
Project Pegasus

Team A

Tushar Agrawal

Sean Bryan

Pratik Chatrath

and Adam Yabroudi

Package Delivery System

Teaser

What we’re doing

Problem

•Delivering packages to a house using UAVs

Problem Description

•Given the coordinates of the house, a UAV with a
package takes off from point A

•Autonomously reaches close to the house

•Scans the outside of the house for a visually marked
drop point, lands, drops off the package,

•Takes off again to land on another platform at point B.

Use Case

Use Case

Use Case

System Requirements

• Mandatory Functional Requirements
• Mandatory Non-Functional

Requirements
• Desired Requirements

Mandatory Functional Requirements

• M.F.1 - Hold and carry packages with a maximum size of 30cm x 30cm x 20cm,
weighing up to 400g.

• M.F.2 - Autonomously take off from a visually marked platform.
• M.F.3 - Navigate to a known position close to the house.
• M.F.4 - Detect and navigate to the drop point at the house.
• M.F.5 - Land at visually marked drop point (with an open landing column of 2m

radius).
• M.F.6 - Drop package within 2m of the drop point.
• M.F.7 - Take off, fly back to and land at another visually marked platform.
• M.F.8 - Takes coordinates as input from the user.
• M.F.9 - Communicates with platform to receive GPS updates (intermittently).

Targeted in Fall

Mandatory Non-Functional
Requirements

• M.N.1 - Operates in an outdoor environment.
• M.N.2 - Operates in a semi-known map. The GPS position of the house

is known, but the exact location of the visual marker is unknown and is
detected on the fly.

• M.N.3 - Avoids static obstacles with a minimum cross-sectional
dimensions of 1.5m x 0.5m.

• M.N.4 - Not reliant on GPS
• M.N.5 - Sub-systems should be well documented and scalable.
• M.N.6 - UAV should be small enough to operate in residential

environments.
• M.N.7 - Able to carry packages.
• M.N.8 - Recognizes visual markers that are located at least 10m apart.

Targeted in Fall

Desired Requirements

3.2.1 Functional
– D.F.1 Pick up packages.
– D.F.2 Simulation with multiple UAVs and ground vehicles.
– D.F.3 Ground vehicle drives autonomously.
– D.F.4 UAV and ground vehicle communicate continuously.
– D.F.5 UAV confirms the identity of the house before dropping the package (RFID

Tags).

3.2.2 Non-Functional
– D.N.1 Operates in rains and snow.
– D.N.2 Avoids dynamic obstacles
– D.N.3 Operates without a GPS system.
– D.N.4 Has multiple UAVs to demonstrate efficiency and scalability.
– D.N.5 Compatible with higher weights of packages and greater variations in

sizes.

Functional Architecture

Cyberphysical Architecture

Current System Status

Obstacle Detection & Master-Slave Sensor
Board

Vision Subsystem
Flight Control

Targeted Fall Requirement
Vision Subsystem Obstacle Detection Flight Control

MF4: Detect and navigate to

marker

MN1: Operate in outdoor

environment

MN2: Operate in semi-known

map

MN1: Operate in outdoor

environment

MN3: Avoid static obstacles

MF2: Autonomous Take Off

MF3: Navigate to known

position

MF8: Take coordinate as input

from user

MF9: Communicate with

platform to receive GPS

updates

MN1: Operate in outdoor

environment

Obstacle Detection – Subsystem
Description

Obstacle Detection - Video

Obstacle Detection - Modeling

• CAD design of sensor

arrangement

• 14 Ultrasonic Sensors required

to cover the UAV

Obstacle Detection - Test

• Time taken for 1

sensor to take

reading = 42 ms

Obstacle Detection - Test

Dividing sensor subsystem into further 3 subsystems to reduce overall system sensing time

Obstacle Detection - Analysis

• Serially pinging sensors helps to get rid of
interference

• Pinging sensors facing in different direction
simultaneously helps reduce update rate

• Using pinging pattern a subsystem of 6
sensors achieves 300 ms update rate

Vision subsystem

Detection code

Logitech C270

Webcam

Odroid XU4

USB

Laptop

Serial Console

5V Power
Battery Eliminator Circuit

Vision subsystem

Vision subsystem - Analysis

S.No. Detection distances for different nested apriltag markers

Outer AprilTag Inner AprilTag

1 4.5cm Outer 0.45cm Inner

Max: 1.8m Min: 8 cm Not detected

2 18cm Outer 1.8cm Inner

Max: 7.2m Min: 40cm Max: 50cm Min: 4cm

3 57.5cm Outer 5.75cm Inner

Max: 30m Min: 1.6m Max: 2m Min: 16cm

•Size - 57.5 cm square

•Range – 16 cm to 30m (Requirement for
FVE: 20cm to 20m)

Nested AprilTag marker

Vision subsystem - Analysis
•Detection Speed

–Framewise AprilTag detection slow

–Lucas Kanade tracking speeds up continuous
tracking

–Refresh once every few frames (30) or when
none found

Algorithm FPS on Laptop

(i3 4th gen)

FPS on Odroid

(Quad core ARM)

AprilTag detection 14 8

Lucas Kanade Tracking 30 29

Merged

(LK + AprilTag detection)

29 28

Vision subsystem - Analysis
• Accuracy

–Camera axis calibration

–Measurement accuracy

–Attains accuracy of <5% (FVE required: 10%)

0

5

10

15

20

25

0 500 1000 1500 2000 2500

Error in the 3 axes vs Distance
from marker (in cm)

Error in X Error in Y Error in Z

Camera mount for calibration

Marker setup

Current Status - UAV

•Vehicle is assembled mechanically and
integrated electronically

•Has flown a few times via RC controller

•Still having issues with prearm sequence due
to a faulty compass. Still debugging the issue
with BirdsEyeView Aerobotics

PCB Successfully Implemented

Power

Board

2 Slave

Board
2 Ultrasonic

sensor connected

to 2 slave board

Performance Evaluation against
FVE

Requirement Subsystem Performance

MN3 Detect static obstacle of

minimum size

1.5 m X 0.5 m & 2m X 2m

Obstacle detection Successful within error

margin of 20cm

Detect obstacles of minimum

size 1.5 m X 0.5 m in natural

environment

Obstacle detection Successful within error

margin of 20cm

MN4 Marker should be detected in

20cm to 20m range

Vision Successful

Manual flight control Flight Control Successful initially

Later compass problem

MF8 Take coordinate as input from

user

Flight Control Successful initially

Later compass problem

MF9 Communicate with ground

platform to receive GPS

updates

Flight Control Successful initially

Later compass problem

MF3 Waypoint Navigation Flight Control Compass problem

MN1 Operate in outdoor

environment

Obstacle Detection & Vision

Flight Control

Successful

Compass issue

Conclusion
Sub - System Performance Evaluation

Vision Strong

Detect marker from far distance (20m) to very close distance (20cm)

No effect of lighting variations

Speed is high

Obstacle Detection Neutral

Sensors give fluctuating readings at times

Not very precise

Flight Control Weak

Need to resolve compass issue

And then achieve waypoint navigation

Work Breakdown Structure

1.2 Drone 1.4 Vision System 1.5 Obstacle Avoidance 1.7 User Interface 1.8 Package Handling

1.2.1 Choose Drone 1.4.1 Design Vision System 1.5.1

Analyze and Layout Obstacle

Avoidance Sensors 1.7.1

Determine User

Inputs/Outputs 1.8.1

Design Gripper

System

1.2.2

Design Drone

Underbelly 2.4.1 Procure Camera 1.5.2 Design Obstacle Avoidance 1.7.2

Design User

Interface 1.8.2

Design Package

Modifications

2.1.1 Procure Drone 2.4.2 Procure Vision Board 2.5.2

Procure Obstacle Avoidance

Sensors 2.7.1

Build User

Interface 2.8.1

Build/Procure

Gripper

2.1.4

Modify UAV for

obstacle sensors 3.3.1 Test Camera and Board 2.5.3 Procure Optical Flow 3.6.1

Test User

Interface 3.7.1

Test Gripper

Electronics

2.1.5 Fabricate underbelly 3.3.2

Integrate and test Visual

system on board 2.5.4 PCB iterations 3.7.2

Test Gripper and

Package

Modifications

3.2.2

Test Drone R/C-only

Control 3.3.3

Test Visual Markers with

Vision System 3.4.1 Integrate Optical Flow 3.7.3

Integrate and test

gripper with drone

3.2.3

Tune and test

forward flight 3.3.4

Integrate vision info into

control 3.4.2

Integrate and test obstacle

avoidance system with drone

3.2.5

Waypoint using

hover 3.4.3

Table Test Obstacle

Avoidance Sensors

3.2.6 Waypoint using FF 3.4.4

Test Waypoint Following with

Obstacle Avoidance

3.2.8

Test Visual Landing

of Drone 3.4.5

Test Visual Landing with

Obstacle Avoidance

Schedule

•Major Milestones

–Fix current UAV problems

–Get AvA code communicating with peripherals

–Get obstacle avoidance code initiated

–Integrate all subsystems fully into the UAV

•We are slightly behind our original anticipated
schedule but will still make the SVE

Milestones

#7 End
January

• WP Navigation (hover)

• PCB+ sensor integration

• NicaDrone bench top test

#8 Mid
February

• Odroid+AvA code integration

• Forward flight tests

#9 End
February

• Underbelly complete + sensors all mounted

• Optical flow code complete

• Obstacle avoidance code demonstrated on laptop

#10 Mid
March

• Obstacle avoidance complete

• Ground control station interface complete

• Landing code for marker complete

#11,12,
SVE April

• Testing of complete system before SVE

Test Plan – Spring Validation
Experiment

• Test B – Package carrying test

• Validates packages can be carried and dropped by the UAV

• Steps
• UAV with package attached

• Take off and hover for a minute.

• UAV descends and lands

• Drop package on the ground

• Package should remain attached and released after landing

Test Plan – Spring Validation
Experiment

• Test E – Obstacle-less package delivery

• Validates packages can be delivered without obstacles
around the house

• Steps
• UAV + Package on a visual marker

• System initiated by entering GPS coordinates of house

• UAV takes off autonomously

• Reaches waypoint near the house

• Identify and navigate to visual marker

• Land and drop package

• Return back to another platform

• Should be delivered within 2m of marker

Test Plan – Spring Validation
Experiment

• Test F – Package delivery with obstacles (uses E)

• Validates packages can be delivered with static obstacles
around the path

• Steps
• UAV + Package reaches near the house as before

• Identify and plan path to visual marker

• Place 2m x 2m obstacle in the path and beside the UAV

• Repeat with 1.5m x 0.5 obstacle

• Land and drop package and return

• The UAV does not hit any obstacles

Budget

Item Projected budget

UAV + spares $1288

Vision system + optical flow $575

Obstacle Avoidance System $670

$2533

• Spent $2,248 out of the projected $2,533

• Spent 56% of our allocated $4,000 thus far

Risks Mitigated Already

•Ordered the wrong batteries

•Odroid

•Analog sensors with long wires are noisy

•Number of sensors in obstacle detection too
high

Risk 1: Flight Dynamics
•Type: Technical

•Description:

–Adding a payload and all the components will
change forward flight dynamics.

•Consequence:

–Forward flight might be inefficient and harder
to control

•Mitigation:

–Could add fairings (structure to increase aerodynamics)
around our modifications to help with airflow.

–Worst case we reduce maximum forward flight speed

Risk 2: Styrofoam Structure
•Type: Technical

•Description:

–Vehicle is made of Styrofoam and
modifications can’t be undone

•Consequence:

–Structural support might be removed
unnecessarily affecting flight dynamics and
making the vehicle weaker

•Mitigation:
–Sensors placement is being optimized on a wood
mockup of the vehicle

–Initial modifications will occur on the Styrofoam nose
(costs $7 and modular)

–We have two frames (one is a spare)

Risk 3: FireFly6 Firmware
•Type: Technical

•Description:

–Using proprietary firmware which isn’t well
tested but provides high value to project

•Consequence:

–Might create unforeseen coding and debugging
issues

•Mitigation:

–Working with head firmware engineer of FireFly6 as
second sponsor (in addition to UTRC).

–Test code immediately (already procured Pixhawk in
anticipation of this problem)

Conclusion - Fall Semester Lessons
Learned

• Iterate Fast
• Be efficient.

–Work to achieve good results and not best results

• Get spares for everything

Conclusion - Key Spring Semester
Activities

1. Finish critical components of the project

2. Understand AVA code

3. Integrate all subsystem – Vision, Obstacle
detection into flight controller as soon as
possible

4. Develop obstacle avoidance algorithm

Questions?

Thank You

