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Abstract 

Drones represent a unique opportunity to disrupt the package-delivery industry. However, unlike current 

upstarts, an application that leverages existing delivery-company infrastructure was developed. Efforts to 

implement package delivery by UAV are detailed in this report. This includes the systems used and 

developed, project management considerations, lessons learned, and future work. Significant progress 

was made to develop a means of delivering packages by drone in real-world conditions. In tests, 

packages were successfully developed 90% of the time in a simplified scenario that laid the groundwork 

for future development.  The project made use of commercially-available components wherever possible 

and successfully integrated these components into a coherent system.  The work presented represents a 

repeatable platform for UAV delivery that has the potential to radically change existing models in 

addition to jump-starting similar projects.  
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1.  Project Overview 

1.1  Objectives 

1.1.1  Background  

Currently, package delivery truck drivers hand-carry packages door to door. This model is used by 

Federal Express (FedEx), United Postal Service (UPS), United States Postal Service (USPS), and 

Deutsche Post DHL Group (DHL). We believe that drones have the potential to expedite this system. 

According to Amazon, 80% of packages shipped weigh 5 lbs or less -- an ideal weight for current 

technology. 

 Amazon is developing Prime Air with the same intent. However, we believe the most efficient system 

combines delivery trucks with Unmanned Aerial Vehicles (UAV’s) which saves time, expense, and 

improves customer’s satisfaction. 

1.1.2  Problem Summary  

Delivering packages to a house using UAVs. 

1.1.3  Project Description 

Given the coordinates of the house, a UAV with a package takes off from point A, autonomously reaches 

close to the house, scans the outside of the house for a visually marked drop point, lands, drops off the 

package, then takes off again to land on another platform at point B. 

2.  Use Case 
Sam drives a package delivery truck for one of the largest parcel delivery companies. He arrives each 

morning to a preloaded truck and is handed his route for the day. Even though he has an assigned route, 

he sometimes is tasked with delivery packages to additional streets. These are often the packages that 

should have been delivered the day before. Thus it’s critical that packages make it to the right house on 

time today. 

Now that his company uses drones, Sam can cover more area in less time. He drives out to his first 

neighborhood for the day with two packages to deliver. He can quickly deliver the first package, which is 

heavier. The second package is lighter but a street over. After parking, he quickly attaches the second 

package to a drone and selects the address on the base station computer. The drone takes off and 

disappears over a rooftop as Sam unloads the first package.  
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Figure 1 and 2: Artist’s Rendition of Sam and one of his drones; Artist’s Rendition of Drone Delivering 

Packages to End Customer 

Having delivered the first package, Sam gets back in the truck and starts driving. In the past, he would 

have driven to the next house and dropped off the package. Nowadays, Sam knows that the drone will 

deliver the package to the right house and catch up. This saves him a few minutes which adds up over the 

course of the day to real time savings. This makes Sam a little happy. 

Meanwhile, the drone has moved within vicinity of the second house. It begins scanning around for the 

visual marker outside the house. The drone finds the marker and moves in for a landing. It’s able to avoid 

people on the sidewalk and the large tree outside the house. The drone lands on the marker and does a 

quick confirmation, it checks the RFID code embedded in the marker. Confirming the correct house has 

been found, the drone releases the package and notifies the package delivery truck’s base station. The 

base station then updates the drone on the delivery truck’s position.  

The drone catches up to Sam at a red light and they continue on their way. Sam’s day continues this way.   

On a major street, he has several packages to deliver in the area. He quickly loads up a few drones, selects 

the addresses, and watches as the drones do all the work. Sam had to get a gym membership since he’s no 

longer walking as much, but he’s happy to be getting through neighborhoods substantially faster. Because 

the drones allow one driver to do more, the delivery company is able to offer package delivery at a more 

competitive rate with more margin. This makes customers happy in addition to getting their packages 

faster. In turn, they are more likely to use the delivery company, which makes the company pleased with 

their investment.  

Late in the day, the base station on Sam’s delivery truck notifies him that an adjacent route wasn’t able to 

deliver a package. In the past, this would have meant that the package would be driven back to the 

warehouse to be resorted and delivered with tomorrow’s load. This was a substantial waste of fuel and 

manpower. Today, routes can be dynamically updated. A drone will deliver the package to Sam’s truck. 

Once he’s driven into the correct neighborhood, the drone will deliver the package. The customer will 

never know there was a problem, and the delivery company saves money. 



3 

 

 

Figure 3: Full Scope of Delivery System 

Sam arrives back at the warehouse, his truck empty. He’s satisfied in the work he’s accomplished, 

customers are happy that received their packages on time, and the delivery company is exceptionally 

happy with the improved efficiency and customer retention.  

 

3.  System-Level Requirements 
The critical requirements for this project are listed below under Mandatory Requirements. These are the 

‘needs’ of the project. Additionally, the team identified several value-added requirements during 

brainstorming. These ‘wants’ are listed below under Desired Requirements. 

3.1. Mandatory 

3.1.1 Functional Requirements 

M.F.1 Hold and carry packages. 

M.F.2 Autonomously take off from a visually marked platform. 

M.F.3 Navigate to a known position close to the house. 

M.F.4 Detect and navigate to the drop point at the house. 

M.F.5 Land at visually marked drop point. 

M.F.6 Drop package within 2m of the target drop point. 

M.F.7 Take off, fly back to and land at another visually marked platform. 

 

3.2.2 Non-Functional Requirements 

M.N.1 Operates in an outdoor environment. 

M.N.2 Operates in a semi-known map. The GPS position of the house is known, but the exact location of 

the visual marker is unknown and is detected on the fly. 

M.N.3 Avoids static obstacles. 

M.N.4 Sub-systems should be well documented and scalable. 
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M.N.5 UAV should be small enough to operate in residential environments. 

M.N.6 Package should weigh at most 100g and fit in a cuboid of dimensions 9.5” x 6.5” x 2.2”. 

  

3.2. Desired 

3.2.1 Functional Requirements 

D.F.1 Pick up packages. 

D.F.2 Simulation with multiple UAVs and ground vehicles. 

D.F.3 Ground vehicle drives autonomously. 

D.F.4 UAV and ground vehicle communicate continuously. 

D.F.5 UAV confirms the identity of the house before dropping the package (RFID Tags). 

D.F.6 Drop package within 1m of the target drop point. 

D.F.7 Takes coordinates as input from the user. 

D.F.8 Communicates with platform to receive GPS updates (intermittently). 

  

3.2.2 Non-Functional Requirements 

D.N.1 Operates in rains and snow. 

D.N.2 Avoids dynamic obstacles 

D.N.3 Operates without a GPS system. 

D.N.4 Has multiple UAVs to demonstrate efficiency and scalability. 

D.N.5 Compatible with higher weights of packages and greater variations in sizes. 

D.N.6 Obstacles with a cross section of 0.5m x 0.5m are detected and actively avoided. 

D.N.7 A landing column with 2m radius exists around the visual marker 

D.N.8 Not reliant on GPS. Uses GPS to navigate close to the house. Does not rely on GPS to detect the 

visual marker at the drop point. 

3.3  Performance Requirements 
P.1 UAV places the package within 2m of the target drop point. 

P.2 UAV flies for at least 10 mins without replacing batteries. 

P.3 UAV carries packages weighing at least 100g. 

P.4 UAV carries packages that fit in a cube of 9.5” x 6.5” x 2.2”. 

P.5 One visual markers exists per house. 

P.6 Visual markers between houses are at least 10m apart. 

P.7. A landing column with 3m radius exists around the visual marker 

P.8 Obstacles with a minimum cross section of 1.5m x 0.5m are detected and actively avoided. 

 

3.4 Subsystem Requirements: 

S.1 Vision 

S.1.1 The size of the marker must be within a square of side 1.5m. 

S.1.2 Error in the X,Y,Z position of the marker from the camera should be correct up to 10% of distance 

from it. 
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S.2 Obstacle Detection and Avoidance 

S.2.1 Obstacles must be detected with a range of 50 cm to 150 cm from the UAV. 

S.2.2 Obstacles should be at least in 90% of the situations/positions. 

S.2.3 Distance to the obstacle should be correct with a maximum error of 20 cm. 

S.2.4 Natural obstacles around a residential neighborhood should be detected. 

S.3 Flight control 

S.3.1 UAV must reach the GPS waypoint with a maximum error of 3m. 

S.3.2 UAV should be able to fly 10 minutes without replacing the batteries.  

4.  Functional Architecture 
 

 

Figure 4: Functional Architecture Diagram 

The revised functional architecture of our system is as shown in Figure 4. Viewing the whole system as a 

black-box, there are 2 inputs – the package to be delivered and GPS coordinates of customer location. The 

output of the system is the package successfully delivered at the destination.   

Looking inside the black box now, the UAV initially holds the package by activating an electro-

permanent magnet. Coordinates of the customer location are input to the User Interface.  The developed 

Plan Mission software decides the navigation waypoints and plans a path to the destination. This 

information is then relayed to the UAV by the communication interface. The mission planning software 

continuously receives the current coordinates from the UAV and sends updated coordinates back to the 

UAV.  

Meanwhile the UAV checks the battery status. If there is sufficient battery, the UAV arms the motor and 

takes off. The UAV navigates using the waypoint to the vicinity of the destination using GPS input. It 

then switches to the marker detection code. The UAV takes input from the camera and starts to scan the 

vicinity of the customer destination for the marker put up by the customer. It moves in a predetermined 

trajectory for scanning. Once the marker is detected the vision algorithm maps the size of the marker in 

the image to actual distance of the UAV from the marker.  The UAV continuously receives this 

information and moves towards the marker.  The UAV finally lowers lands on the marker. It drops the 
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package by disengaging the electro-permanent magnet and flies back to the base station using waypoint 

navigation. 

During the ‘Detect Marker’ &’ Navigate to Marker’ functions, the UAV continuously runs an obstacle 

avoidance algorithm on-board. The obstacle-avoidance algorithm continuously receives data from 

sensors, fuses the data and asks the flight controller to alter its trajectory if there is an obstacle  in its path. 

5. System Level Trade Studies   
Our project contains three major trade studies. We had to choose the UAV platform, our visual processing 

board and our sensor suite for obstacle detection. 

5.1  UAV Trade Study 
There are many factors that go into selecting a proper UAV platform such as cost, shipping time, payload 

capacity, and flight time. In the end, we used 10 different metrics to evaluate the best choice for our 

application. The top three highest weights were payload capacity, price, and flight time. Payload was 

given the highest priority since it was crucial to our project application. A UAV without the ability to 

carry a package was useless in our project. Price was second highest because it was a large constraint on 

our project. Flight time was given the third highest weight because of the necessity that the vehicle 

consistently reach the door of the house and return to the platform no matter how far the house was from 

the street. 

The remaining factors were derived from our performance requirements and scaled appropriately based 

on their effect on the project timeline and ease of integration into the complete system and vision of our 

project. The results of our trade study can be seen below: 

 

Table 1: Trade study for the UAV platform 



7 

 

As per our trade study we bought and used BEV FireFly6 UAV for Fall Semester. However by the end of 

the Fall semester we realized that FireFly6 was the weakest subsystem of our project. We faced several 

issues getting the UAV up and running. Primary reason for that was using the beta code from 

BirdsEyeView which in turn had little documentation and compass compatibility issues. Hence we 

decided to fall back on our second best option - 3DR X8 Plus for spring semester. 

5.2  Vision Board Processing 
As will be depicted in the cyber physical architecture, our system has a separate board for obstacle 

avoidance and visual detection subsystem so that we can do processing in real time during flight. The 

second board also allows the system to meet safety requirements by allowing all safety critical functions 

to be run on the flight controller which won’t get bogged down by computer vision algorithms. 

Our main criteria was processing speed and documentation. Documentation was critical because the board 

will have to integrate with the rest of the system and we will be designing this ourselves. As a result, 

being able to debug errors will ensure that the system functions as a whole. Ports/Interfaces were also 

critical because they affected how the board interacted with the cameras and the rest of the UAV. Our last 

criteria was price to ensure we met our project budget.  

 

Table 2: Trade study for microprocessor (for vision) 

Raspberry Pi 2 and BeagleBoard-xM tied for the first place. However we ended up using Odroid because 

of the following reasons: 

● We found out that BeagleBoard-xM were no longer sold. So we would not have any spares which 

would turn to be a high risk scenario for our project.  

● Our second option Raspberry Pi scored 4/10 in processing power whereas Odroid scored 10/10. 

Hence we found Odroid to be a better choice.  

5.3 Sensor Suite 
The sensor system was critical for the obstacle avoidance functionality of our UAV. We considered three 

sensors: IR sensors, Ultrasonic Sensors and Lidar. We developed prototype version of obstacle detection 

system using all the three sensors. Based one the results of the tests conducted with the prototypes we 

finally decided to use Hokuyo UTM-30LX LIDAR sensor for our obstacle avoidance system. 

The table 3 shows the result of our sensor trade study.  
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Metric weights IR Ultrasonic Hokuyo URG -

04 LIDAR 

Hokuyo UTM-

30lx LIDAR 

Number of 

sensors required 

1 39 14 1 1 

Cost 

(Cheap, Costly) 

1 Cheap Cheap Costly Costly 

Detection Range 

 

1 0.5 - 1m 1.5m 4m 30m 

Other 1 - Interference issue Does not 

function outdoor 

Works outdoor 

Can borrow one 

from another Lab 

Total  
Red = -1 point 
Green = +1 point 

5 -1 0 0 2 

 

Table 3: Trade study for sensor suite (for obstacle avoidance) 

6.  Cyber Physical Architecture 
The high-level cyber physical architecture can best be understood by Figure 5. On a high-level, the 

system can be broken down into three major categories: mechanical components, electrical components, 

and software. The electrical components are the bridge between the software and the mechanical 

actuation. 

The obstacle avoidance and vision system architecture show the flow of information between the 

software, electrical and mechanical components for their corresponding systems.  
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Figure 5: Cyber Physical Architecture Diagram 

6.1  Mechanical System 
We are using 3DR X-8+ UAV for our project. The mechanical system of our project consists of the 

propulsion system and the gripper. The propulsion system is part of the 3DR kit that we purchased but 

must be controlled appropriately by our software. The gripper is made by NicaDrone -- an electro-

permanent magnet [2]. This gripper is the interface between the vehicle and the package and must allow 

the package to be dropped off upon arriving at the destination. It will be controlled by our flight control 

system which is the brain of the UAV. 

 

6.2  Electrical System 
The electrical system is composed on a high-level by the flight control board, the vision subsystem 

hardware, sensors, and the communications hardware. The flight controller is Pixhawk [1] the brain of the 

entire system and runs all critical flight control software. The flight controller interacts with two sensors 

on the vehicle: the IMU and GPS. The flight controllers takes commands from the main processing board 

which directs it to avoid obstacles and land on visual markers. The output from the flight controller goes 

to the motor controller and is then converted into appropriate signals to control the propulsion system. 

Odroid[3] - microprocessor for running visual algorithms connects to the camera and Lidar on board the 

UAV. Odroid runs vision and obstacle detection algorithms and outputs the result to the flight controller. 
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6.3  Software 

 

Figure 6:  Software architecture of the system 

The software of the system comprises of 2 main levels. The lower level control is implemented in the 

flight controller. This runs the control environment to monitor the position and orientation of the UAV to 

maintain stable flight. It uses the GPS, Compass, IMU and a Barometer as sensors. 

The higher level control runs the application specific program and controls the UAV through the lower 

level control. It interfaces with the camera and the Lidar. It runs the behavior program in addition to the 

vision processing algorithms (AprilTag detection), obstacle detection and planning algorithms. 

7. System Description and Evaluations 

7.1  System and Subsystem Descriptions 
 

 

Figure 7: System architecture with all components 
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Figure 8: Image depicting UAV with all system components 

The system consists of multiple subsystems. The 3DR X8+ is the UAV body. It comes with the Pixhawk 

Flight controller [1] which is responsible for maintaining the stability while flying the drone. It receives 

commands from the main processor, Odroid[3], which runs the application specific algorithms. The 

details of the subsystems are given below: 

7.1.1 Behaviour Subsystem 

The behavior subsystem is responsible in orchestrating the various subsystems towards the mission of 

package delivery. It decides which subsystems should function at which stages in the mission and how the 

outputs from them flow to other subsystems. It runs on the Odroid[3]. 

7.1.1.1 State machine formulation 

A simple state machine is used here. Every state denotes a unique stage of the system and determines the 

associated process and subsystems that must be functioning at that stage. 

 

Figure 9: State Machine for Behavior control 

As seen in Figure 9 above, the following states are used with the corresponding functionalities: 
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● State -1: Idle. 

● State 0: Take off from current location. 

○ Navigation is blocking until height is achieved. 

○ Vision subsystem inactive. 

● State 1: Move to Waypoint - House or Truck GPS position 

○ Navigation is blocking until waypoint is reached. 

○ Vision subsystem is inactive. 

● State 2: Search for marker 

○ Navigation is blocking on individual goals for the search path 

○ Vision subsystem is active - Updated position goals are generated and override 

waypoints. 

● State 3: Marker found. Descend. 

○ Vision subsystem maintains position in X and Y. 

○ Z position is reduced as and when the position is held well over the marker, until a 

threshold minimum height is attained 

○ Navigation is non-blocking. Position updates from the marker detection system override 

waypoints. 

● State 4: Final Descend/Landing. 

○ Remembers the filtered marker location and continues descend on that position without 

continuous updates 

○ Vision subsystem is inactive. 

● State 5: Drop package. 

○ Initiates drop off of the package 

● State 9: Destination marker not available. Safe landing 

○ Calls states 1 and 4 in emergency mode for reaching a predefined safe waypoint and 

safely landing there. 

7.1.1.2 Search Patterns 

A few search patterns were realized and tested. The formulations used were parametric with the following 

parameters: 

● View area: The area seen by the camera. Values used: 2m x 2m (at 15m height) 

● Area to be searched. The area to be searched around the GPS position of the house while the 

house is at the center. Values used: 8m x 6m. 

The following search patterns were tested (figure 10): 
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Figure 10: Search patterns tested for marker search 

The lawnmower search pattern was finally used as it was robust and simple. 

7.1.2 Flight Control Subsystem 

Flight control was done using the Pixhawk flight controller [1], running the PX4 firmware. State 

estimation was done using the IMU, GPS, Compass, Barometer and Lidar lite range sensor. 

Pixhawk internally uses feedforward and PID feedback control for waypoint following. Mavros [6] is a 

ROS layer over MAVlink, the communication link with Pixhawk. It exposes an API for controlling the 

UAV in the OFFBOARD mode. As seen in figure 6 (Software architecture), the Odroid runs this Mavros 

layer and uses the following API for controlling the UAV in different situations: 

● Position set-points: Publish to ROS topic /mavros/setpoint_position 

● Velocity commands: Publish to ROS topic: /mavros/setpoint_velocity/cmd_vel 

● Odometry from UAV: Subscribe to ROS topic: /mavros/local_position/odom 

● Position from UAV: Subscribe to ROS topic: /mavros/local_position/pose 

● Actuator Control: (for Gripper subsystem) Publish to /mavros/actuator_control 

● Mode switching: Command ROS service mavros/set_mode 

The following modes were used: 

● OFFBOARD: For controlling positions/velocities using the Odroid. 

● Auto.LAND: For autonomous landing. 

7.1.3 Vision Subsystem 

The vision subsystem is responsible for detecting the marker and guiding the UAV for a precision 

landing. It consists of a simple webcam, the Logitech C720 connected to the main processor, the Odroid 

XU4[3]. 

After conducting trade study between different markers, AprilTags were selected due to their precision 

detection, and reasonable speed. In the current state, the AprilTags were not directly usable as markers 

due to range and speed limitations. The following upgrades were made: 
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7.1.3.2  Range - Nested AprilTags 

 

Figure 11: Nested AprilTag marker. Outer AprilTag can be seen from far-off distances, and the inner one 

from nearby distances. (Tag id 166 outer, 138 inner, rotated -45 degrees) 

As the marker had to be detected from a high height (around 15-20m), the AprilTag marker needed the 

side length to be 58cm. But then, it was not possible to detect the marker below 2m height. As a result, we 

developed Nested AprilTag makers (Figure 11). They consist of a bigger outer marker with a certain Tag 

ID, and a smaller inner AprilTag with a different Tag ID.  The inner tag is one-tenth the size of the outer 

tag and is rotated 45 degrees counter-clockwise, to ensure it does not interfere with the detection of the 

outer marker. 

Different sizes of nested tags were tested to determine upto what ranges they can be detected.  

 

S.No. Detection distances for different nested April Tag markers 

Outer April Tag Inner April Tag 

 Size  Range Size  Range 

 1 3.6cm 8 cm to 1.8m 0.36 cm  Not detected 

2  14.4cm 40 cm to 7.2m 1.44 cm 4 cm to 50cm  

3  57.5cm 1.6 m to 30m 5.75 cm 16 cm to 2m 

Table 4. Table depicting tested size-range relationships for nested AprilTags. 

Based on our requirements we chose the 57.5cm Nested April Tag for our application. 

7.1.3.3  Speed - Detection to Tracking 

The most important part of the vision system is the marker detection algorithm which detects the markers 

in the image. These algorithms needed to be robust to noise as the environment around the house may be 

cluttered, but they also need to be fast so that fast updates can be sent to the control algorithms after state 

estimation. 

After trying multiple algorithms and markers, we finally settled with an AprilTag detection algorithm as 

developed by University of Michigan [7] and its C++ version as developed in MIT [8].  
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Figure 12. Flowchart showing the April Tag detection algorithm interspersed with the Lucas-Kanade 

tracking Algorithm 

The April Tag detection gives up to 8 fps on the Odroid. This rate is too slow for controlling the UAV. As 

a workaround, we tried to combine the April Tag detection with Lucas-Kanade tracking algorithm. The 

basic idea of the same is illustrated in the flowchart [Figure 12]. 

We use the April Tag detection as the primary algorithm. After the first frame in which the tag is 

detected, the features were obtained from this frame and tracked in the following frames using the Lucas 

Kanade tracking. Currently, only the four corner points of the tag are used as features, as they are 

minimum set required to calculate the pose of the April Tag. The output obtained from the tracking results 

was be verified for correctness*. In case no tag is obtained or the tag obtained is incorrect, we shifted 

back to the April Tag detection for the next frame. As tracking results may start deviating from the actual 

detections, it is a good idea to refresh the estimates using the April Tag detection once every few 

frames**. 

*correctness of the tag can be verified in multiple ways: (the basic version has been tested to be a good 

enough measure of correctness)  

● Basic: verify that the tracked points form a sensible quadrilateral. 

● Advanced: also include using the decoding logic of AprilTags to verify the tag 

**use a refresh time (or number of frames) after which the full detection is run to refresh the tracking 

results. This is done as the tracking results can deviate due to errors and occlusions. A refresh every 30-60 

frames gives a good output. 

These algorithms were tested for speed on the laptop and the Odroid [3]. The speeds have been compared 

in Table 5. 
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Algorithm FPS on Laptop 

(i3 4th gen) 

FPS on Odroid 

(Quad core ARM) 

April Tag detection 14 8 

Lucas Kanade Tracking 

(Only tracking) 

30 29 

Merged 
(LK + April Tag detection) 

29 28 

Table 5: Table listing the comparison for individual algorithms with the combined algorithm 

The resulting FPS can be taken up to around 29fps on the Odroid, which makes the state estimation and 

subsequent control possible. A few tracking results can be seen in these videos. 

● Marker Detection Test #1 [https://youtu.be/zJ2rNg4Q4Vc] 

● Marker Detection Test #2 [https://youtu.be/0qn28RghF_o] 

● Marker Detection Test #3 [https://youtu.be/5TkUyuMBI2E] 

7.1.4 Obstacle Avoidance Subsystem 

The flow chart (figure 13) shown below describes the functional blocks of the obstacle avoidance 

subsystem 

 

Figure 13: Flowchart depicting the functional blocks of the obstacle avoidance subsystem 

7.1.4.1  LIDAR 

We use Hokuyo UTM-30LX LIDAR [4] for obstacle detection. It has a detection range of 30m and 270 

degree scanning range.  

 

Image 1: Hokuyo UTM-30LX LIDAR. Image source: http://electronicdesign.com 

https://youtu.be/zJ2rNg4Q4Vc
https://youtu.be/0qn28RghF_o
https://youtu.be/5TkUyuMBI2E
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7.1.4.2  Filter: 

In sunlight the lidar sensor picks up noise due to IR interference. This noise is detection of obstacles even 

when there are no obstacles in front of the sensor. As shown in figure 14, the red spots are noisy 

unfiltered output from the lidar. To get rid of this issue we use combination of the Median Filter and the 

Range Filter. The range filter discards the sensor readings beyond 4m distance. Median filter takes the 

median of 25 observations and helps reduce the noise.  In figure 14, the 2 green dots are the filtered 

output of the lidar data.  

 

Figure 14: The figure shows the rviz visualization of one of the test run of the UAV. The red lines are the 

positions of the UAV. The black spots are the recorded obstacles in the cost map generated by the 

navigation stack as described in the next section. The red spots are the noisy unfiltered output from our 

previous indoor sensor. The 2 green dots are the filtered output. As seen the noise is greatly reduced by 

median and range filter. 

 

7.1.4.3 Navigation Stack, ROS 

ROS Navigation Stack takes in information from odometry, sensor stream, start pose & goal pose to 

output safe velocity commands for the robot. ROS Navigation Stack is developed for 2D navigation. We 

tweaked it for our application. As a prerequisite, navigation stack takes following inputs: 

● Coordinate Frame information using tf 

● Sensor_msgs/LaserScan message from LIDAR 

● Odometry information using tf and nav_msgs/Odometry messages 

As an output the stack gives velocity commands on /cmd_vel topic. The navigation stack contains the 

following parts: 

● Local costmap & Global costmap - Navigation stack maintains two costmap. 

● Global path planner – It uses the global costmap to compute paths ignoring the kinematic and 

dynamic vehicle constraints. It uses Dijkstra’s algorithm to do this. 
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● Local path planner – It accounts for the kinematic and dynamic vehicle constraints and 

generates feasible local trajectories in real time while avoiding obstacles using the local costmap. 

We use Dynamic Window Approach local planner.  

● Move_base – Implements the state machine 

 

Figure 15: The figure show the rviz visualization of the navigation stack. The back spots depict the 

obstacles in local and global costmap. The red lines are the positions of the UAV. The green line is the 

global plan generated by the navigation stack. Local plan is not clearly visible in the figure as it is a very 

small path near the UAV base generating plan for the next 2/3 seconds for the UAV. 

 

Navigation stack has lot of parameters to tune. These parameters include robot configuration parameters - 

maximum, minimum linear velocities, rotational velocities, linear acceleration, rotational acceleration, 

goal tolerance parameters - path distance bias, goal distance biases, trajectory scoring parameters, 

raytracing and others [14]. We tuned these parameters for our system.  

7.1.4.4 UAV State Extimation 

UAV’s flight controller-Pixhawk[1] gets velocity commands from the navigation stack running on the 

odroid through the Mavros [6]. Pixhawk passes velocity commands to the motors and runs its own state 

estimation EKF filter to estimate its current position. This odometry data is then passed to the Odometry 

Convertor. 

7.1.4.4 Odometry Convertor 

The Pixhawk outputs 3D odometry data. As mentioned above the Navigation Stack is designed for 2D 

navigation and requires 2D odometry data. This means that the robot should always have z=0 or it doesn't 

generate correct velocity outputs. Hence we use a ros node which receives 3D odometry data from 

pixhawk and converts it into 2D odometry data. 
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7.1.5 Gripper Subsystem 

The gripper subsystem is responsible for holding the package firmly while it is being delivered. It should 

be able to engage to grip the package and disengage to let it drop. 

 

 

Image 2: NicaDrone Electro-Permanent Magnet         Image 3: Package 

The NicaDrone Electro-Permanent magnet (EPM) [2] is used as the gripper (Image 2). This is an electro-

permanent magnet that can engage a permanent magnet to stick to a package with a small steel plate on 

the top. (Image 3). When disengaged, the magnetic field is removed, letting the package fall down due to 

gravity. 

The EPM is controlled through the pixhawk, using the Actuator control mode through mavros. A simple 

command to engage the EPM needs to be sent when attaching the package, and another similar command 

to disengage. 

7.2  Subsystem Modelling, Testing and Analysis 

7.2.1 Flight Control Subsystem 

The accuracy of the system primarily depends on the state estimation, which relies heavily on the GPS 

position estimates for the UAV. 

Based on our testing, the health of the GPS depends on the area of flight. Areas surrounded with buildings 

usually have degraded GPS availability and hence lower accuracy in state estimation. After taking a few 

minutes to gather GPS connections, in a clear environment, the state estimation was accurate up to 60cm. 
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Image 4: shows the deviations in the position of the UAV while trying to hold position. 

7.2.2 Vision Subsystem 

The testing system was tried in multiple conditions to test for robustness and error.  Following were some 

of the inferences drawn: 

● With different lighting conditions, exposure adjustments are required. Automatic exposure 

control is unable to handle cases with direct sunlight on the marker. 

● Marker is detected and tracked with high precision in all orientations (roll, pitch and yaw). 

● The primary constraint for finding error in X,Y,Z values has been the calibration of the setup to 

obtain ground truth. 

● Errors in X,Y,Z offsets were recorded and plotted (Figure 16). An error of <5% from the distance 

to the marker is seen in each X,Y and Z. These results exceeds the expectations set in the 

requirements (10%). 

As viewed from the camera, X axis is the camera view axis, Y axis is sideways axis (longer side in the 

image captured) and Z axis is the upwards axis (shorter side in the image captured).  

 

 

Figure 16: Graph depicting error in detection distances to Marker 
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7.2.3 Obstacle Avoidance Subsystem 

The requirement of our project is for the UAV to avoid obstacles of size 1.5m X 0.5m. 

 

Figure 17: The figure shows the UAV and a test obstacle brought in front of it.  

 

Image 5: Rviz visualization of the UAV avoiding obstacles 

 

For the various tests that we carried out this are the results we obtained: 

Attributes Obtained result 

Minimum distance maintained between the UAV and obstacles  80 cm 

Distance at which UAV starts to avoid obstacle 100 cm 

Table 6: Obstacle Avoidance test results 
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7.3  System Performance Evaluation against Spring Validation Experiment 

Full system demonstration video can be seen here https://www.youtube.com/watch?v=vT5HnfHKzuY 

7.3.1 Package delivery without obstacles 

A 9.5” x 6.5” x 2.2” package weighing 200g was delivered 30cm from the center of the marker. The UAV 

took off from a starting position around 25m away from the house and landed back on a the truck position 

another 20m away from the house. 

Performance Criterion Required Achieved Fulfilled? 

P.1: Package drop accuracy. Less than 2m 30cm Yes 

P.2: UAV flight time At least 10 minutes 10 minutes Yes 

P.3: Package weight requirements At least 100g 200g Yes 

P.4: Package size requirements 9.5” x 6.5” x 2.2” 9.5” x 6.5” x 

2.2” 

Yes 

Table 7: Performance comparison for system performance requirements (P5-P7 were environment 

requirements) 

7.3.1 Package delivery without obstacles 

A 9.5” x 6.5” x 2.2” package weighing 200g was delivered 80cm from the center of the marker. The UAV 

took off from a starting position around 12m away from the house and landed back on a the truck position 

another 20m away from the house. 

Performance Criterion Required Achieved Fulfilled? 

P.1: Package drop accuracy. Less than 2m 80cm Yes 

P.2: UAV flight time At least 10 minutes 10 minutes Yes 

P.3: Package weight requirements At least 100g 200g Yes 

P.4: Package size requirements 9.5” x 6.5” x 2.2” 9.5” x 6.5” x 

2.2” 

Yes 

P.8 Obstacles are avoided. Size 0.5m x 1.5m Avoided Yes 

Table 8: Performance comparison for system performance requirements (P5-P7 were environment 

requirements) 

https://www.youtube.com/watch?v=vT5HnfHKzuY
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7.4  System Strengths and Weaknesses 

 
Overall system performance is strong and robust. Package delivery without obstacles is stable and 

repeatable. Obstacle avoidance has issues related to field of view. 

Detailed strengths and weaknesses of the subsystems are listed in table 9. 

Subsystem Overall Strengths Weaknesses 

Vision Strong Precise and Accurate Manual exposure control 

Behaviour Strong Robust  

Flight Control Strong Accurate and Robust Drift during yaw velocity control 

Gripper Strong Firm and quick Package blows away after drop 

Obstacle Avoidance Neutral Responsive and accurate Low field of view. May hit obstacles 

not in view. 

Table 9: Strengths and Weaknesses of the subsystems 

8.  Project Management 
The following section outlines the high-level Work Breakdown Structure and schedule. For this project, 

we made a concerted effort to integrate existing technologies wherever appropriate. To ensure project 

success, great attention has been given to integration testing leading toward a full scenario test. The work 

for this project has been broken down at the highest level into Systems Engineering, Fabrication and 

Procurement, Systems Integration, and Testing.  

As you can see, the system is nearly complete with items in blue deliberately eliminated. Work has started 

on both the drone and obstacle avoidance has started. Team A has yet to start work sections related to the 

gripper, user interface, and final integration.  

Significant revisions were made to the project at the start of the Spring Semester due to changes in 

personnel and a re-evaluation of priorities. The largest change was a reduction in quality -- define as “the 

degree to which requirements are met” -- and a minor reduction in scope. In order for focus better on the 

true intent of the project, the Graphical User Interface and VTOL were eliminated. We shifted to the 

better-supported 3DR X-8+ and to the integration of subsystems.  

 



24 

 

 8.1  Work Breakdown Structure          

1 Systems Design 
  

2 Procurement and Assembly 
  

3 Testing & Integration 
 1.1.1 Design System Architecture 25 days   2.1.1 Procure Drone 2 wks   3.1.1 Build Test Environment 1 week 

1.1.2 Design Test Environment 4 days   2.1.2 Assemble Drone 1 wk   3.1.2 Full Scenario Test 2 weeks 

1.2 Drone   
 

2.1.3 Procure Flight Controller 2 wks   3.2 Drone   

1.2.1 Choose Drone 1 day 

 

2.1.4 Modify UAV for obstacle sensors 1 wk 
 

3.2.1 Test Flight Controller 1 week 

1.2.2 Select Flight Controller 1 day   2.1.5 Fabricate underbelly 1 wk 
 

3.2.2 Test Drone R/C-only Control 4 days 

1.2.3 Design Drone Underbelly 2 wks   2.3 Ground Platform   
 

3.2.3 Tune and test forward flight 2 wks 

1.2.4 Design Marker Search Algorithm 4 weeks   2.3.1 Build Ground Platform 3 wks 
 

3.2.4 Understand code 1.5 wks 

1.3 Ground Platform 
  

2.4 Vision System     3.2.5 Waypoint using hover 4 days 

1.3.1 Design Base Station 1 week  
 

2.4.1 Procure Camera 2 wks 
 

3.2.6 Waypoint using FF 1.5 wks 

1.4 Vision System   
 

2.4.2 Procure Vision Board 1 week 

 

3.2.7 Autonomously control UAV using predef script 1 wk 

1.4.1 Design Vision System 1 day 
 

2.4.3 Fabricate Visual Markers 1 wk   3.2.8 Test Visual Landing of Drone 1 wk 

1.4.2 Select Camera 3 days 
 

2.5 Obstacle Avoidance     3.3 Vision System   

1.4.3 Select Vision Board 1 day   2.5.2 Procure Obstacle Avoidance Sensors 1 week 
 

3.3.1 Test Camera and Board 3 days 

1.4.4 Design Visual Markers 1 day 
 

2.5.3 Procure Optical Flow 1 week 

 

3.3.2 Integrate and test Visual system on board (Mech & Elec) 4 days 

1.5 Obstacle Avoidance     2.5.4 PCB iterations 2 wks   3.3.3 Test Visual Markers with Vision System 3 days 

1.5.1 Analyze Obstacle Avoidance Sensors 1 wk   2.6 Communications System   
 

3.3.4 Integrate vision info into control 4 days 

1.5.2 Design Obstacle Avoidance 2 months 
 

2.6.1 Procure Radio Module  2 wks 
 

3.4 Obstacle Avoidance 
 1.5.3 Design Sensor Layout 1 wk 

 

2.7 User Interface   
 

3.4.1 Integrate Optical Flow 2 wks 

1.6 Communications System     2.7.1 Build User Interface 1 week 

 

3.4.2 Integrate and test obstacle avoidance system with drone 1.5 wks 

1.6.1 Design Communications Systems 3 days   2.8 Package Handling     3.4.3 Table Test Obstacle Avoidance Sensors 3 wks 

1.6.2 Select Radio Module 1 day   2.8.1 Build/Procure Gripper 2 months 
 

3.4.4 Test Waypoint Following with Obstacle Avoidance 1 month 

1.7 User Interface   
  

    
 

3.4.5 Test Visual Landing with Obstacle Avoidance 2 months 

1.7.1 Determine User Inputs/Outputs 4 days 
    

  3.4.6 Integrate Lidar lite with pixhawk 4 days 

1.7.2 Design User Interface 2 weeks   

    

3.5 Communications System   

1.8 Package Handling     
    

3.5.1 Electronic Test of Radio Module 1 day 

1.8.1 Design Gripper System 3 weeks 
    

  3.5.3 Data Test of Radio Module 2 days 

1.8.2 Select Gripper Mechanism 1 wk 

     

3.6 User Interface   

1.8.3 Design Package Modifications 1 wk   
    

3.6.1 Test User Interface 3 days 

 
      

    

3.7 Package Handling   

        

3.7.1 Test Gripper Electronics 4 days 

  
Completed 

      

3.7.2 Test Gripper and Package Modifications 1 week 

  
Out of scope 

 
  

    
3.7.3 Integrate and test gripper with drone 1 week 
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8.2  Schedule 
The following schedule was made using a Gantt chart and our best estimates of both development time 

and system dependencies.  

 

Table 10: Project Schedule of Deliverables 

This schedule was a refinement on the original, developed during the fall semester.  Team A held 

themselves to this strict timeline until week #10. The team wasn’t able to complete Obstacle Avoidance 

due to delays from weather and numerous crashes. Thanks to appropriate risk management, the team was 

able to repair the drone and recover the timeline the following week.  

8.3  Risk Management 
The Team identified 3 risks to the project: 

1. The Drone may not Locate the Marker 

2. Lack of Testing Opportunities due to Weather 

3. Possible trouble Integrating the Navigation Stack with the Pixhawk 
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8.3.1 Marker Search Algorithm not Robust 

 

Figure 18: Risk Matrix for Risk 1 

This technical risk is a real-world consideration. It’s important that the possibility that the drone is unable 

to find the marker in vicinity of the house be considered.  The consequence is that the drone will be 

unable to deliver the package. 

This risk was mitigated by having the drone return to a known-good position following completion of the 

search pattern. Additionally, we experimented with different search parameters to ensure that the marker 

was discovered. One parameter that we didn’t anticipate, but eventually tuned was the exposure setting on 

the camera. Light and shadows in different areas and at different times of day behaved differently.  

This risk was successfully minimized using the above techniques.  

8.3.2 Weather Limiting Testing Opportunities 

 

FIgure 19: Risk Matrix for Risk 2 

 

Due to the decision to operate outdoors, this operational risk was realized several times during the project. 

The largest impact was delayed testing and integration since the system had to be tested were there was a 

GPS signal. We mitigated this by testing early and often. Additionally, we payed close attention to 

weather reports in order to anticipate windows for testing.  

An unexpected benefit or dealing with weather also forced the team to develop robust algorithms. This 

benefit was shown during the SVE and SVE encore when wind gusts of up to 15 MPH almost pushed the 

drone off the marker. The marker tracking algorithm correctly compensated for the wind, allowing the 

package to be successfully delivered.  
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8.3.3 Integration of Navigation Stack with Pixhawk 

 

FIgure 20: Risk Matrix for Risk 3 

The final, significant risk to the project that the team anticipated involved integrating the ROS Navigation 

Stack with the Pixhawk. Our concern was that this process would take too long and delay integration of 

additional subsystems. To combat this, the team prioritized its integration early in the schedule. Back up 

to this, was proper mission planning to eliminate the need for obstacle detection. However, thanks to its 

prioritizing integration and frequent testing, the backup wasn’t needed.  

8.4  Budget 

 

Table 11: Project Budget 

Even after switching to a new platform, our expenditure was below the maximum budget allotted ($ 

4000). 
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9.  Conclusion 
Numerous changes were made during the Spring Semester. Through it all, Team A was able to deliver on 

the original intent of the project. The majority of the progress of the project was completed during this 

last semester. Along the way, we learned several key lessons and developed ideas for further development 

of the platform.  

9.1 Lessons Learned 

Several key lessons were identified during the project’s life cycle. They include simplifying the platform 

and components early, important considerations for outdoor drone projects, the importance of spares, and 

how to reduce scope while maintaining a project’s intent.  

9.1.1 Simplify 

The need for simplification was seen repeatedly. In fact, reevaluation of a project is continuous. Over the 

last two semester, the team was forced to decide between different tradeoffs. Through these decisions, a 

trend emerged in going with more proven or more reliable subcomponents. The lesson is not that 

complicated components should be avoided. Rather, we realized that integration was itself a difficult 

challenge and fighting unwieldy subsystems only multiplied this difficulty.  

We realized that the FireFly6 is the weakest subsystem of our project at this point in time. The UAV is 

also the most important subsystem of our project and must be made operational as soon as possible. Due 

to this realization, we are contemplating as part of our risk mitigation to change platforms entirely and go 

with an octocopter capable of doing everything the FireFly6 does just at slower speeds and with less flight 

time. Cutting our losses and modifying our project was the best thing for our project long-term. 

On the Obstacle Avoidance end, using 14 ultrasonic sensors proved to be imprecise and noise-prone. 

These were scrapped in place of a Hokuyo Lidar due to its superior accuracy and ease of integration. The 

numerous sensors, while within the tolerances of our system requirements, were heavy and easily fooled. 

By eliminating them, we were able to better focus on navigation and obstacle avoidance.  

These are just two examples of when the choice to simply, without cutting corners, allowed for greater 

progress of the system as a whole. Future teams are strongly encouraged to get systems streamlined from 

the start since integration itself is complex. Finally, by focusing on integration, teams will have a greater 

time to evolve their systems as they learn the technical details they couldn’t have anticipated from the 

start.  

9.1.2 Outdoor Drone Considerations 

Team A made the choice to operate outdoors. We stand by this decision as it was rewarding to operate in 

a real-world environment. However, it came at a significant risks and opportunity costs which weren’t 

evident at the start.  

The first challenge to the team was the current regulatory environment in the United States. In fact, FAA 

and local regulations changed midway through our project. The team was able to adapt to a degree, but 

this should be weighed by future teams before electing to operate drones outdoors.  
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Team A interacted with the University’s Office of Risk Management and Insurance in addition to Legal 

Counsels. We were offered assistance to submit for a Section 333 Waiver with the FAA issuing a joint 

“blanket” Certificate of Waiver of Authorization (COA) for operating under 400 feet. Details can be 

found on the FAA’s website about how to file a petition. 

However, the expected turnaround time is 120 days normally, but that has been lengthened due to 

excessive applications caused by the FAA’s new rulings. With less than 20 days till SVE, It is unlikely 

that we would receive authorization. Rather than waste resources, Team A has made alternate 

arrangements and will be documenting the appropriate process for next year’s class. The notes below 

come directly from Daniel Munsh: 

As of April 2016, there are four general government requirements for non-recreational (called “civil”) 

outdoor drone operation: 

1. The aircraft must be registered with the FAA; 

2. The aircraft must have a Section 333 Exemption from the FAA (this exempts the drone from the 

FAA regulations for traditional aircraft that would otherwise apply); 

3. The aircraft must have a COA from the FAA (this authorizes the specific parameters for flight 

operations).  Section 333 Exemptions automatically come with a “blanket” COA for operations 

under 400 feet. 

4. Comply with any state or local laws regulating drones.  For example, the City of Pittsburgh 

prohibits drone operations in public parks.  So even if you have all the proceeding items from the 

FAA, teams still can’t operate in city parks in Pittsburgh. 

Important points of contact for next year’s class include Daniel J. Munsch, AVP and Assistant General 

Counsel (dmunsch@andrew.cmu.edu) and Diane Patterson, Senior Risk Management and Insurance 

Specialist (dianep@andrew.cmu.edu). 

The current legal landscape is expected to change sometime in calendar year 2016. Future classes should 

reference CMU’s Office of the General Counsel’s Page on Drones. Separately, the Senate is considering a 

proposed law, the Higher Education UAS Modernization Act, that would create a separate regulatory 

structure for drone operations related to research at institutions of higher education.  Finally, teams should 

also be aware that there is a blanket prohibition of drones in the city’s parks, which eliminates nearby 

Schenley Park as a test area.  

The next challenge to operating outdoors is in mitigating the effects of the environment. Team A lost 

significant testing time due to weather and use of green spaces around campus.  

First, weather is unpredictable and has the greatest impact on testing time. This was less of a concern 

early in the process when individual subsystems are being developed and tested. The effect worst during 

the spring semester with the cold and heavy snow early in the semester followed by wind and rain in the 

later months. These limit testing of the system at exactly the time that it is needed most. As our team 

demonstrated, these obstacles are able to overcome, but require preparation and tenacity. Teams will need 

to monitor weather forecasts and plan their schedules accordingly.  

Additionally, events are often hosted on the “Mall” and “Cut” on campus. Teams will need to check that 

areas are clear of crowds and that passers-by be redirected around the testing area for their own public 

safety. Caution tape and stakes were sufficient for the latter purpose, but this is an additional time 

constraint. Furthermore, if teams are able to register time on the stadium, then they have a controlled 

https://www.faa.gov/uas/legislative_programs/section_333/how_to_file_a_petition/
mailto:dmunsch@andrew.cmu.edu
mailto:dianep@andrew.cmu.edu
https://www.cmu.edu/ogc/drones/
https://www.cmu.edu/ogc/drones/
http://www.moran.senate.gov/public/index.cfm/news-releases?ContentRecord_id=608B2DA3-7434-4C04-B69F-D38DD32FFA5C
http://www.moran.senate.gov/public/index.cfm/news-releases?ContentRecord_id=608B2DA3-7434-4C04-B69F-D38DD32FFA5C
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environment to work in. The point of contact for the stadium is Sara Gauntner (sarap@andrew.cmu.edu). 

This isn’t the only time constraint, which is our final consideration.  

Teams seeking to operate outdoors, drones or not, need to be aware that travel and setup time come with 

significant opportunity costs. The time and effort in transporting robots and supporting materials back-

and-forth should not be overlooked. Teams are encouraged to develop a field kit and keep it staged. 

Discipline is required in ensuring that any item removed from the kit is returned in order to prevent 

wasted time travelling back to the lab. The ease of transport for these kits is another factor. Weight should 

be minimized while still allowing for possible contingencies. Potential items for kits include spare parts, 

extra batteries, extension cords, tools, crowd-control materials, and the test environment itself. These will 

grow as the project develops.  

The time taken is a substantial opportunity cost. For our team, it was rewarding to operate in real-world 

conditions and not be confined to a netted cube in the basement. We do wish to arm future teams with the 

knowledge of the trade-offs involved in operating drones outdoors.  

 

9.2 Future Work 

Our team began our project with a specific vision for its application. We see the project as commercially 

viable if specific supporting infrastructure could be implemented. Our project is predicated on the 

integration with delivery trucks. For this to work, both a physical interface between the drone and truck, 

and a user interface for drivers.  

The physical interface between the drone and truck itself would warrant another MRSD project. The 

loading of packages, charging (or replacement) of batteries, and communication link between truck and 

drone are a worthy challenge. We would need to leverage the system of staging packages used by delivery 

companies. There is a specific order in loading trucks that could be leveraged to simplify this problem. 

Packages are currently loaded from front-to-back and top-to-bottom in order of delivery. However, what 

the physical system of landing, loading, and launching drones would like like is unknown at this time. 

This is the next major challenge for our application.  

Additionally, since we eliminated the GUI from our project, this needs to be built in order to ensure the 

utility of the project. Currently, the drone needs to be reinitialized during each battery change since we 

elected to not use predefined coordinates and don’t have a system of passing that information to the 

drone.  

A GUI is technically simple, but the user experience should be paramount to ensure its adoption and use 

commercially. Ease of adoption by delivery truck drivers would expedite its adoption commercially by 

the large organizations we targeted.  

During the 2015-2016 school year, we successfully implemented the core technology required to deliver 

packages by UAV. The team may release this as an open-source project in order to jump-start similar 

projects. We still believe strongly in our original application, of leveraging existing package-delivery 

networks, and believe that with additional development (and regulatory permission) that this goal could 

be achieved.  

 

mailto:sarap@andrew.cmu.edu
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