and

integrating subsystems.

Table 5: Project Schedule of Deliverables

17/38

8. Test Plan

8.1 Capability Milestone for spring-semester Progress Review
The table listed below describes the high-level capability milestone for each of the progress review.

Milestone Capability Description

Progress Review 7

Waypoint Navigation Successfully demonstrate the UAV following

waypoints in hover mode

Obstacle Detection Connect all sensors to flight controller using master-

slave board. Display the readings of the sensors

Gripper Demonstrate hold and release action of gripper

mechanism

Progress Review 8

Vision and Flight

controller

communication

Demonstrate communication between Odroid and AvA

code (flight controller code)

Forward Flight Demonstrate forward flight motion of UAV

Underbelly Design Mount gripper, camera and sensors on UAV

Progress Review 9

Optical Flow Demonstrate optical flow integrated to the flight code

Obstacle Avoidance Show in simulation UAV avoiding static obstacles

Obstacle Avoidance Demonstrate UAV flight integrated with functioning

obstacle avoidance system

Progress Review 10

Ground control Demonstrate continuous update of UAV status on the

ground control station

Landing Demonstrate autonomous landing of UAV on marker

Progress Review 11 Integration Buffer period

18/38

Progress Review 12 Integration Buffer period

Table 6: Deliverables by Progress Review

8.2 Spring Validation Experiment
We have divided our Spring Validation Experiment in 3 tests. Package carrying mechanism test

demonstrates that the UAV can fly with the package and deliver it. Obstacle-less package delivery test

demonstrates the complete functionality of package delivery with the obstacle avoidance system

functioning. The third test will demonstrate all the systems – package carrying mechanism, obstacle

avoidance and navigation functioning successfully.

Test Name Package carrying mechanism test

Test

Description

Validates the package carrying and dropping capabilities of the UAV

Test Location Schenley Park

Equipment

Required

UAV fitted with the package carrying mechanism, Small package.

Step Step Description Success condition

1 Place the UAV with the package attached to

the carrying mechanism

2 Initiate take off manually

3 UAV lifts off and hovers 5m over the ground

for 1 minute

The package remains securely

attached to the UAV

4 UAV descends and lands Package still attached

5 UAV drops package onto the ground Package is released and lands on

the ground

Table 7: Spring Validation, Package carrying Test

19/38

Test Name Obstacle-less package delivery test

Test

Description

Validates that packages can be delivered to a house without any obstacles in the

path

Test Location Schenley Park

Equipment

Required

Platform, Open space (outdoor environment), Fully equipped system.

Step Step Description Success condition

1 Place UAV with package at platform with

visual marker

2 Initiate system by entering GPS coordinates

for the house and GPS coordinates of the

return to point

Delivery begins

3 UAV takes off autonomously towards the

house

4 Reaches waypoint near the house using

GPS

Autonomously and accurately

navigates using GPS to reach near

given GPS coordinates

5 Identifies and navigates to the visually

marked drop off point (with no obstacles in

the path)

Identifies the visual marker near the

GPS destination and autonomously

navigates to it

6 Lands and drops the package The package should be upto 2m

from the center of the visual marker

7 Autonomously takes off and navigates to

the GPS of the return back point

(communicated in the beginning)

Package should remain delivered.

UAV departs

8 Detects, navigates and lands at the platform

with the visual marker

Should land within 2m of the center

of the visual marker

Table 8: Spring Validation, Obstacle less package delivery test

20/38

Test Name Complete Package delivery test with obstacles

Test

Description

Validates that packages can be delivered to a house even with static obstacles in

the path

Test Location Schenley Park

Equipment

Required

Platform, Open space (outdoor environment), Fully equipped system, Obstacles

(cross section: 1.5m x 0.5m).

Step Step Description Success condition

1 Place UAV with package at platform with visual

marker

2 Initiate system by entering GPS coordinates for

the house and GPS coordinates of the return to

point

3 UAV takes off autonomously towards the house

4 Reaches waypoint near the house using GPS

5 Identifies the marker and plans path to navigate to

it

Identifies the visual marker

near the GPS destination.

6 Place an obstacle (2mx2m) in the path of the

UAV

Avoids the obstacle

7 Place an obstacle (2mx2m) on the side of the

UAVs intended path

Avoids the obstacle

8 Repeat with 1.5m x 0.5m obstacles Avoids the obstacle

9 Repeat with both obstacles, placed in the front and

the sides

Avoids the obstacles

10 Lands and drops the package

11 Autonomously takes off and navigates to the GPS

of the return back point (communicated in the

21/38

beginning)

12 Detects, navigates and lands at the platform with

the visual marker

Table 9: Spring Validation, Complete Package delivery test with obstacles

22/38

8.3 Budget

Table 10: Project Budget

This semester we spent $2,061 of our projected budget of $2,287. The majority of our budget has been

spent on the FireFly6 platform and its spares. The difference between what we spent and our projected

23/38

budget is because we haven’t bought the spare Odroid, spare camera, and spare LidarLite yet. Even when

we purchase those spares, we will have used 57% of our $4,000 budget which gives us plenty of money to

purchase components in the Spring if necessary.

9. Conclusion
As already stated, we realize that the FireFly6 is the weakest subsystem of our project at this point in

time. The UAV is also the most important subsystem of our project and must be made operational as soon

as possible. Due to this realization, we are contemplating as part of our risk mitigation to change

platforms entirely and go with an octocopter capable of doing everything the FireFly6 does just at slower

speeds and with less flight time. Cutting our losses and modifying our project will be the best thing for

our project long term and so we believe it is the right move to take at this time.

On the Obstacle Avoidance end, 14 ultrasonic sensors are sufficient to cover area of 1.5 m radius around

the UAV. Using serial pining we can get rid of interference. The update rate for the system is around 250

ms which is good. The sensors are not very precise and give around +-20cm error when obstacle are not

exactly perpendicular to the sensor. However the error of the system is with the limits of our system

requirements.

The vision system has been developed to run using a Logitech webcam on an Odroid. We use nested

AprilTag markers and AprilTag detection coupled with Lucas Kanade tracking algorithm to track the

marker location. It is able to achieve upto 29 frames per second update rate and can detect the marker

upto 20m. To summarize, our vision system looks strong and ready to be integrated. The algorithm used

is fast, robust and accurate and based on initial estimates should be able to guide the UAV to land.

Significant work was completed this semester. Despite this, Team Avengers was unable to get the UAV

flying in time. Due to properly applied project management methods, the team has the time and resources

to aggressively adapt subsystems in order to meet SVE. As an ambitious group, we intend to meet those

goals.

24/38

10. References
Meier, L.; Tanskanen, P.; Fraundorfer, F.; Pollefeys, M., "PIXHAWK: A system for autonomous flight

using onboard computer vision," in Robotics and Automation (ICRA), 2011 IEEE International

Conference on , vol., no., pp.2992-2997, 9-13 May 2011

Figure 4: Dronecode Software Architecture https://www.dronecode.org/dronecode-software-platform,

accessed 10/2/15

Web link: “Electro Permanent Magnet” from Nica Drone,

http://nicadrone.com/index.php?id_product=59&controller=product, accessed 10/2/15

Web link: “Using LIDAR-Lite to sweep an arc for sense-and-avoid”,

http://diydrones.com/profiles/blogs/using-lidar-lite-to-sweep-an-arc-for-sense-and-

avoid?xg_source=activity, accessed 10/2/15

Web link: “Precision Land ArduCopter Demo”, http://diydrones.com/profiles/blogs/precision-land-

arducopter-demo?xg_source=activity, 10/2/2015

Web Link: “3D Robotics Partners with Intel, Develops New Drone Power”, http://3drobotics.com/3d-

robotics-partners-intel-develops-new-drone-power/, accessed 10/2/15

https://www.dronecode.org/dronecode-software-platform
http://nicadrone.com/index.php?id_product=59&controller=product
http://diydrones.com/profiles/blogs/using-lidar-lite-to-sweep-an-arc-for-sense-and-avoid?xg_source=activity,%20accessed%2010/2/15
http://diydrones.com/profiles/blogs/using-lidar-lite-to-sweep-an-arc-for-sense-and-avoid?xg_source=activity,%20accessed%2010/2/15
http://diydrones.com/profiles/blogs/precision-land-arducopter-demo?xg_source=activity
http://diydrones.com/profiles/blogs/precision-land-arducopter-demo?xg_source=activity

