Progress Review 3

Cole Gulino
Team C / Column Robotics
Teammates: Job Bedford, Erik Sjoberg, Rohan Thakker
ILR #4

November 13, 2015

Individual Progress

For this project, | mainly focussed on research, systems engineering, and the PCB
design.

| did extensive research on four different ROS packages: ardrone_autonomy [1],
costmap_2d [2], tum_ardrone [3], and navigation [4].

Figure 1 shows an example of the notes | took on these packages.
Component API

Costmap2DROS

costmap_2d::Costnap2DROS // object wrapper for
costmop_2d::fostnapld f/ object
= Exposes its functionality as a C++ ROS Wrapper
& Dasign pattern used in much of the navination stack that uses one C++ class to
expose & ROS interface for an underlying, or wrapped. piece of code
Each ROS Wrapper is instantiated inside of a ROS node
| # reads its configurabion from the Parameter Server and often
publizhes/subscribes 1o information on topics using a namespace passed
to them on construction
Any number of ROS Wrappers may be instantiated within a single ROS node and
can be linked together via both their ROS interfaces and their C++ APIs
= It operates within a ROS namespace specified on initialization

#include <&F

#include cros

tf::TrensfarmListener tf(ross::Duration 18) }
costmap_2d: :CostnaplDROS costmapl “my_costmep”, tf §;

ROS API
Subscribed Topics
= ~<name>ffootprint(geometry msgs/Polygon)

Specification for the footprint of the robot
This replaces the previous parameter specification of the footprint

ometry_msgs/Polygon
E’?ﬁ?v_g‘essa ye

File: | gemnetry_msgsf?oiygon.msg‘

Raw Message Definition

Figure 1) Example of research

The research that | did was done in order to determine which is the best way to set up
our navigation stack. Originally, we were looking at using just the navigation stack along with
ardrone_autonomy in order to get our position control working.

We ended up able to get tum_ardrone working on the AR.Drone. This is a package
written by a student in Germany for his Master’s thesis. The package uses Extended Kalman
Filtering and optionally PTAM in order to increase the level of control on the AR.Drone. This is
the package that we used in our demo.

The package tum_ardrone is very useful for the AR.Drone, but we will need to be able to
translate the progress that he made to the Iris+, which is the drone we will be using for the
Spring Validation Experiment. In order to facilitate this transition, | began writing code for the
navigation stack for the Iris+.

Figure 2 shows a simple piece of code that publishes a target pose (x, y), which can be
modified to be provided by the user.

#include <ros/ros.h>
#include <geometry_msgs/Pose.h>
#include <iostream>

int main(int argc, char **argv){
ros::init(argc, argv, "targetPosePublisher");

ros: :NodeHandle n;
ros::Publisher targetPosePub = n.advertise<geometry msgs::Pose>("targetPose", 1);
geometry_msgs::Pose targetPose;

targetPose.position.x = 2;
targetPose.position.y = 1;
targetPosePub.publish(targetPose);

ros::spin();
return 0;

Figure 2) Simple Target Pose Publisher

This simple piece of code just publishes a geometry_msgs::Pose with x and y
coordinates. This (X, y) pose could be used to publish a static target pose for the UAV to reach.

In the systems engineering realm, | reworked the functional requirements and the
functional architecture.

For the functional requirements, | revamped many of the performance requirements to
better fit the direction our project has taken since the functional requirements were originally
written.

Table 1 shows the revamped functional requirements.

Table 1) Mandatory Functional Requirements

Mandatory Functional Requirements

MF1. Locate Oil/Gas wellhead infrastructure with known heading in 50 m”2 area
e Changed: Area shrunk due to testing constraints

MF2. Autonomously maneuver to wellhead within 1 hour
e Changed: New performance metric of time deemed to be more valuable

M43. Positively ID as correct wellhead with 90% confidence

MF5. Rigidly dock in 5 DOF
e Changed: 5 DOF more relevant to quadcopters

MF6. Provide status feedback to user of current state at 0.1 Hz

For the functional architecture, | worked to expand some of its blocks into more
informative ways. | also added more inputs and outputs (information, material, and energy).
Figure 3 shows the original functional architecture and Figure 4 shows the updated functional
architecture.

General
Location of el
Description
Wellhead P
Status Update
Locate and Identify desired Wellhead
Identified
Sense Plan Execute _, Clrot
Environment Next Move Move Wellhead?
Detect: I Estimate pose Calculate controller Ifa wellhsah found:
- Floor [NPUTS for move
- Env. Features Propose moves Enable movement
- Obstacles Calculate Utility Send inputs planner to ID wellhead
- Wellhead Choose move
- IMU ings. Confirm idanti
- Compags matches target wellhead Atterr_1pt
Docking ?
Move to Pre-Docking Position
Sense Plan Execute ;gcﬁﬁé
Environment Path Path position? Take Photo
Detect:
) Eban 0 —aa S asn Caletitat H-doekteeation found:
- Env. Fealures Estimate traints 1 -
- Obstacles B etz founes Enable movement Transmit to
) ‘I’h\:lel.‘]”::::i o Calculate Utility Send inputs planner to enter pre- base
: Compassng Choose move docking position

- Dock Location

Figure 3) Original Functional Architecture

General Direction of Wellhead Status Update

Wellhead Description
Environmental Estimated
Fealures Controller Inputs Identified Yes
Process Sensor Pose
| =+ Estimate State Plan NextMove —————* Execute Move — = Correct —
Information Wellhead?
| No
Camera Readings Locate and Identify desired Wellhead
IMU Readings — i

Heigft Readings ‘Wellhead Detected Signal

Environmental Estimated

Yes
Features Pose Controller Inputs In pre-
p’ﬂﬁf:;?:j"' . Estimate State Plan NextMove i) oo Move s docking pil

position”

| .

Pre-Docking Position Signal

Move to Pre-Docking Position

Process Sensor N
Information Estimate State Plan Next Move

Tag Information ‘

Figure 4) Updated Functional Architecture

One of the main updates are the system, are the expanded blocks in the functional units:
Locate and identify desired wellhead, move to pre-docking position, and dock on wellhead. The
sense environment mode was expanded to include process sensor information and estimate
state. | also included the information that would be provided to each block.

The next main improvement is that | added information that would be inputted to by the
user to the system. This is important, because it provides the main distinction between the
functional blocks. Each block gets sensor information, but locate and identify desired wellhead
is the only block that needs information about the wellhead, while move to pre-docking position
and dock to wellhead requires information about the tags we are using and the dock itself.

These two main improvements are very important to the design of our system, and the
functional architectures now show this.

| also worked on the PCB schematic, board, and BOM. Figure 5 shows the the final PCB
schematic.

2N

Al

71

¥

™,

A

/1
LY

¥

Z3
L
71

Figure 5) Final PDB Schematic

The schematic has made numerous changes over the course of two weeks. | changed
the design to include two inputs from the battery in order to facilitate a hot swap. These include
diodes and capacitors to protect the system while hot swapping.

| needed to create a part for the XT-60 connector, because there was nothing in
libraries.

| also needed to improve the power protection coming from the battery itself. In general, |
needed to change some of the values in the schematic in order to meet some of the parts that
are available. For the incoming, | needed to use an 8A fuse and 16V TVS diode. For the
outgoing from the voltage regulator, | added a 5A fuse and 5V TVS diode which is not exactly
the value that | assumed from the beginning. This was done to facilitate actual parts that | could
buy for a reasonable price, but the values are sufficient for the design.

| also redesigned the PDS board, which is shown in Figure 6.

JEAM CREV B

Figure 6) Final PDB Board

In this design of the board, | added more through hole components, because their pads
are easier to link up with large track widths. | added larger track widths this time, upon
recommendation in order to reduce the heat from the high current and voltage regulator. The
board is bigger this time, but the design is more efficient for our purposes.

Part Type

Through-Hole LED

Through-Hole LED
Through-Hole
Resistor

Tantalum Capacitor
Diode

TVS Diode

TVS Diode
Fuse

Fuse

Connector
Connector - Male
Connector - Female
Conn Terminal -

Female

Voltage Regulator

Barrel Connector

| also finalized the bill of materials as shown in table 2.
Table 2) Bill of Materials for PCB

Value

RED

GREEN

10k
Ohms

10uF

DO-214A
C(SMA)

16V

7.5V
8A
S5A

XT60

CGRID
SL

CGRID
SL

22-24
AWG

5V

5.5mmx2
Imm 5V
DC

Cost
Part Quan Per
Designators tity Part
LEDI1 3/ $0.35
LED2 3/ $0.50
R1,R2 6 $0.10
Cl1, C2, C3,
C4 12 $0.99
D1, D2, D3 9/ $0.48
TVSI 3/ $0.45
TVS2 3/ $0.47
F1 3/ $0.89
F2 3/ $0.70
XT601,
XT602 4 $1.50
CGRID 3/ $0.26
CGRID 3 8$0.88
CGRID 3/ $0.13
MIC29300 3/ $3.70
CGRID 3/ $3.95

Manufacturer

China Young
Sun LED
Technology
Co., LTD.

China Young
Sun LED
Technology
Co., LTD.

Stackpole
Electronics Inc.
Kemet

Diodes
Incorporated

Littlefuse Inc

Littlefuse Inc
Littlefuse Inc

Littlefuse Inc

sparkfun

Molex, LLC

Molex, LLC

Molex, LLC

Microchip
Technology

JacobsParts

Manufacturer Part

#

YSL-R531R3D-D2

YSL-R531K3D-D2

CF14JT10KO0

T356E106K016AT

SBRT5A50SA-13

P4SMAI16A

SMAJ7.5CA
37418000000
37215000001

PRT-10474

50579402

705430001

16020086

MIC29300-5.0WU

B00QJ9VMIO

Supplier Name

sparkfun

sparkfun

Digi-Key

Digi-Key

Digi-Key

Digi-Key

Digi-Key
Digi-Key
Digi-Key

sparkfun

Digi-Key

Digi-Key

Digi-Key

Digi-Key

amazon

Supplier Part #

COM-09590

COM-09592

CF14JT10KOCT-
ND

399-3638-ND

SBRT5A50SA-13
DICT-ND

P4SMA16ACT-N
D

SMAJ7.5CALFC
T-ND

F5490CT-ND
WK4263CT-ND

PRT-10474

WM2900-ND

WM4800-ND

WM2510CT-ND

576-1122-ND
B00QJOVMIO

Researching this took quite a bit of time, but Digi-Key and sparkfun were able to provide
me with most of my parts. | ordered at least three of everything as recommended in order to
protect against parts failure.

Challenges

The main challenge that | faced individually was in the ordering of parts. It was quite a
challenge to ensure that every part that | designed and specced could be found somewhere
from a manufacturer at a reasonable price. It took quite awhile to find and verify everything.

Another major challenge was researching the navigation packages. It was a lot of work
to understand the fundamental nature of everything while also evaluating its merit without
directly being able to test it without being able to implement it.

As a group, the main challenge was in deciding what we should do for this sprint. Our
requirements had become more focussed to the Fall Validation Experiment, and so we decided
that much of the work that we were tracking was not useful for the Fall Validation Experiment. In
doing so, we needed to redefine our tasks at a high level before we could decide on our
low-level tasks.

Teamwork

This sprint, the group broke up into two subgroups. Me and Erik focussed on the controls
of the AR.Drone, while Job and Rohan focussed on getting the hardware and software setup of
the lris+.

We also all worked together on the PDR as a team. We broke up into sections, got our
individual work done, and then came together to get our finished product. We worked well as a
team and got everything done.

After the PDR, we got much more focused in our preparation for the Fall Validation
Experiment. We came together and redefined our higher level tasks. Table 3 shows the

redefined high level tasks.
Table 3) New High Level Tasks

High Level Tasks

Open-loop ARDrone Control: Demonstrate takeoff, move, land at push of ROS button

Fall AR.Drone Position X,Y Movement Demo

Hardware and ROS Setup on Iris+

Prototype of dock: Demonstrate one proof of concept, one actual prototype

We were able to finish the first two up to this point.

Future Plans

During the next few weeks, | will be working on extending the package tum_ardrone to
be able to work more autonomously. Right now we can only send simple commands in
sequence. | want to work on it to be able to run an entire path from a ROS node while also
looking for a tag on the ground. This will be something we can extend to the Iris+. This is work
for next semester, but it is not part of our Fall Validation Experiment.

Erik will be leading the charge on the Systems Engineering Presentation #3. He will also
be running extensive tests and making the Fall Validation Experiment more reliable.

Rohan will be working on finishing the Iris+ hardware and software infrastructure to the
level needed for the Fall Validation Experiment.

Job will be working on getting the dock prototype parts ordered and manufactured.

Resources

[1]1 AR Drone Autonomy
[2] costmap_2d

[3] tum_ardrone

[4] navigation stack

https://github.com/AutonomyLab/ardrone_autonomy
http://wiki.ros.org/costmap_2d
https://github.com/tum-vision/tum_ardrone
http://wiki.ros.org/navigation

