Critical Design Review

TEAM C: Column Robotics December 15, 2015

Job Bedford Cole Gulino Erik Sjoberg **Rohan Thakker** Sponsor: Dr. Hagen Schempf

Structure of Presentation

- 1. Project Description
- 2. Use Case
- 3. System-Level Requirements
- 4. Functional & Cyberphysical Architecture
- 5. Current System Status

Requirements | System / Subsystem Descriptions | Modeling / Analysis / Testing FVE Performance Evaluation | Video | Strong / Weak Points

6. Project Management

WBS Summary | Schedule Status | Test Plan | Budget Status | Risk Management

- 1. Project Description
- 2. Use Case
- 3. System-Level Requirements
- 4. Functional & Cyberphysical Architecture
- 5. Current System Status

Requirements | System / Subsystem Descriptions | Modeling / Analysis / Testing FVE Performance Evaluation | Video | Strong / Weak Points

6. Project Management

WBS Summary | Schedule Status | Test Plan | Budget Status | Risk Management

Project Description

Autonomous Exploration and Docking Failure of undersea oil and gas infrastructure has resulted in billions of dollars of damages.

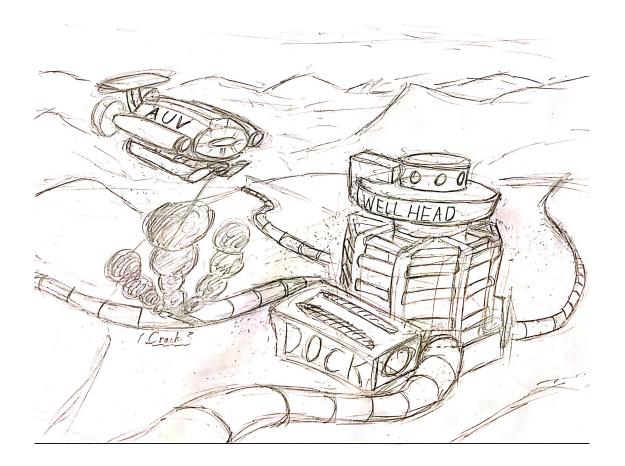
Current maintenance of these wellheads often requires a specialized ship and manual ROV crew, costings hundreds of thousands of dollars per intervention.

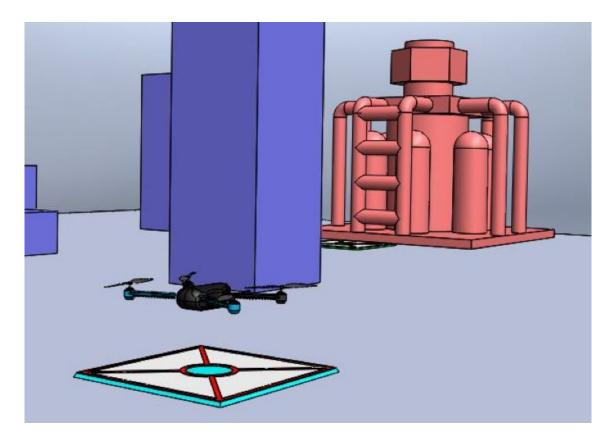
We propose to demonstrate **a terrestrial analogue** to an underwater vehicle capable of autonomously searching for, identifying, and docking with underseas wellhead.

http://persistentautonomy.com/

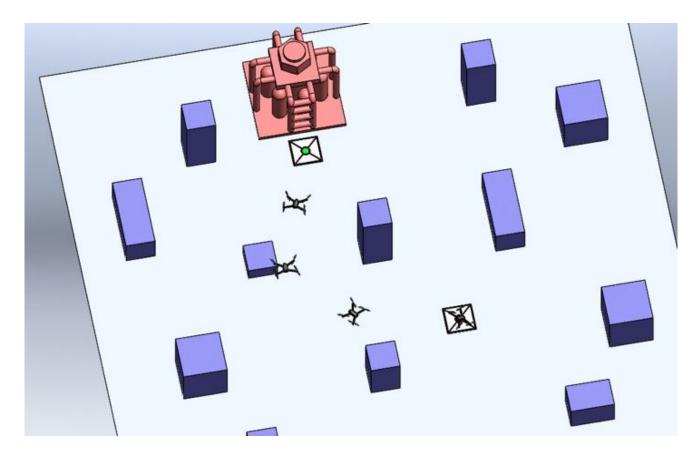
http://3drobotics.com

1. Project Description

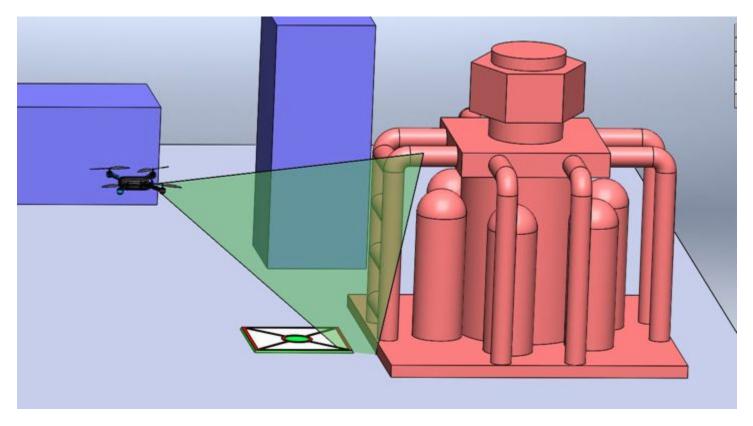

2. Use Case

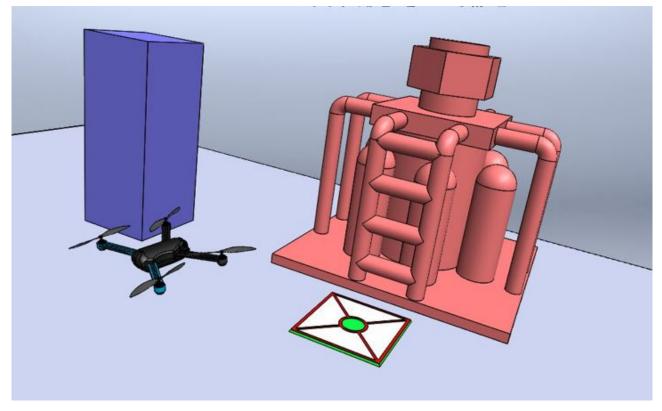

- 3. System-Level Requirements
- 4. Functional & Cyberphysical Architecture
- 5. Current System Status

Requirements | System / Subsystem Descriptions | Modeling / Analysis / Testing FVE Performance Evaluation | Video | Strong / Weak Points


6. Project Management

WBS Summary | Schedule Status | Test Plan | Budget Status | Risk Management




Liftoff from initial Landing Pad

Searching for Wellhead

Identify Wellhead

Orientation before Docking

Docking

- 1. Project Description
- 2. Use Case
- 3. System-Level Requirements
- 4. Functional & Cyberphysical Architecture
- 5. Current System Status

Requirements | System / Subsystem Descriptions | Modeling / Analysis / Testing FVE Performance Evaluation | Video | Strong / Weak Points

6. Project Management

WBS Summary | Schedule Status | Test Plan | Budget Status | Risk Management

MANDATORY FUNCTIONAL REQUIREMENTS

- MF1. Locate Oil/Gas wellhead infrastructure with known heading in 25 m² area
- Change: Area shrunk due to testing constraints
- MF2. Autonomously maneuver to wellhead within 1 hour
- MF3. Positively ID as correct wellhead with 90% confidence
- MF4. Maintain hover position over dock within +/- 1m
 Change: Added performance metric
- MF5. Rigidly dock in 5 DOF
- MF6. Provide status feedback to user of current state at 0.1 Hz

DESIRED FUNCTIONAL REQUIREMENTS

- DF1. Locate oil/gas wellhead infrastructure in low visibility with unknown heading in 25 m² area
- Change: Added performance metric

DF2. Positively ID as correct wellhead from visual object recognition with 90% confidence

• Change: Added performance metric

DF3. Align with dock located at known radius but unknown angle from wellhead within +/- 1m

• Change: Added performance metric

DF4. Rigidly dock in 6 DOF with electrical connection

• Change: Removed

MANDATORY NON-FUNCTIONAL REQUIREMENTS

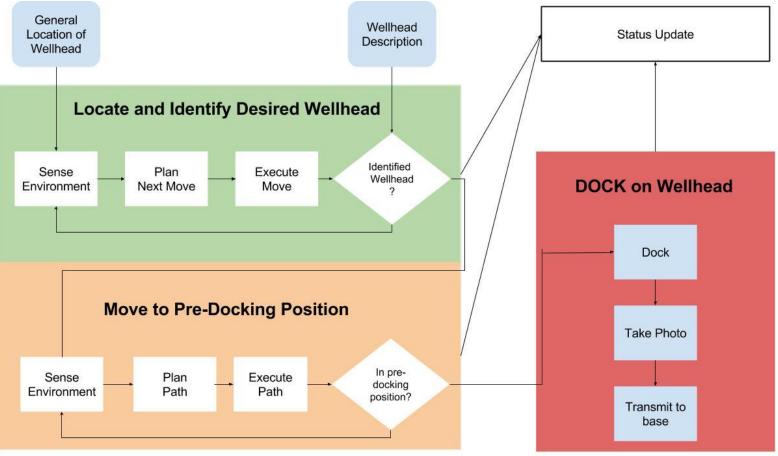
- MNF1. Operable with simple graphical user interface
- MNF2. Provides emergency stop for system with less than 1 second lag
- Change: Added performance metrics
- MNF3. Operable by a single person

DESIRED NON-FUNCTIONAL REQUIREMENTS

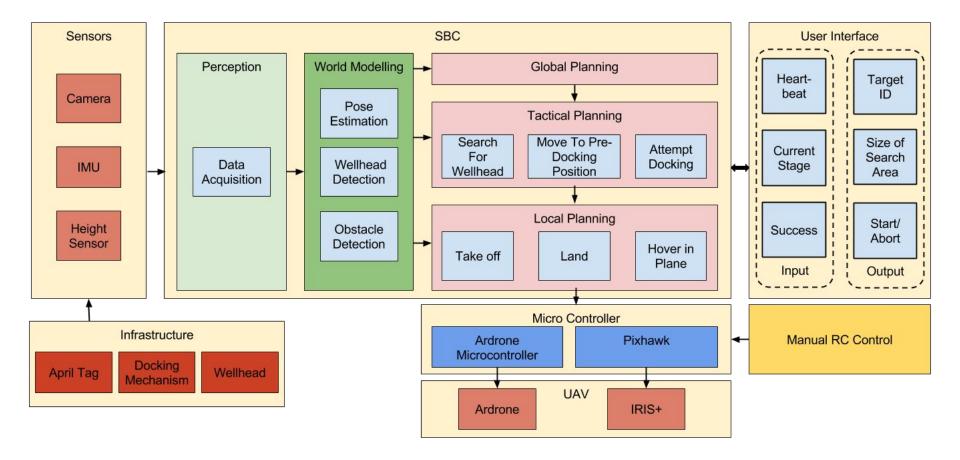
- DNF1. Reduce operator cost by at least one-half
- Change: Added performance metric
- DNF2. Simulate low-visibility: Unable to get visual feed beyond 3m from camera/quadrotor
- Change: Made more concrete, added performance metric

- 1. Project Description
- 2. Use Case
- 3. System-Level Requirements

4. Functional & Cyberphysical Architecture


5. Current System Status

Requirements | System / Subsystem Descriptions | Modeling / Analysis / Testing FVE Performance Evaluation | Video | Strong / Weak Points


6. Project Management

WBS Summary | Schedule Status | Test Plan | Budget Status | Risk Management

FUNCTIONAL ARCHITECTURE

CYBERPHYSICAL ARCHITECTURE

- 1. Project Description
- 2. Use Case
- 3. System-Level Requirements
- 4. Functional & Cyberphysical Architecture

5. Current System Status

Requirements | System / Subsystem Descriptions | Modeling / Analysis / Testing FVE Performance Evaluation | Video | Strong / Weak Points

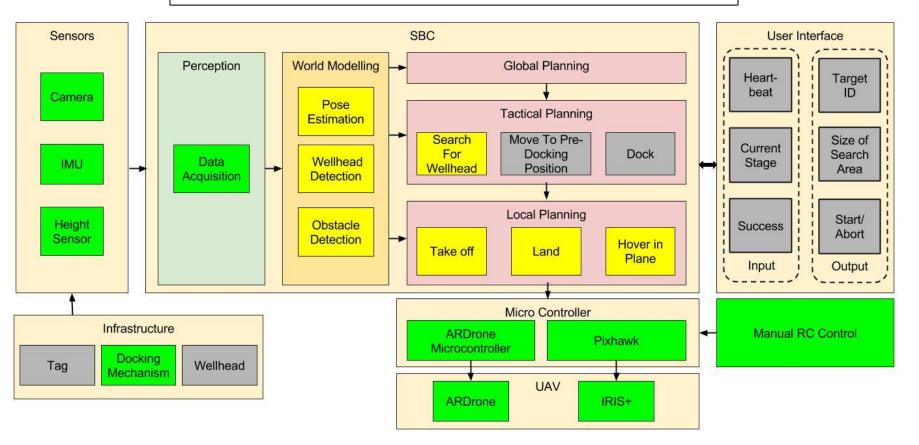
6. Project Management

WBS Summary | Schedule Status | Test Plan | Budget Status | Risk Management

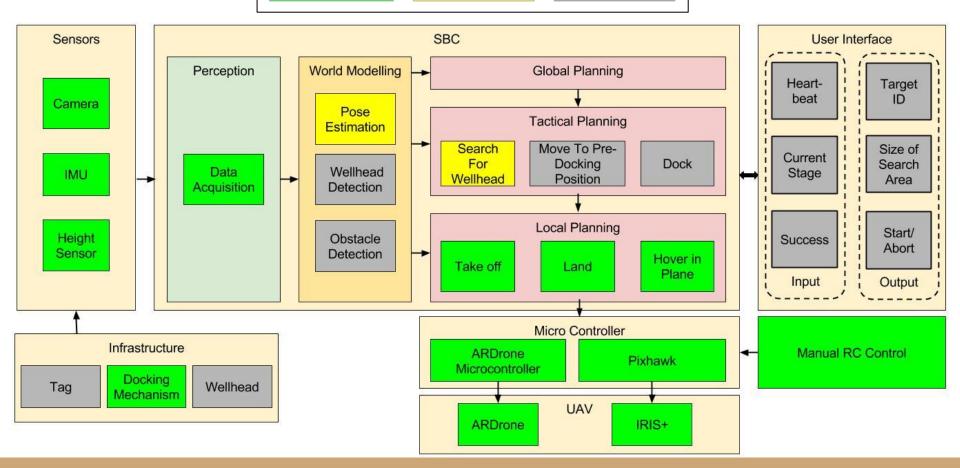
TARGETED REQUIREMENTS

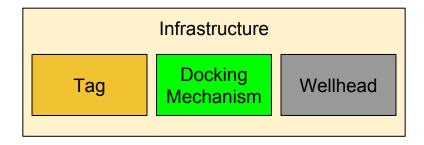
- MF1. Locate Oil/Gas wellhead infrastructure with known heading in 25 m² area
- MF2. Autonomously maneuver to wellhead within 1 hour
- MF3. Positively ID as correct wellhead with 90% confidence
- MF4. Maintain hover position over dock within +/- 1m
- MF5. Rigidly dock in 5 DOF
- MF6. Provide status feedback to user of current state at 0.1 Hz
- MNF1. Operable with simple graphical user interface
- MNF2. Provides emergency stop for system with less than 1 second lag
- MNF3. Operable by a single person

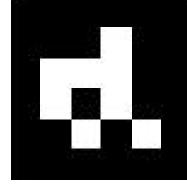
- 1. Project Description
- 2. Use Case
- 3. System-Level Requirements
- 4. Functional & Cyberphysical Architecture

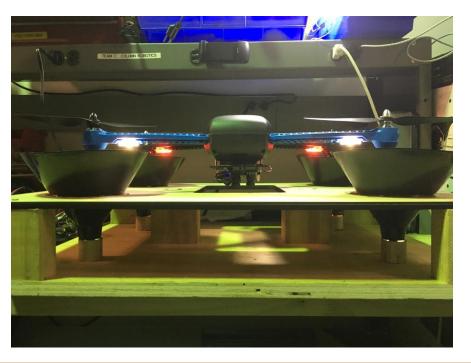

5. Current System Status

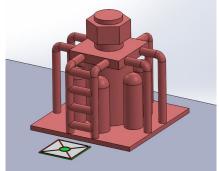
RequirementsSystem / Subsystem DescriptionsModeling / Analysis / TestingFVE Performance EvaluationVideoStrong / Weak Points

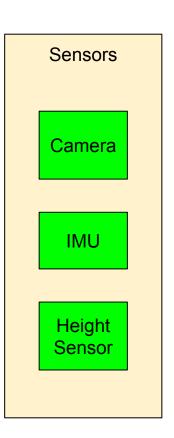

6. Project Management

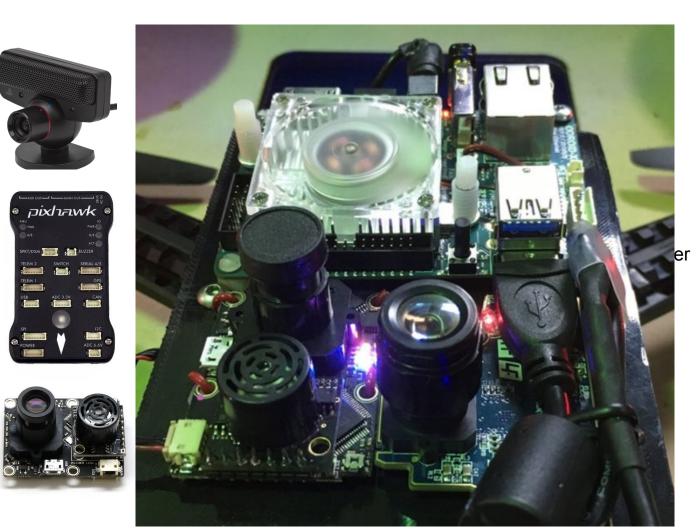

WBS Summary | Schedule Status | Test Plan | Budget Status | Risk Management




Completed In-Progress Not Started

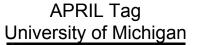



APRIL Tag University of Michigan



Wellhead Model

Lucas-Kanade Optical Flow



www.hizook.com

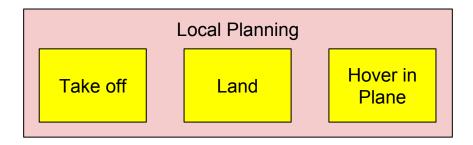
IR LED Based

www.rpg.ifi.uzh.ch

LSD-SLAM: Large-Scale. Direct Monocular SLAM. Technical University Munich

World Modelling

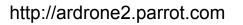
Pose Estimation


Wellhead Detection

Obstacle Detection

source: https://vision.in.tum.de

Global Planning

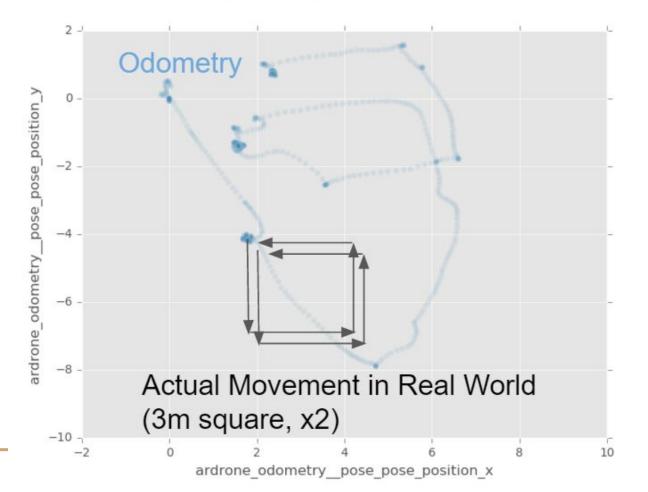


Micro Controller	
Ardrone Microcontroller	Pixhawk

http://store.3drobotics.com/products/iris

Manual RC Control

- 1. Project Description
- 2. Use Case
- 3. System-Level Requirements
- 4. Functional & Cyberphysical Architecture


5. Current System Status

Requirements | System / Subsystem Descriptions | **Modeling / Analysis / Testing** FVE Performance Evaluation | Video | Strong / Weak Points

6. Project Management

WBS Summary | Schedule Status | Test Plan | Budget Status | Risk Management

X vs Y Odometry Readings from Flight Test

Kalman Filtering: Computations

Notation:

 A_t : Motion Model B_t : Control Input Model μ_t : State Mean Σ_t : State Variance Q_t : Motion Model Noise C_t: Observation Model R: Observation Noise K_t : Kalman Gain $z_t - C_t \overline{\mu}_t$: Innovation

KalmanFilter $(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$ $\bar{\mu}_t = A_t \mu_{t-1} + B u_t$ Prediction $\bar{\Sigma}_t = A_t \Sigma_{t-1} A_t^\top + Q_t$ $K_t = \bar{\Sigma}_t C_t^\top (C_t \bar{\Sigma}_t C_t^\top + R)^{-1}$ Gain $\mu_t = \bar{\mu}_t + K_t (z_t - C_t \bar{\mu}_t)$ Update $\Sigma_t = (I - K_t C_t) \Sigma_t$ Slide courtesy Kris Kitani

No more than +/- 1 cm in displacement when fully docked, with more than 2 newtons of force applied. Average is less than 1 cm.

Push

- 1. Project Description
- 2. Use Case
- 3. System-Level Requirements
- 4. Functional & Cyberphysical Architecture

5. Current System Status

Requirements|System / Subsystem Descriptions|Modeling / Analysis / TestingFVE Performance Evaluation|Video|Strong / Weak Points

6. Project Management

WBS Summary | Schedule Status | Test Plan | Budget Status | Risk Management

FVE PERFORMANCE EVALUATION

Success Conditions Met:

- 1. Successful takeoff and hover of drone under manual control
- Drone autonomously completes 4 search sweeps of length > 4m each
- 3. Drone path during search sweeps **does not overlap with itself**
- 4. Drone successfully avoided contact with walls of hallway
- 5. Clear downward-facing video feed displayed during entire grid search process
- 6. Full search process **succeeded within 10 minutes** of drone takeoff

FVE PERFORMANCE EVALUATION

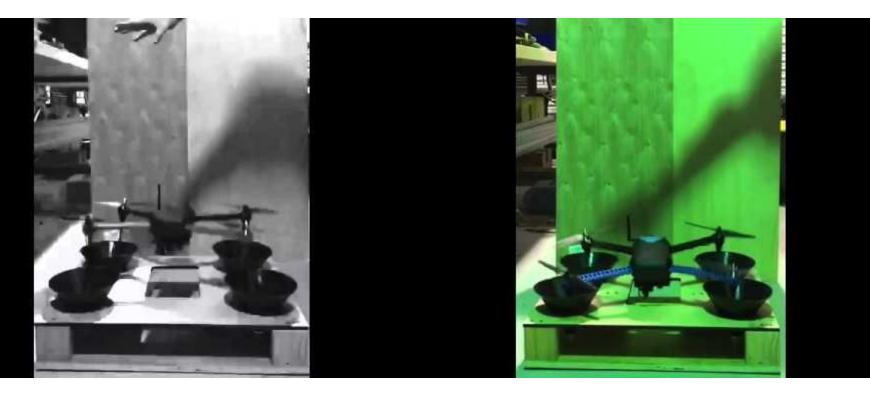
Success Conditions Met:

- Iris+ constrained within +/- 1cm in all directions : Tighter than required +/- 2 cm in dock (5 DOF)
- Valid orientation estimate and image (taken from the camera on the drone) is displayed on the PC
 Showed valid orientations: (Roll, Pitch, Yaw) = (90,0,0) and (0,90,0)
- 3. 'rostopic hz' command shows **1.09Hz** :

Faster than required 0.1Hz on relevant topic on PC

- 1. Project Description
- 2. Use Case
- 3. System-Level Requirements
- 4. Functional & Cyberphysical Architecture

5. Current System Status


Requirements | System / Subsystem Descriptions | Modeling / Analysis / Testing FVE Performance Evaluation | **Video** | Strong / Weak Points

6. Project Management

WBS Summary | Schedule Status | Test Plan | Budget Status | Risk Management

Dock Demonstration

- 1. Project Description
- 2. Use Case
- 3. System-Level Requirements
- 4. Functional & Cyberphysical Architecture

5. Current System Status

Requirements | System / Subsystem Descriptions | Modeling / Analysis / Testing FVE Performance Evaluation | Video | **Strong / Weak Points**

6. Project Management

WBS Summary | Schedule Status | Test Plan | Budget Status | Risk Management

STRONG POINTS

- Robust lawnmower search with AR.Drone
- Shock absorbtion quality of the dock
- Well integrated power system
- Compact design for sensor and SBC mounting

WEAK POINTS

- Automated Iris+ control untested
- Small backwards drift of AR.Drone
- Jerky waypoint navigation
- Unsightly epoxy contaminating dock

- 1. Project Description
- 2. Use Case
- 3. System-Level Requirements
- 4. Functional & Cyberphysical Architecture
- 5. Current System Status

Requirements | System / Subsystem Descriptions | Modeling / Analysis / Testing FVE Performance Evaluation | Video | Strong / Weak Points

6. Project Management

WBS Summary | Schedule Status | Test Plan | Budget Status | Risk Management

WORK BREAKDOWN STRUCTURE FALL

	WBS for Fall Validation Experiment	Status:	PDR	Now					
1	1 Open-loop ARDrone Control: takeoff, land, move from PC								
1.1	Low-level open-loop control / takeoff in ROS	Erik/Job/R							
1.2	Display ROS node graph	Erik							
2	Fall AR.Drone Position X,Y Movement Demo								
2.1	AR.Drone relative odometry working in ROS	Erik (Cole)							
2.2	Closed loop on absolute position control	Cole (Erik)							
2.3	Integrate AR.Drone demo subsystems	Erik							
3	Hardware and ROS Setup on Iris+								
3.1	Pixhawk -> SBC -> PC ROS setup + sensor display	Rohan (Job)							
3.2	Completed Iris+ Hardware Setup	Job (Rohan)							
4	Dock Prototype								
<mark>4.1</mark>	Formulate Dock Design Criteria	Job/Team	N/A						
4.2	Dock Internal CODR	Team	N/A						
4.3	Manufacturable CAD Model of Dock	Job							
4.4	Tested, working physical prototype	Job							
5	Non-Demo Focus Areas:								
5.1	Iris+ Relative Odometry	Rohan							
5.2	Stable Open-Loop Control of Iris+								
5.3	Integrated closed-loop position control of Iris+								
5.4	Searching for tag on ground with AR.Drone	Cole	N/A						

WORK BREAKDOWN STRUCTURE SPRING

	WBS for Spring Validation Experiment		Status
1	Hardware and ROS Setup on Iris+		
1.1	Iris+ Hardware Setup	Rohan	
1.2	Completed Iris+ Interface	Job	
1.3	Build backup Iris+	Erik	
2	Low Level Control of Iris+		
2.1	Iris+ Relative Odometry	Cole	
2.2	Open-Loop Velocity Control + Hover	Rohan	
2.3	Closed-Loop Position Control (PID)	Job	
2.4	Advanced Trajectory Control (Lattice Planner)	Cole	
3	Simple Cone Search (Dock/Wellhead)		
3.1	Search for wellhead + hold position (front facing camer	Cole	
3.2	Search for dock + hold position (bottom facing camera	Rohan	
4	Autonomous Docking		
4.1	Pose estimation during docking phase	Rohan	
4.2	Complete automated docking sequence	Erik	
5	Smart Cone Search		
5.1	Avoid walls during search	Erik	
5.2	Integrate wellhead search -> dock lock-on	Job	
6	Integrated Search and Dock		
6.1	Search for dock + hold position (bottom facing camera	Rohan	
6.2	Polish and test final demo	Erik	

- 1. Project Description
- 2. Use Case
- 3. System-Level Requirements
- 4. Functional & Cyberphysical Architecture
- 5. Current System Status

Requirements | System / Subsystem Descriptions | Modeling / Analysis / Testing FVE Performance Evaluation | Video | Strong / Weak Points

6. Project Management

WBS Summary | Schedule Status | Test Plan | Budget Status | Risk Management

Oct '	5			Nov '	15				Dec	'15			Jan '1	5				Feb	'15			Mar	15			Apr	'15		
4	11	18	25	1	8	15	22	29	6	13	20	27	3	10	17	24	31	7	14	21	28	6	13	20	27	3	10	17	24
Sprin	t 1	Sprin	nt 2																										
		•11/3 PDR Presentation																											
				Spr3	Sprin	it 4	Sprin	nt 5								Λn	cr	hn	١du	ιln	fn	r c	nri	nσ	n n	12	rtn	r	
									•12/	3 Fall \	/alidati	ion Expe	eriment	t		On	3	כווו.	:uu	IIC	וטן	2	hu	ΠĘ	y y	ua	ונכ		
										•12/	14 CDI	R Prese	ntation										•						
														Sprin	t 6	Sprin	nt 7												
	1	Oper	n-loop	ARDro	one Co	ontrol:	Demo	nstrat	e take	off, mo	ove, la	nd at pu	ush of	ROS	butto	n	•1/3*	1 Sprin	ng Miles	stone 1	(
	1.1	1.1 Low-level open-loop control of drone / takeoff via ROS (AR drone)												Sprin	nt 8	Sprin	nt 9			•AR	.Dron	e Fa	llbac	k De	cision Point				
	1.2	2 Disp	ay RO	S node	graph																•2/28	B Sprin	g Miles	stone 2	2				
			2	Fall /	AR.Dro	one Po	sition	X,Y M	oveme	ent Der	no			1	Hard	dware a	and RC	DS Set	up on	Iris+		Sprin	nt 10	Sprin	nt 11				
			2.1	AR.D	rone re	elative	odome	etry wo	r <mark>king i</mark> l	n ROS				1.1	Iris+	Hardw	are Se	tup							•3/27	7 Sprin	ng Mile	stone 3	
			2.2	Close	ed loop	on ab	solute	positio	n cont	rol (mo	ve to p	position)		1.2	Com	pleted	Iris+ In	terface	e							Dem	no Prep		
			2.3	Integ	rate AF	R.Dron	e demo	o subs	stems	5				1.3 Build backup Iris+								•4/22	2 Final Demo						
			2.4	Deve	lop GL	JI for C	ontrol							2	Low	Level	Contro	ol of Ir	is+										
				and the second s		and the second second	OS Set	-						1000000		Relativ													
			3.1	Pixha	awk ->	SBC -:	> PC F	ROS se	tup +	sensor	displa	ıy	2		Ope	n-Loop	Veloci	ty Con	trol + H	lover									
			3.2	Com	oleted	Iris+ H	ardwar	re Setu	р					2.3	Clos	ed-Loo	p Posit	tion Co	ontrol (I	PID)									
				4 Prototype of dock: Demonstrate one proof of concept						oncept	t 2.4 Advanced Trajectory Control (Lattice Planner)																		
				4.1	Form	ulate [Dock R	equire	ments	and De	esign (Criteria						:	3 Simp	ple Co	ne Sea	rch (D	ock/W	ellhea	d)				
				4.2	Dock	Intern	al COE	DR										3.1	1 Sear	ch for	wellhea	ad + ho	old posi	tion (fr	ont fac	ing ca	mera)		
				4.3	Manu	afactura	able C/	AD Mo	del of l	Dock								3.2	2 Sear	ch for	dock +	hold p	osition	sition (bottom facing camera)					
				4.4	Teste			-	vsical prototype 4 Autonomous Docking																				
						5	iris+	low-le	vel co	ntrol								4.1	1 Pose	estim	ation d	uring d	locking	phase)				
						5.1	Iris+	Relativ	e Odo	metry					4.2 Complete automated docking				cking s	equen	ce								
							2 Stabl	and the second	No. 1 No. 10 No. 1													and the second second	e Sear						
						5.3	B Integ	rated o	losed-	loop po	osition	control	of Iris+										during						
_	_				_	_														5.2	2 Integ	rate w	ellhead	1	h -> do				
R	٥h	in	1 0	ric	rin	<u>ר ו</u> ב	tin	hol	in	o fi	hr	Iris	(+ (٦N	htr	`∩l									6 Integ	and the second second	and the second second second		
U	ιI	ш	JU	115	<u>s III</u>	ui	ull	ILI	111		JI	1113) · (JUI	ILI	UI													osition (bottor
																								6.2	2 Polisi	h and	test fin	al dem	0

- 1. Project Description
- 2. Use Case
- 3. System-Level Requirements
- 4. Functional & Cyberphysical Architecture
- 5. Current System Status

Requirements | System / Subsystem Descriptions | Modeling / Analysis / Testing FVE Performance Evaluation | Video | Strong / Weak Points

6. Project Management

WBS Summary | Schedule Status | **Test Plan** | Budget Status | Risk Management

HIGH LEVEL TEST PLAN

Deadline	Deliverable Functionality	Method to Test
Late January Progress Review 7	Low level control of Iris+. Backup Iris+ hardware completed	Stable, teleoperated control of iris+ via ROS. Demonstrate in net.
Mid-February Progress review 8	Simple cone search with Iris+	Cone-shaped search pattern approaching wellhead; stop when wellhead tag identified.
Late February Progress Review 9	Autonomous docking of Iris+	Autonomously recognize dock from above, approach and land on dock, confirm rigidity in 5 DOF
Mid-March Progress Review 10	Smart cone search with Iris+ (AR.Drone Fallback Decision Point)	Iris+ searches for wellhead and locks on dock position while avoiding hitting walls.
Early April Progress Review 11	Integrated Search and Dock	Iris+ searches for wellhead, locks on dock position, and autonomously docks.
Mid April Progress Review 12	Integrated working system	Full demo: Take off, Search for wellhead, Orient to dock, land on dock, send signal.
April 22 and April 29 Spring Validation Experiment	Demonstration of integrated system	Same as above, but better!

Spring Validation Experiment

Needed Equipment: Iris+ with hardware, wellhead, dock, caution tape **Operational Area:** 25m² in B - Level Basement

Test Process:

- 1. Cordon off section of hallway
- 2. Place wellhead at one corner of search area and dock 1m in front of the wellhead
- 3. Place Iris+ on ground at opposite corner of search area facing wellhead within +/- 5 degrees
- 4. Hit START button on PC to initiate sequence
- 5. Confirm Iris+ lifts off and begins searching for wellhead (marker)
- 6. Confirm Iris+ arrives within 3 meter radius of wellhead
- 7. Confirm Iris+ orients above dock in pre-docking position (within 1 meter of dock)
- 8. Confirm Iris+ successfully lands in dock, constrained in 5 DOF

Success Conditions:

Mandatory:

- 1. Iris+ autonomously takes off from ground
- 2. Iris+ arrives within 3 meter radius of wellhead
- 3. Dock with docking station, constrained in 5 DOF

Desired:

- 1. Dock constraints 6 DOF
- 2. Successfully avoid obstacles

- 1. Project Description
- 2. Use Case
- 3. System-Level Requirements
- 4. Functional & Cyberphysical Architecture
- 5. Current System Status

Requirements | System / Subsystem Descriptions | Modeling / Analysis / Testing FVE Performance Evaluation | Video | Strong / Weak Points

6. Project Management

WBS Summary | Schedule Status | Test Plan | **Budget Status** | Risk Management

Budget

Total budget: \$4000

Total spent to date: \$1611.11

Big ticket items:

- 3DR Iris+ Drone: \$599
- Minnowboard Max x86 SBC: \$150
- Odroid XU-4 Arm SBC: \$83
- NicaDrone Magnet: \$90
- PX4 Flow Optical Flow Camera: \$149

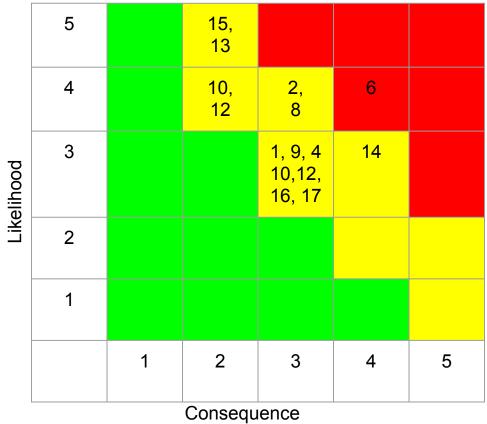
- 1. Project Description
- 2. Use Case
- 3. System-Level Requirements
- 4. Functional & Cyberphysical Architecture
- 5. Current System Status

Requirements | System / Subsystem Descriptions | Modeling / Analysis / Testing FVE Performance Evaluation | Video | Strong / Weak Points

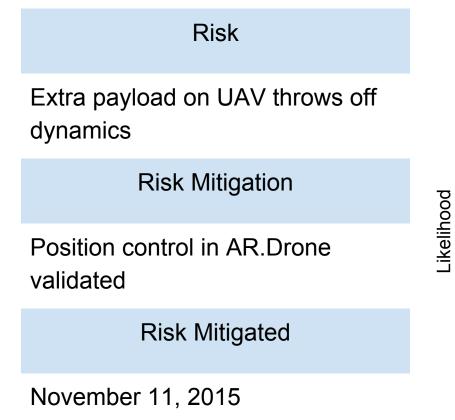
6. Project Management

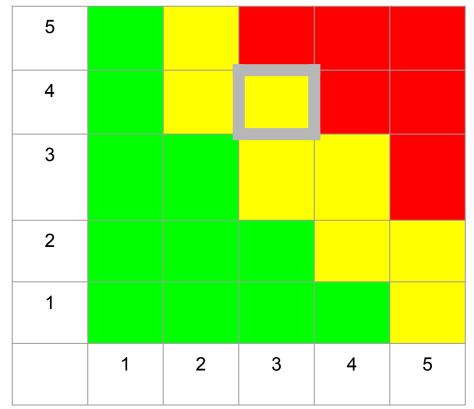
WBS Summary | Schedule Status | Test Plan | Budget Status | **Risk Management**

Risk Management


severity = consequence * likelihood

RIsk #	Risk	Requirer	Туре	Description	Owner	Consequence	Likelihood	Severity	Risk Reduction Plan
6	Cannot get the UAV to dock successfully	3.1.5	▼ Programmatic	Dock design and manufacturing does not have the properties needed to successfully dock, or the quadcopters dynamics or structural properties stop the quad from successfully docking.	Job	4	4	16	Prototype multiple dock designs early and often Maintain existing AR.Drone system as fallback Focus on precision landing ASAP
14	Quadcopter goes wild during run	3.1	Technical	Quadcopter has unexpected motion that can be damaging to the quad or others around it	Job	4	3	12	Create an ABORT button on the computer to take control of quad and land it if it has unsafe motion.
8	Drone is damaged	3.1	Schedule + Cost	Drone is damaged while testing and operation	Cole	3	4	12	Use a net while testing Buy multiple backup parts Save budget for a replacement drone (\$600)
2	Extra payload on UAV throws off dynamics	3.1.2	Technical	The extra payload on the quadcopter might change the dynamics of the system and will require modification of controller	Rohan	3	4	12	Test the manual dynamics with weights as soon as possible Test integrated control systems as soon as possible Keep AR.Drone as backup
15	Not enough battery life	3.3	Technical	Quadcopter does not have enough power to successfully meet requirements	Job	2	5	10	Keep extra batteries on hand for hot swap and possibly add extra battery power to payload
13	System error while in flight	3.1	Programmatic	There is some system error that occurs while Quad is in flight, resulting in a loss of control	Cole	2	5	10	Every exception must be handled correctly. Develop E-Stop / abort system.
1	Cannot get accurate localization of system	3.1.2	Technical	We cannot get accurate localization from our sensors	Rohan	3	3	9	Don't rely on accurate global positioning
9	Accurate sensing requires expensive sensor	3.1.3 3.1.4	Technical	The inexpensive sensors we have in the lab or get early cannot detect dock and/or obstacles	Erik	3	3	9	Save money on the budget for expensive sensors
4	Not able to detect obstacles and other objects	3.1.2 3.1.3	Technical	There is not enough processing or payload capacity to be able to have a good enough system to detect obstacles and other objects		3	3	9	Buy multiple processors and test them for speed and low weight. Use methods of visual recognition which require less processing and memory: like tags.
10	Dock does not rigidly connect with UAV	3.1.5	Technical	Dock that is designed does not rigidly dock	Job	3	3	9	Design a mechanism to attach rigidly to quad externally
12	Software packages do not work on ARM architecture	3.1	Technical	Software packages that we need to do certain tasks do not work on our ISA or our operating system. Reduces effectiveness and creates extra work	Erik	3	3	9	Buy an extra x86 based OBC and test for compatibility with needed packages
7	High and low level software system dependencies	3.1.1 3.1.2 3.1.3 3.1.5	Schedule	There are high level dependencies on high level and low level designs which is hard to work in parallel	Cole	2	4	8	Use the AR.Drone2 to work on the high level software design, and use the Iris+ for low level software design


Top Risks


5 1. We cannot get the UAV to_ dock successfully 4 2. Extra payload on UAV oq 14 throws off dynamics of -ikelihd 2 system 3. UAV goes completely out of control during the run 2 3 1 4 5 damaging itself or someone/something else Consequence

Risk Matrix

Risk Mitigated

Consequence

Risk Mitigation Strategies

Risk ID:	Risk Title:	Risk Owner:	Date Submitted:	Date Updated:					
6	Cannot get UAV to successfully dock	Job	10/21/2015	12/13/2015					
Description	ו:								
Dock design and manufacturing does not have the properties needed to successfully dock, or the quadcopters dynamics or structural properties stop the quad from successfully docking.									
Conseque	nces:	Risk Type:		Risk Level:					
•	opter will not be able to dock, and a major performance nt will not be able to be accomplished	- Technical - Programma	16						
Risk Redu	ction Plan	Expected Ou	Comments						
1. Prototype multiple dock designs early and oftenMajority of work time2. Focus resources on precision landingspent on developing3. March 9th as decision date to switch from Iris+ to AR.Dronedock									

Added Risk Mitigation Strategies

Risk ID:	Risk Title:	Risk Owner:	Date Submitted:	Date Updated:
16	AR.Drone breaks during testing	Cole	11/15/2015	11/25/2015
Description:				

AR.Drone breaks or is damaged during a test run before the FVE

Consequences:	Risk Type:	Risk Level:
Team will not be able to complete the FVE challenge	- Schedule - Programmatic	YELLOW 9 / 25
Risk Reduction Plan	Expected Outcome:	Comments
1. Take out a second AR.Drone from inventory	AR.Drone is available in inventory, so this will be no problem	MITIGATED

- 1. Project Description
- 2. Use Case
- 3. System-Level Requirements
- 4. Functional & Cyberphysical Architecture
- 5. Current System Status

Requirements | System / Subsystem Descriptions | Modeling / Analysis / Testing FVE Performance Evaluation | Video | Strong / Weak Points

6. Project Management

WBS Summary | Schedule Status | Test Plan | Budget Status | Risk Management

Lessons Learned

• It is difficult to communicate and get everyone on the same page

• One person's plan may not meet what other's feel

• Easy to get busy with other things and not deliver every sprint

Key Spring Activities

- It is difficult to communicate and get everyone on the same page
 Go back to requirements
- One person's plan may not meet what other's feel
 - Communicate and record
- Easy to get busy with other things and not deliver every sprint
 - Get specific demonstrable deliverables for each sprint for each person
 - Show demos at the sprint kick-offs

Questions