

Progress Review 3

Project Pegasus

Tushar Agrawal

Team A - Avengers

Teammates: Adam Yabroudi, Pratik Chatrath, Sean Bryan

ILR #4

November 13, 2015

1. Individual Progress

Vision Algorithms

For the last two week, I worked on improving the quality and speed of marker detection. As

seen in previous tests on my laptop (Intel i3), AprilTag detection worked at 14fps and Lucas

Kanade (only tracking) gave 29fps. Intuitively, I tried to average out the algorithm runtime

by trying to fuse the two algorithms.

I used the corner and center points as detected by the Apriltag detection algorithm to

initiate Lucas Kanade Tracking. I observed that even when the marker was moving, the

corner points robustly followed the marker but the tracking for the center point was not

that robust. In case of higher jitter, the markers would snap to other points in the image

and from then on, the wrong points were tracked. To mitigate that, AprilTag detection was

done every few frames, currently once in 50 frames (can be tuned to obtain required

average fps and correctness of the result). The new corners as obtained can exactly emulate

the detections obtained using AprilTags. Results are shown after discussion of markers.

Markers – Sizes and Distances

AprilTag detection libraries provide appropriate transformations for obtaining the distance,

x, y, z, roll, pitch and yaw from any detected marker. The same was extended to the virtual

marker obtained by Lucas-Kanade Tracking. The camera parameters were calibrated using a

known marker size at a known distance. The values were then tested and found to be

accurate up to 5%, which is appropriate for our application.

Based on our application, we do not need have very hard limits on the distances for marker

detection, but a maximum marker size of 1.5m diameter. Based on my initial tests, a marker

of size 18cm is detected up to a distance of 4m from the marker. Checking a few similar

sizes, the relationship is observed to be linear. A larger marker can be easily detected from

further away but as the marker is brought closer, the full marker is not covered in the

cameras view. For this, I tried a nested version of AprilTags. A small AprilTag (about a tenth

of the size of the larger tag, for 36h11 family) is embedded at the center. I tried the same

orientation for the inner tag as the outer one, but this increases the true negative

detection. By rotating the inner marker by 45 degrees counter-clockwise (refer figure 1),

robust detection of the outer marker is restored (refer figure 2-4 for test screenshots with a

72cm marker).

Figure 1. Nested AprilTag marker. Inner AprilTag is one tenth of the outer, and is rotated by 45 degrees counter-clockwise.

Figure 2. Nested AprilTag outer marker detection. Green Dots indicate corners of marker and blue marks the center. (Marker:
Nested Apriltag, Distance: 22.938m, FPS: 28)

Figure 3. Nested AprilTag outer marker detection. Green Dots indicate corners of marker and blue marks the center. (Marker:
Nested Apriltag, Distance: 3.39m, FPS: 28)

Figure 4. Nested AprilTag inner marker detection. Green Dots indicate corners of marker and blue marks the center. (Marker:
Nested Apriltag, Distance: 0.86m, FPS: 28)

Based on few estimates of the required flying altitude a few markers were printed and

tested (refer table 1).

S.No. Detection distances for different nested apriltag markers

Outer AprilTag Inner AprilTag

1 4.5cm Outer 0.45cm Inner

Max: 1.8m Min: 8 cm Not detected

2 18cm Outer 1.8cm Inner

 Max: 7.2m Min: 40cm Max: 50cm Min: 4cm

3 72cm Outer 7.2cm Inner

 Max: 30m Min: 1.6m Max: 2m Min: 16cm

Table 1. Relation of marker sizes to detection ranges

Odroid Setup

As discussed in the earlier ILRs, seeing poor performance for vision on BeagleBoard xM, we

had decided to use the Odroid XU4 for vision processing. The odroid alongwith a few

necessary accessories was ordered. When received, I setup a microSD card with an ARM

Ubuntu server 14.04 image. After setting up basic networking, I installed OpenCV on the

odroid to test the aforementioned algorithm. As expected, the apriltag detection was much

slower on the odroid, but Lucas Kanade was still sufficiently fast (refer table 2).

Figure 4. Nested AprilTag outer marker detection on the Odroid XU4. Green Dots indicate corners of marker and blue marks the
center. (Marker: Nested Apriltag, Distance: 20.6m, FPS: 28)

Algorithm FPS on Laptop (i3 4th gen) FPS on Odroid (Quad core ARM)

AprilTag detection 14 7

Lucas Kanade 30 29

Merged (LK + AprilTag detection) 29 28

Table 2. Relation of marker sizes to detection ranges

Miscellaneous

I worked with Pratik to do trigonometric calculations for estimating number of sensors to

cover a sphere around the vehicle.

I helped Sean and Adam assemble the UAV when it arrived.

2. Challenges

Vision Algorithms

A few issues were faced when trying to include LK tracking into AprilTag detection. The

AprilTag library is built without dependence on OpenCV (except for the demo), and hence

the build architecture had to be tweaked to add the OpenCV LK tracking code.

Markers – Distance and Size

US letter paper sized markers were printed and tested iteratively. To confirm that the

camera focus allowed larger markers to be detected at higher distances, with Sean’s help, I

requested Prof Dolan to get a few poster size markers printed. I faced a few issue to

generate a pdf with the correct size and resolution of the marker to be printed.

Odroid setup

Networking setup was not possible in the lab due to the managed Ethernet network, hence,

I had to shift the apparatus to my home where I was able to setup the network, check DHCP

leases and SSH into the system. Further, I bought the Odroid USB to UART cable for

accessing the Odroid console in the Lab.

Issues

1. JPEG compression errors are seen when the code is run on the Odroid, even though the

results are fine.

2. Intermittently, the code does not start due to an opencv error on the Odroid (probably

because the camera is not opening correctly)

3. Teamwork

In these two weeks, Pratik worked on final tests on individual proximity sensors (IR,

Ultrasonics, Lidar, Lidar lite) and build basic configuration with IRs to test obstacle detection

on a dummy UAV. Furthermore, a specific version of the Ultrasonic sensor seemed

appropriate for our application as it could detect oblique surfaces, grass and trees robustly

and had a larger field of view compared to the IR sensor.

Adam worked on finalizing the PCB for the obstacle detection sensors.

The frame for the UAV was delayed, due to which Sean worked temporarily on the Pioneer

UGV with Adams help to get its mechanical and electronic system set up. Sean also assisted

Pratik with testing obstacle detection combination system. On arrival of the UAV frame, we

had a small build party where all of us started assembling the mechanical and electronic

system of the UAV. The basic assembly was done, but we required more inventory

(connectors and crimps) for assembling further, which was taken up by Adam.

4. Future Plans

In the following weeks, Pratik is aiming to finalize the sensors to use for obstacle detection

along with their configuration around the vehicle and the algorithm to sample data from

them.

Adam shall get the electronics and basic flight controller up and running on the UAV for

testing a hover remote controlled flight.

Sean shall design the mounting for obstacle detection sensors after getting the

configuration from Pratik. He shall also start working on the basic design of the underbelly

of the UAV.

I will be reducing the amount of time I spend on vision system, as it seems to be up to a

state where further improvements can be made only after testing with the UAV. Although, I

will still try to resolve the issues listed earlier or develop workarounds. I shall be helping

Pratik with a visualization system for testing obstacle detection systems. Finally, I will dive

deep into the flight control code to see how to integrate the data from the vision system

into the UAV controller.

