
Progress Review 12
Project Pegasus

Tushar Agrawal

Team A – Avengers Ultron
Teammates: Pratik Chatrath, Sean Bryan

ILR #11
April 13, 2016

1. Individual Progress

After the last Progress Review, the UAV was capable of autonomously delivering
packages starting at a point and landing at the marker. Also, the UAV could navigate
using command velocities from the navigation stack, but the process had many issues.

A. Obstacle-less Package Delivery Process

Improved Landing process
Until now, landing was done by progressively reducing z position in the setpoints to the
UAV. This was sometimes ineffective as the initial Z values were not very robust, as
different sensors were used at different altitudes and hence the offset would change
between landing. I switched to using the autonomous landing mode provided. It would
maintain the UAVs X and Y coordinates while descending on the point. Also, I
discovered that the pixhawk itself would detect whether or not the UAV is landed using
multiple sensors (like changes in position and velocities, lidar lite, etc). I used this as
the appropriate transition condition into the next state in the behaviour. The results
were much more robust. The UAV lands appropriately and touches down on the
ground before moving on to further actions. This can be seen in the demo of the entire
system (Video 1: https://www.youtube.com/watch?v=-XWTWJ8rYi4)

Return back to truck and land
Based on the application, after delivery, the UAV should takeoff again and to back to
the predefined position of the delivery truck and again find and land on the marker.
This functionality was added using the same basic states used to send the UAV to the
house for delivery. Video 1 (https://www.youtube.com/watch?v=-XWTWJ8rYi4) shows
the delivery process, when the house coordinates were used as the final truck
coordinates (as a proof of concept).

Speed up AprilTag Detection
Based on the work in the previous semester, the AprilTag detection was made robust
and fast using Lucas Kanade tracking. Unfortunately, when a ros wrapper was built
around the code, the detection speeds reduced to 40% of earlier. The marker detection
ran at 0.5 fps on the Odroid. This seemed surprising, but we continued working with it
as there were more pressing issues. Finally, we have started seeing issues where the
marker is not detected sometimes even at low speeds after an entire sweep of the
area. Hence, I came back to this problem and tried to determine what caused the
reduction in the speed. Based on my tests, it seems that the catkin build environment
was in some way adding extra dependencies that were slowing down the system. I
updated the AprilTag CmakeLists.txt with roscpp and related required packages of ros
and built it without the catkin workspace. Now, the Speeds have come back to what
they orginally were (30fps) even when the apriltag pose is continuously published over
ROS. This has been mainly tested offboard as of now, but will soon be incorporated
into the UAV and an improved video will be shot.

Miscellaneous
I added a new “Spiral Out” pattern to search for the marker. This pattern is depicted in
Image 1. It might be more robust as it would prefer searching closer to the house
before searching further from it. Initial tests seem promising, but more tests need to be

https://www.youtube.com/watch?v=-XWTWJ8rYi4
https://www.youtube.com/watch?v=-XWTWJ8rYi4

conducted before they could be proven to be definitely better.

I also added the exception case states to the behavior flow. As illustrated in image 2, in
the case where no marker is found, the UAV shall decide on an appropriate safe
location, travel to it and land (even without marker). If the marker is not found when
delivery is to be made, the UAV assumes the customer is not ready to receive the
package and travels to the new position of the truck and lands there. In case where the
marker is not found at the final truck location, the UAV goes to a predefined “safe”
location and lands. The framework has been made to update this logic iteratively
during testing.

Image 1: Spiral Pattern. Center to Outwards. House is at
the center

B. Package Delivery while Avoiding Obstacles

Pratik and I found multiple issues while working on obstacle detection and avoidance in
the last few weeks.
Hokuyo URG-04LX-UG01 is meant for Indoor use
Probably the biggest issue we discovered was with the Lidar sensor that we were
using. Based on our recoded data, we discovered that the LIDAR gave very noisy data
in the day during our tests (Image 3a). On researching further, we discovered that this
Lidar was meant for indoor use only. Since then, we have been trying to find an
appropriate outdoor Lidar to replace this and trying to set up appropriate filters which
may help us in reducing the noise in sunlight. We set up the Median and Range Filters
which cleaned up the data from the Lidar to a good extent (Image 3b). Further tests
were not possible as the Lidar was refusing to respond in too much sunlight. A few
hours before submitting the ILR, we were finally able to source the UTM-30LX Lidar
and set it up on the UAV. Daylight testing would be done tomorrow.

Image 2: New state machine for package delivery. Note: state 9 has been added as the exception state
when marker is not found

Navigation Stack related Filter Tweaks
Another issue we saw while testing was due to the memoization of obstacles by the
navigation stack. When the navigation stack would see an obstacle in front of it it would
add it to the costmap for planning. But, this obstacle would not be cleared even if the

Image 3a: Noisy data obtained from the Lidar in the sunlight

Image 3b: Same frame as Image 3a after filtering noise using median and range filters. The
semi circle is explained in the next sention

next scan of the same space came back clear. Pratik uncovered that the “raytrace”
parameter would help us in clearing obstacles, but it did not work as it was supposed
to. After further testing, we realised that if the laser scan came back as infinite (no
obstacle until maximum range of Lidar), the obstacles would not be cleared. The
obstacles were being cleared only till the current laser obstacle. Using that, I made a
workaround with the range filter, to convert all infinites to a fixed value a little less than
the maximum (4 meters in our original Lidar). As seen in Image 4 this gives a circular
scan until which all non present obstacles are cleared.

Odometry 3D to 2D conversion
As navigation stack is used only in 2D to plan paths, the odometry had to be corrected
for that. Orignially the 3D data was passed as 2D to the navigation stack assuming it
would use only those parts, but we realised that the UAV was actually making
transforms in 3D and updating the costmaps only when the obstacles position was at
z=0. I made a quick ros node to convert force the z, roll and pitch of the UAV's
odometry to zero. This resulted in much better path planning and updation of obstacles
from the laser.

Height Control PID
As discussed before, while flyng the UAV in velocity control state, providing only x, y
velocities results in loss of control in the Z axis, which leads to the UAV descending
unnecessarily and ruining tests. I made a makeshift PID control loop which would try to
hold the z position of the UAV while the UAV moved using command velocities (refer
Video 3 https://youtu.be/-WRN0iiLfrw). Sean worked on this further to clean up and tune.

Behavior code
A version of the behavior control code was written as the exact state machine in the
obstacle-less package delivery case, but for controlling of command velocities and goal

Image 4: Circular max range workaround for clearing costmap

https://youtu.be/-WRN0iiLfrw

positions to the Navigation stack.

C. Operations
I made a few tweaks in the current workflow to help speed up testing and debugging.
We set up a recording framework using rosbag. This helped in recording data during
flights and replaying later. I also set up “tmux” scripts which enabled me to open
required terminal windows automatically for fast setup during testing. Image 5 shows
an example tmux window. I also backed up the latest image of the Odroid onto the
backup odroid to protect from failure cases.

2. Challenges
Many challenges were faced during this process:

• Most importantly, the Lidar used earlier was discovered to be only meant for
indoor use. We tried using multiple filters and borrowing appropriate outdoor
Lidar to resolve this.

• Marker detection was slow and not robust. I worked on improving the speed.
Field tests are still pending.

• Height control challenges were dealt with by using a simple PID controller on
the altitude of the UAV.

Current challenges include the setup of the new Lidar (UTM-30LX) and finishing up
obstacle avoidance using that.

3. Teamwork
As we are approaching the final demos, Pratik and I are worked on solving the
obstacle avoidance issues in the system. This included researching filters,
implementing and debugging them. Setting up appropriate tests and analysing them
later.

Image 5: Tmux window opened using a tmux sxript for obstacle-less package delivery process.
This has panes for running the process on the left and monitoring state data on the right.

Sean set up his PX4 simulator and started working on the initial z control PID to fine
tune it.

As a group, we did multiple tests together and tried to determine the extent of our
issues and best ways to fix them. Sean was also proactive in contacting many faculty
and student bodies requesting for a spare Lidar.

4. Future Work
The most important priority is to set up the obstacle detection and avoidance system
using the correct Lidar as soon as possible and testing the full pipeline multiple times
for ironing out any small possible issues.

We will also work on setting up an appropriate test environment for testing and final
demonstration to show the working package delivery system.

