

Project Pegasus

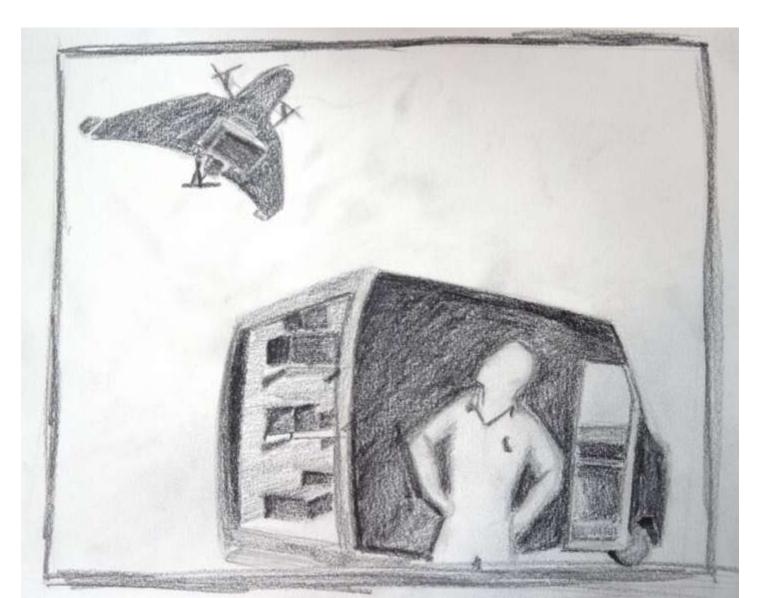
Package Delivery System

Team A

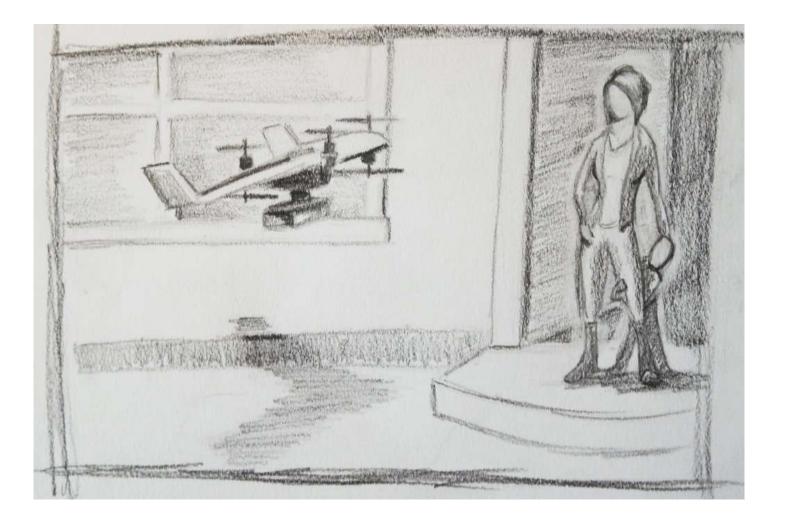
Tushar Agrawal Sean Bryan Pratik Chatrath and Adam Yabroudi

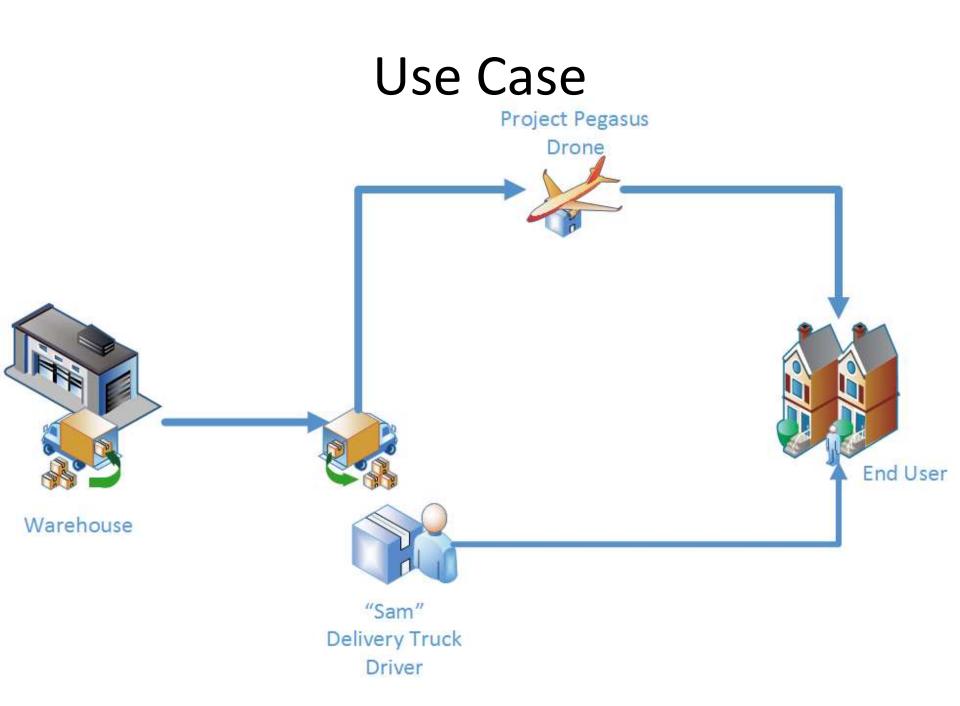
Teaser

What we're doing


Problem

• Delivering packages to a house using UAVs


Problem Description


- •Given the coordinates of the house, a UAV with a package takes off from point A
- •Autonomously reaches close to the house
- •Scans the outside of the house for a visually marked drop point, lands, drops off the package,
- Takes off again to land on another platform at point B.

Use Case

System Requirements

- Mandatory Functional Requirements
- Mandatory Non-Functional Requirements
- Desired Requirements

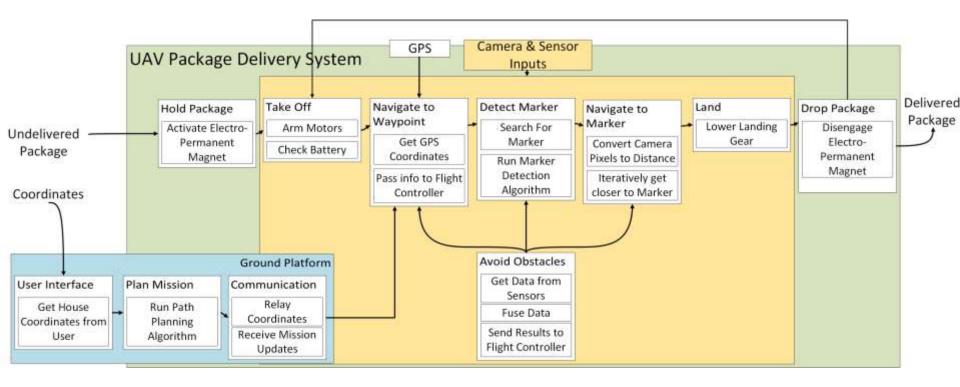
Mandatory Functional Requirements

- M.F.1 Hold and carry packages with a maximum size of 30cm x 30cm x 20cm, weighing up to 400g.
- M.F.2 Autonomously take off from a visually marked platform.
- M.F.3 Navigate to a known position close to the house.
- M.F.4 Detect and navigate to the drop point at the house.
- M.F.5 Land at visually marked drop point (with an open landing column of 2m radius).
- M.F.6 Drop package within 2m of the drop point.
- M.F.7 Take off, fly back to and land at another visually marked platform.
- M.F.8 Takes coordinates as input from the user.
- M.F.9 Communicates with platform to receive GPS updates (intermittently).

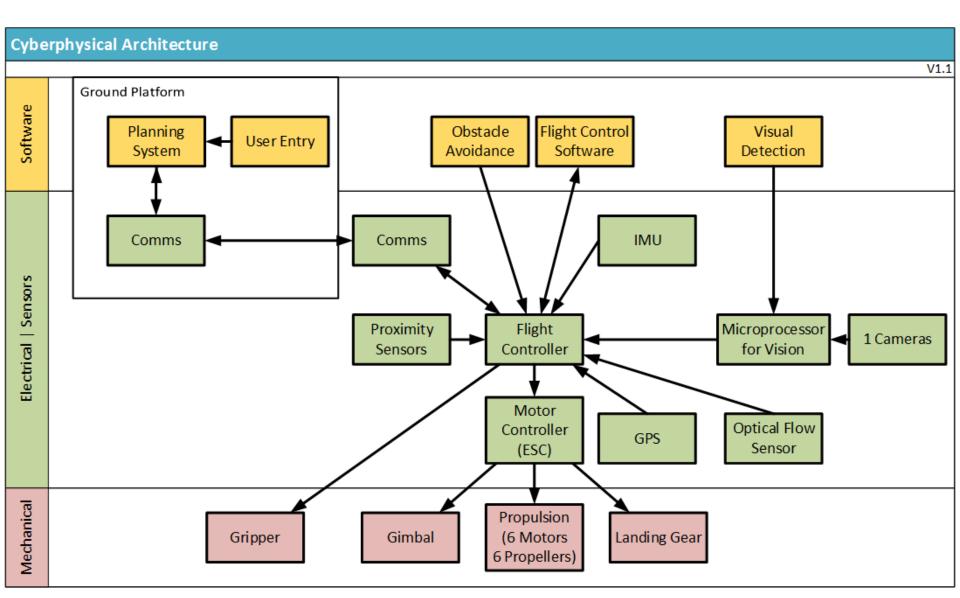
Mandatory Non-Functional Requirements

- M.N.1 Operates in an outdoor environment.
- M.N.2 Operates in a semi-known map. The GPS position of the house is known, but the exact location of the visual marker is unknown and is detected on the fly.
- M.N.3 Avoids static obstacles with a minimum cross-sectional dimensions of 1.5m x 0.5m.
- M.N.4 Not reliant on GPS
- M.N.5 Sub-systems should be well documented and scalable.
- M.N.6 UAV should be small enough to operate in residential environments.
- M.N.7 Able to carry packages.
- M.N.8 Recognizes visual markers that are located at least 10m apart.

Desired Requirements


3.2.1 Functional

- D.F.1 Pick up packages.
- D.F.2 Simulation with multiple UAVs and ground vehicles.
- D.F.3 Ground vehicle drives autonomously.
- D.F.4 UAV and ground vehicle communicate continuously.
- D.F.5 UAV confirms the identity of the house before dropping the package (RFID Tags).


3.2.2 Non-Functional

- D.N.1 Operates in rains and snow.
- D.N.2 Avoids dynamic obstacles
- D.N.3 Operates without a GPS system.
- D.N.4 Has multiple UAVs to demonstrate efficiency and scalability.
- D.N.5 Compatible with higher weights of packages and greater variations in sizes.

Functional Architecture

Cyberphysical Architecture

Current System Status


Obstacle Detection & Master-Slave Sensor Board Vision Subsystem Flight Control

Targeted Fall Requirement

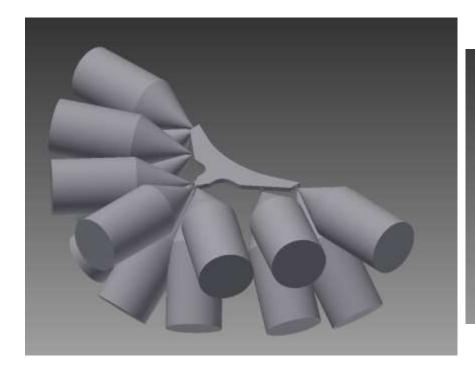
Vision Subsystem

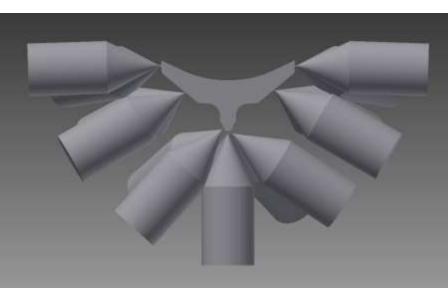
Obstacle Detection

Flight Control

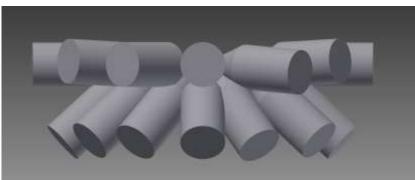
MF4: Detect and navigate to marker MN1: Operate in outdoor environment MN2: Operate in semi-known map MN1: Operate in outdoor environment MN3: Avoid static obstacles

MF2: Autonomous Take Off MF3: Navigate to known position MF8: Take coordinate as input from user MF9: Communicate with platform to receive GPS updates MN1: Operate in outdoor environment

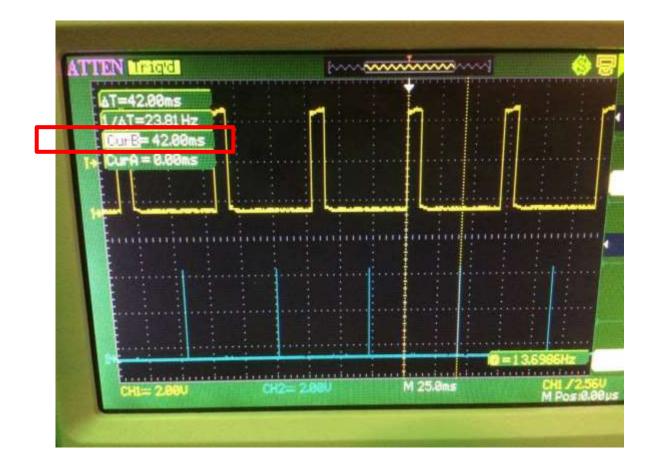

Obstacle Detection – Subsystem Description



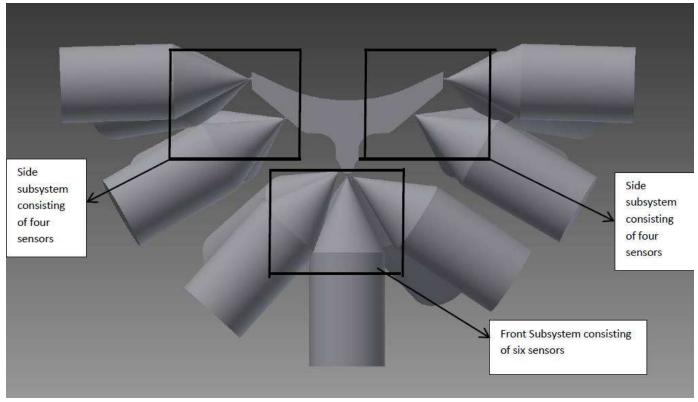
Obstacle Detection - Video



Obstacle Detection - Modeling



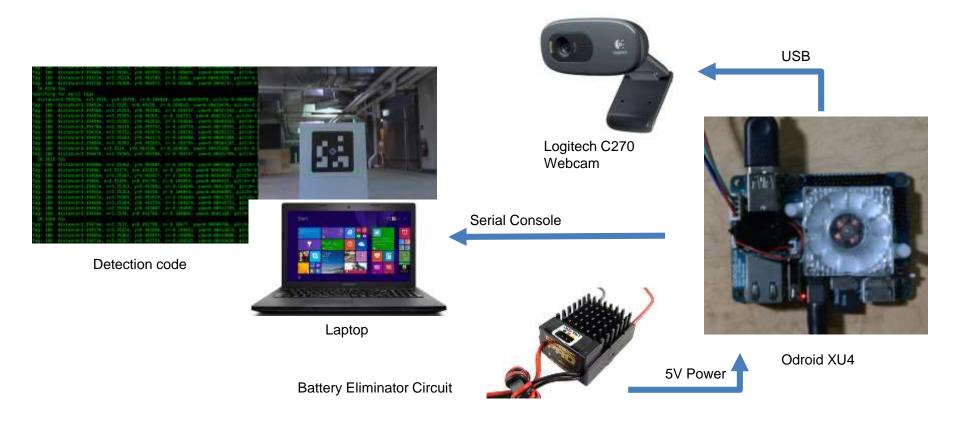
- CAD design of sensor arrangement
- 14 Ultrasonic Sensors required to cover the UAV



Obstacle Detection - Test

 Time taken for 1 sensor to take reading = 42 ms

Obstacle Detection - Test

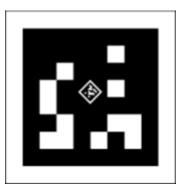


Dividing sensor subsystem into further 3 subsystems to reduce overall system sensing time

Obstacle Detection - Analysis

- Serially pinging sensors helps to get rid of interference
- Pinging sensors facing in different direction simultaneously helps reduce update rate
- Using pinging pattern a subsystem of 6 sensors achieves 300 ms update rate

Vision subsystem



Vision subsystem

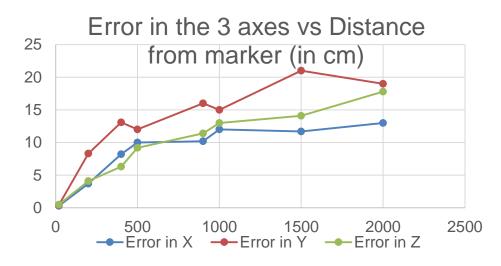
Vision subsystem - Analysis

- •Size 57.5 cm square
- •Range 16 cm to 30m (Requirement for FVE: 20cm to 20m)

Nested AprilTag marker

S.No.	Detection distances for different nested apriltag markers			
	Outer AprilTag		Inner AprilTag	
1	4.5cm Outer		0.45cm Inner	
	Max: 1.8m	Min: 8 cm	Not detected	
2	18cm Outer		1.8cm Inner	
	Max: 7.2m	Min: 40cm	Max: 50cm	Min: 4cm
3	57.5cm Outer		5.75cm Inner	
	Max: 30m	Min: 1.6m	Max: 2m	Min: 16cm

Vision subsystem - Analysis


•Detection Speed

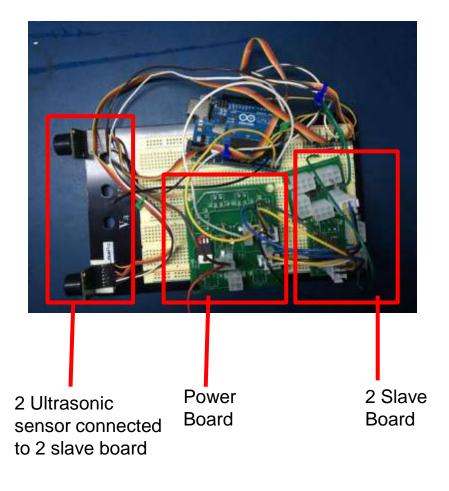
- -Framewise AprilTag detection slow
- –Lucas Kanade tracking speeds up continuous tracking
- -Refresh once every few frames (30) or when none found

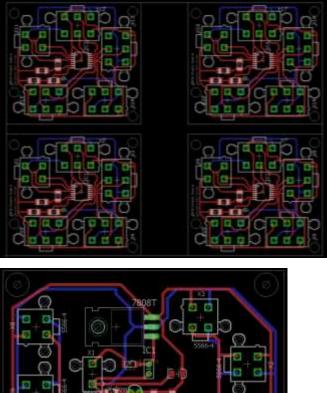
Algorithm	FPS on Laptop (i3 4 th gen)	FPS on Odroid (Quad core ARM)
AprilTag detection	14	8
Lucas Kanade Tracking	30	29
Merged (LK + AprilTag detection)	29	28

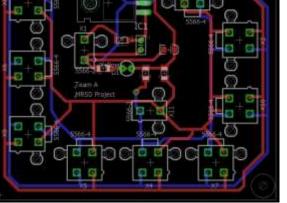
Vision subsystem - Analysis

- Accuracy
 - -Camera axis calibration
 - -Measurement accuracy
 - -Attains accuracy of <5% (FVE required: 10%)

Camera mount for calibration


Marker setup


Current Status - UAV


- •Vehicle is assembled mechanically and integrated electronically
- •Has flown a few times via RC controller
- •Still having issues with prearm sequence due to a faulty compass. Still debugging the issue with BirdsEyeView Aerobotics

PCB Successfully Implemented

Performance Evaluation against

FVE

			,
	Requirement	Subsystem	Performance
MN3	Detect static obstacle of minimum size 1.5 m X 0.5 m & 2m X 2m	Obstacle detection	Successful within error margin of 20cm
	Detect obstacles of minimum size 1.5 m X 0.5 m in natural environment	Obstacle detection	Successful within error margin of 20cm
MN4	Marker should be detected in 20cm to 20m range	Vision	Successful
	Manual flight control	Flight Control	Successful initially Later compass problem
MF8	Take coordinate as input from user	Flight Control	Successful initially Later compass problem
MF9	Communicate with ground platform to receive GPS updates	Flight Control	Successful initially Later compass problem
MF3	Waypoint Navigation	Flight Control	Compass problem
MN1	Operate in outdoor environment	Obstacle Detection & Vision	Successful
		Flight Control	Compass issue

Conclusion

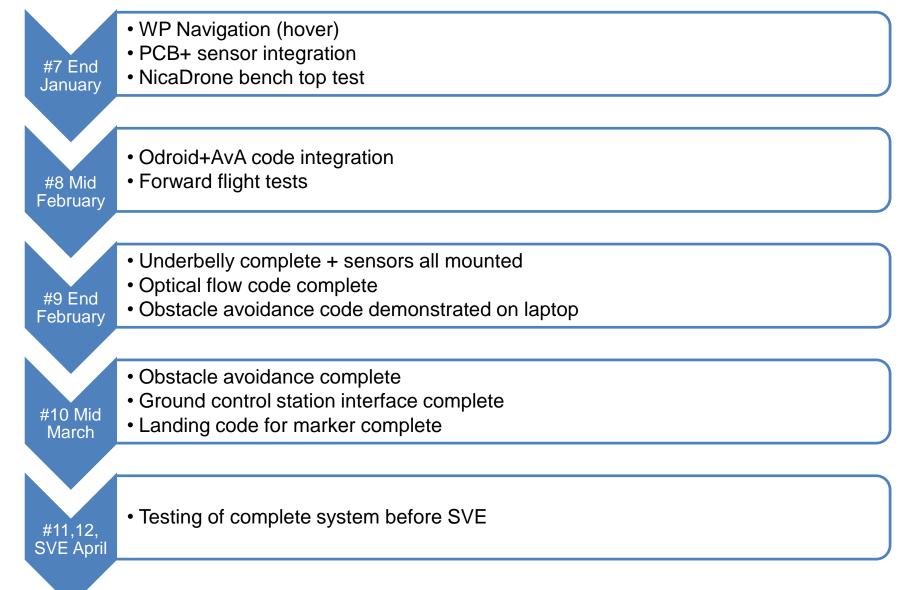
Sub - System	Performance Evaluation
Vision	Strong Detect marker from far distance (20m) to very close distance (20cm) No effect of lighting variations Speed is high
Obstacle Detection	Neutral Sensors give fluctuating readings at times Not very precise
Flight Control	Weak Need to resolve compass issue And then achieve waypoint navigation

Work Breakdown Structure

1.2	Drone	1.4	Vision System	
1.2.1	Choose Drone	1.4.1	Design Vision System	1.5
	Design Drone			
1.2.2	Underbelly	2.4.1	Procure Camera	1.5
2.1.1	Procure Drone	2.4.2	Procure Vision Board	2.5
	Modify UAV for			
2.1.4	obstacle sensors	3.3.1	Test Camera and Board	2.5
			Integrate and test Visual	
2.1.5	Fabricate underbelly	3.3.2	system on board	2.5
	Test Drone R/C-only		Test Visual Markers with	
3.2.2	Control	3.3.3	Vision System	3.4
	Tune and test		Integrate vision info into	
3.2.3	forward flight	3.3.4	control	3.4
	Waypoint using			
3.2.5	hover			3.4
3.2.6	Waypoint using FF			3.4
	Test Visual Landing			
3.2.8	of Drone			3.4

1.5 Obstacle Avoidance				
	Analyze and Layout Obstacle			
1.5.1	Avoidance Sensors			
1.5.2	Design Obstacle Avoidance			
	Procure Obstacle Avoidance			
2.5.2	Sensors			
2.5.3	Procure Optical Flow			
2.5.4	PCB iterations			
3.4.1	Integrate Optical Flow			
	Integrate and test obstacle			
3.4.2	avoidance system with drone			
	Table Test Obstacle			
3.4.3	Avoidance Sensors			
	Test Waypoint Following with			
3.4.4				
	Test Visual Landing with			
3.4.5	Obstacle Avoidance			

	Determine Lien
	Determine User
1.7.1	Inputs/Outputs
	Design User
1.7.2	Interface
	Build User
2.7.1	Interface
	Test User
3.6.1	Interface


1.8 Package Handling

- Design Gripper1.8.1SystemDesign Package
- 1.8.2 Modifications Build/Procure
- 2.8.1 Gripper Test Gripper
- 3.7.1 Electronics Test Gripper and Package
- 3.7.2 Modifications
 Integrate and test
- 3.7.3 gripper with drone

Schedule

- Major Milestones
 - -Fix current UAV problems
 - -Get AvA code communicating with peripherals
 - -Get obstacle avoidance code initiated
 - -Integrate all subsystems fully into the UAV
- •We are slightly behind our original anticipated schedule but will still make the SVE

Milestones

Test Plan – Spring Validation Experiment

- Test B Package carrying test
 - Validates packages can be carried and dropped by the UAV
 - Steps
 - UAV with package attached
 - Take off and hover for a minute.
 - UAV descends and lands
 - Drop package on the ground
 - Package should remain attached and released after landing

Test Plan – Spring Validation Experiment

- Test E Obstacle-less package delivery
 - Validates packages can be delivered without obstacles around the house
 - Steps
 - UAV + Package on a visual marker
 - System initiated by entering GPS coordinates of house
 - UAV takes off autonomously
 - Reaches waypoint near the house
 - Identify and navigate to visual marker
 - Land and drop package
 - Return back to another platform
 - Should be delivered within 2m of marker

Test Plan – Spring Validation Experiment

- Test F Package delivery with obstacles (uses E)
 - Validates packages can be delivered with static obstacles around the path
 - Steps
 - UAV + Package reaches near the house as before
 - Identify and plan path to visual marker
 - Place 2m x 2m obstacle in the path and beside the UAV
 - Repeat with 1.5m x 0.5 obstacle
 - Land and drop package and return
 - The UAV does not hit any obstacles

Budget

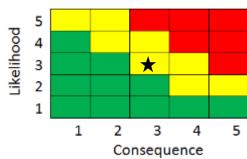
Item	Projected budget
UAV + spares	\$1288
Vision system + optical flow	\$575
Obstacle Avoidance System	\$670
	\$2533

- Spent \$2,248 out of the projected \$2,533
- Spent 56% of our allocated \$4,000 thus far

Risks Mitigated Already

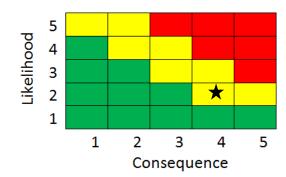
- •Ordered the wrong batteries
- •Odroid
- •Analog sensors with long wires are noisy
- •Number of sensors in obstacle detection too high

Risk 1: Flight Dynamics


- •Type: Technical
- Description:

-Adding a payload and all the components will change forward flight dynamics.

• Consequence:


Forward flight might be inefficient and harder to control

- Mitigation:
 - -Could add fairings (structure to increase aerodynamics) around our modifications to help with airflow.
 - -Worst case we reduce maximum forward flight speed

Risk 2: Styrofoam Structure


- •Type: Technical
- Description:
 - Vehicle is made of Styrofoam and modifications can't be undone
- Consequence:
 - Structural support might be removed unnecessarily affecting flight dynamics and making the vehicle weaker
- Mitigation:
 - Sensors placement is being optimized on a wood mockup of the vehicle
 - Initial modifications will occur on the Styrofoam nose (costs \$7 and modular)
 - -We have two frames (one is a spare)

Risk 3: FireFly6 Firmware

- •Type: Technical
- Description:
 - Using proprietary firmware which isn't well tested but provides high value to project
- Consequence:
 - Might create unforeseen coding and debugging issues
- Mitigation:
 - -Working with head firmware engineer of FireFly6 as second sponsor (in addition to UTRC).
 - -Test code immediately (already procured Pixhawk in anticipation of this problem)

Conclusion - Fall Semester Lessons Learned

- Iterate Fast
- Be efficient.

-Work to achieve good results and not best results

• Get spares for everything

Conclusion - Key Spring Semester Activities

- 1. Finish critical components of the project
- 2. Understand AVA code
- Integrate all subsystem Vision, Obstacle detection into flight controller as soon as possible
- 4. Develop obstacle avoidance algorithm

Thank You

