
 Autonomous Exploration and
Docking

Column Robotics: Team C Final Report

May 5th, 2016

Job Bedford

Cole Gulino

Erik Sjoberg

Rohan Thakker

2

Abstract

This report summarizes the work that we did on the development of a terrestrial analogue

to an autonomous underwater vehicle capable of searching for and docking with deep-sea

wellheads.

The first part of the report describes the use case of our project. We developed search and

precision landing which we believe to be extensible to searching in an underwater environment

denied of GPS and any other global reference frames.

The system relies on optical flow for state estimation during the search and April Tag

recognition for localization during landing and docking.

We developed a high level script in order to send waypoints to the controller based on the

state estimation and April Tag localization. This script tied together the functionality in order to

provide robust control.

 Our data has shown that we are able to robustly control the quadcopter based on the
state estimation from optical flow whenever the environment is controlled. Unfortunately, we
were unable to rely on the optical flow whenever it was over the dock and the April Tag
information was too infrequent and unreliable.

3

Table of Contents

Abstract.. 2

2. Project Description ... 5

3. Use Case ... 6

4. System Level Requirements .. 8

4.1. Mandatory Functional Requirements ... 8

4.2. Desired Functional Requirements: ... 9

4.3. Mandatory Non-Functional Requirements: ..10

4.4. Desired Non-Functional Requirements: ..10

5. Functional Architecture ...10

6. System-Level Trade Studies ...12

6.1. Quadcopter Platform...12

6.2 Docking Mechanism ..13

7. Cyber-physical Architecture ..15

8. System Description and Evaluation ...17

8.1 Subsystem Descriptions/Depictions: ..17

8.1.1. Infrastructure Subsystem ...17

8.1.2 Sensor Subsystem ..17

8.1.3 World Modeling Subsystem ...19

8.1.4 Planning Subsystem ...20

8.1.5 Microcontroller and UAV Subsystem ...21

8.2. Modeling, Analysis and Testing ..22

8.2.1. AR Drone Odometry Estimates ..22

8.2.2. Dock Tolerance ..23

8.2.3. Landing Characterization ...24

8.2.4. Control Architecture and Implementation ...25

8.2.5. Dock Design Compliance ...27

8.2.6. April Tag Localization ...27

8.2.7. Optical Flow Estimates ...28

8.2.8. Depth Information ...32

8.3. SVE Performance Evaluation ...33

8.3.1 Spring Validation Experiment ..33

8.4. Strong and Weak Points ...36

4

8.4.1 System Strengths: ...36

8.4.2 System Weaknesses: ..36

9. Project Management ...37

9.1 Schedule Status ..37

9.2 Budget Status ..38

9.3 Risk management ..38

10. Conclusions ..41

10.1 Lessons Learned ...41

10.2 Future Work ...42

11. References..42

12. Appendices ...43

5

2. Project Description

Wellheads are infrastructures for pumping oil and gas on the ocean floor. They are

responsible for a large portion of the world’s oil consumption. When one of these system breaks

down it can assume billions of dollars in damages. A prime example is the BP oil spill which had

catastrophic effects on the BP Company and the Gulf of Mexico as a whole.

Unfortunately, current maintenance and monitoring of these wellheads is expensive

costing hundreds of thousands dollars per intervention. At pressures too deep for human to useful

intervene, oil companies are often require a specialized ship, with a highly trained crew to deploy

a manual ROV (remotely operated underwater vehicle) to perform a simple checkup or turn a

valve. Due to this cost, oil companies often choose to leave well-head unmonitored until a

problem arises, and by then it can already be too late.

Seeing this pain, our team proposes an Autonomous Robotic Solution to reduce cost,

resources, and human intervention. We will demonstrate a terrestrial analog to an underwater

vehicle capable of autonomously searching for, identifying and docking with undersea

wellheads. Due test resources and pool time constraint, a terrestrial analog was chosen over an

actual AUV (Autonomous Underwater Vehicle). This terrestrial analogue will be a Quadrotor

Drone capable of ‘swimming’ through air.

Because an AUV must interact with the wellhead, the ability to dock becomes an

extremely important functionality. An underwater environment is not conducive to high

visualization. Being able to transmit information to the AUV through the dock would provide

large amounts of data quickly. Stabilization during inspection will provide higher quality

photographs to be taken.

AUVs (Autonomous Underwater Vehicle) exist that can search and identify undersea

wellheads, but none we have seen that can autonomously dock or intervene at a wellhead. AUV

with this capability will allow for cost effective, regular maintenance and monitoring of this

wellhead which will reduce avoidable damages and loss of resources. Figure 1 shows a pictorial

description of the problem statement.

6

Figure 1) Visual Description of Autonomous Underwater Exploration of a Wellhead

3. Use Case

 The depths of the ocean floor are home to an enormous plethora of flora and fauna. In our

times, however, manmade obstacles have joined the ranks of deep sea denizens. There may be no

more important man made sea inhabitant than the deep sea wellhead. These objects facilitate the

distribution of our widest used fuel source, fossil fuels.

 A wellhead just like any other lies at the bottom of the sea near the gulf coast. The life of

the undersea wellhead is one of isolation and duty. Years ago he was lovingly designed and built

by a team of engineers. Those engineers however lost touch with the wellhead as soon they

placed him underneath the ocean surface. It has been years since the wellhead has seen another

metal denizen or human face. The wellhead still must do his job valiantly day in and day out,

because the fossil fuels he carries and protects would create a catastrophe if they ever seeped into

the ocean waters.

 To most everyone else, today was like any other day, but for the wellhead, today was a

day of tragedy. This structure has grown weak with time. The rust around his pipes is growing

slowly, getting worse every day. He sees oil leaking from the cracks in his body, more each day.

The wellhead is also able to provide valuable information through the dock and power to help his

friend get home safely and with the payload.

 The wellhead is afraid. He knows that the ROVs necessary to go underwater and interact

with him are prohibitively expensive. He knows that they’ll never check on him until it is too

late.

7

 The wellhead waits and waits and waits. He does not know this, but help is on the way.

Suddenly one morning, an autonomous underwater vehicle comes into his vicinity. There was no

tether connecting him to an expensive ROV ship. There was no skilled laborer operating him

from afar. The vehicle notices the wellhead, surveys every inch, and notices the leak. The next

day, a large team comes and saves the lonely wellhead.

 The wellhead cannot believe that he and the other water denizens were saved that day. He

believes that this is a miracle. What he does not realize is that the oil company that bought his

new autonomous friend, bought him with the specific purpose of doing routine checks on the

wellheads. Now the company can do routine checks in order to protect the environment and their

legal interests. Every month the lonely wellhead receives a visit from his friend the autonomous

underwater vehicle.

 Our terrestrial analog, the drone, will start somewhere in the vicinity of the wellhead, and

lift off to begin its search. It will perform a searching strategy until it comes across the wellhead

as shown in Figure 2.

Figure 2) Autonomous Searching for Wellhead

It will perform a searching strategy until it comes across the wellhead. Once the drone

thinks it has found the wellhead it will identify via a specialized tag or feature. The drone will

then initiate its pre docking orientation and positioning as shown in Figure 3.

8

Figure 3) Wellhead Recognition and Initiating Pre-Dock Position

 The drone will then proceed to dock accordingly as shown in Figure 4, and the system

will be successfully complete.

Figure 4) Drone in the Process of Docking

4. System Level Requirements

4.1. Mandatory Functional Requirements

● MF1: Locate Oil/Gas wellhead infrastructure with known heading in 25m2 area

● MF2: Autonomously maneuver to wellhead within one hour

● MF3: Positively ID as correct wellhead with 90% confidence

● MF4: Maintain hover position over dock within +/- 1m of dock position continuously

● MF5: Rigidly dock in five degrees of freedom

● MF6: Provide status feedback to user of current state at 0.1Hz

Mandatory functional requirements met:

 The system during testing, was robustly able to complete five out of the six mandatory

functional requirements.

 MF1: During the SVE, we may not have shown the full 25m2 area, but the system was

certainly capable if an environment such size had been feasible. This was shown during the

“search” phase. During this phase, the quadcopter was able to successfully maneuver its lawn-

mower search pattern completely searching the entire area specified in the global planner.

 MF2: The wellhead moved around at around 0.1m/s, which is clearly enough to cover the

search area. It made maneuvers at around 0.5m in the forward direction. This means that its path

around a 25m2 area is 10 passes in the forward direction of 5m each which would be around a

9

55m path. The drone would be able to complete this in 550s which is much lower than our

specified value of 3,600 seconds (1 hour).

 MF3: The April Tag system is quite robust for identification, and the drone was able to

recognize the April Tag 100% of the times it saw it.

 MF4: The system was shown to accurately hover around the April Tag in a 1m area

whenever it was servoing above it. We were able to show this in isolation and during the full

system.

 MF6: The system provided feedback on the drone’s state and identification of April Tag

at around 2 Hz through the terminal.

Mandatory functional requirements not met:

 MF5: The docking hardware was capable of restricting in 5 DOFs, but the system was

not robust enough while landing to be able to make it within the small cones that we designed.

4.2. Desired Functional Requirements:

● DF1: Locate Oil/Gas wellhead infrastructure in low visibility with unknown heading in

25m2 area

● DF2: Positively ID as correct wellhead from visual object recognition with 90%

confidence

● DF3: Align with dock located at known radius but unknown angle from wellhead within

+/- 1m

● DF4: Detect obstacles

Desired functional requirements met:

 DF4: System was able to detect obstacles by analyzing a point cloud. The map was

updated at around 2 Hz.

Desired functional requirements not met:

 DF1: Out of scope. The vision system was not robust enough to handle degradation.

 DF2: Out of scope. We did not have enough time to implement this functionality, and the

processor was too slow to be able to process the images.

 DF3: Out of scope. Not enough time. It is feasible however.

10

4.3. Mandatory Non-Functional Requirements:

● MNF1: Provides emergency stop for system with less than one second lag

● MNF2: Operable by a single person

Mandatory non-functional requirements met:

 MNF1: The system has an emergency stop switch that is nearly instantaneous located on

the RC controller.

 MNF2: The system could be run by running a simple script and then taking off manually.

4.4. Desired Non-Functional Requirements:

● DNF1: Reduce operator cost by at least one-half

● DNF2: Simulate low-visibility: Unable to get visual feed beyond 3m from

camera/quadrotor

Desired non-functional requirements not met:

 DNF1: Our system is clearly cheaper by at least one-half, but it is hard to quantify. The

systems are not comparable enough

 DNF2: Vision system was not robust enough to handle degradation

5. Functional Architecture

 Figure 5 shows the reduced functional architecture for the team’s project. The functional

architecture is broken down into three major sub-functions: “Locate and Identify Desired

Wellhead”, “Move to Pre-Docking Position”, and “Dock on Wellhead”.

11

Figure 5) Simplified Functional Architecture

 Figure 6 shows an expanded version of the “Locate and Identify Desired Wellhead” sub-

function.

Figure 6) Locate and Identify Desired Wellhead Subfunction

 Figure 6 clearly shows the flow of information into and throughout the sub-function. The

main inputs to the system are: “Camera Readings, IMU Readings, and Height Readings”,

“General Direction of Wellhead”, and “Wellhead Description”. Internally information is passed

between each block in the fashion of: sense, plan, and act. This block is executed on a loop until

the robot has identified the correct wellhead. Once it has identified the wellhead, the system

changes to the “Move to Pre-Docking Position” state as shown in the figure below.

12

Figure 7) Move to Pre-Docking Position Subfunction

 In Figure 7, the flow of information for the “Move to Pre-Docking Position” sub-function

can be clearly seen. The inputs to this sub-function are: “Camera Readings, IMU Readings, and

Height Readings” and “Tag Information”. This tag information is for the dock. The internal flow

of information is the same loop as the “Locate and Identify Desired Wellhead” sub-function,

except for the stopping criteria. The stopping criteria is “in pre-docking position” which is

determined by mandatory functional requirement 4: Maintain hover position over dock within +/-

1m of dock position continuously. Once the robot has reached the stopping criteria it moves into

the “Dock on Wellhead” state as shown in the figure below.

Figure 8) Docking Subfunction

 Figure 8, above, shows the final sub-function and state of the system, docking. Once the

robot has reached the pre-docking position it will make its docking descent and complete its task

of docking. The main inputs to the system are: “Camera Readings, IMU Readings, and Height

Readings” and “Tag Information”. In our final implementation, the APRIL tag was used to

simulate the wellhead detection.

6. System-Level Trade Studies

6.1. Quadcopter Platform

Table 1) Quadrotor Trade Study

13

Parameter Name Weight (1,3,,9) Parrot AR Drone 2 3DR Iris+ 3DR X8+

Flight Time/Payload 9 2 3 5

Existing Sensor
package 3 5 2 2

API
Quality/Documentat
ion 9 4 4 4

Wingspan 1 4 4 3

Cost 1 5 3 1

Hardware
Expansibility (max
processing) 9 1 3 5

Community 3 5 4 4

Hardware
Expansibility
(sensing options) 3 1 3 5

 Total: 105 124 163

 The three most important factors in choosing our quadcopter platform were hardware

expansibility for max processing power, flight time/payload capacity, and quality documentation

and API. The three quadcopter platforms we analyzed were the Parrot AR Drone 2.0, the 3DR

Iris+, and the 3DR X8+.

 The quadcopter platform is integral to the success of our project. A ready made platform

that contains all of the essential hardware will allow us to focus on the higher level algorithms

that we want to implement. The API documentation and quality is also incredibly important; in

order to have the time to implement our higher level algorithms, we need to have an API for the

system that reduces the complexity of aspects of the project that are not our focus.

 In looking at our top three choices, the API quality is top notch on all three platforms.

3DR and Parrot are industry leaders because of their quality API system. Where the 3DR X8+

distinguishes itself from the pack is in the flight time/payload and hardware expansibility

parameters.

 In the end, our final choice was for the 3DR Iris+ over the 3DR X8+ because the 8-blade

design of the 3DR X8+ had a high likelihood of interfering with the docking process. 4

downward-facing blades improves the payload capacity, but actually hurts our target of docking.

6.2 Docking Mechanism

Table 2) Dock Design Trade Study

Parameter

Name Weight (1,3,9) 4x Funnel Dock Sliding Mesh

Decapitated

Pyramid C-leg on Bars

Docking 9 3 5 2 2

14

Approach Slop

Post-docking

tolerance 3 4 2 3 4

Mechanical

Robustness (of

dock) 3 4 3 3 3

Cost 1 5 2 3 3

Size of mating

device on

docking vehicle 9 4 4 3 2

Weight of

mating device

on docking

vehicle 9 4 4 3 4

size/weight of

device 3 3 2 3 3

Complexity

(Meche &

Electrical) 3 5 2 4 2

 Total: 152 146 114 111

 We brainstormed initial ideas to come up with four basic mechanical structures for our

docking mechanism. Every design we chose is passive besides the sliding mesh. In analyzing our

weights, we came up with three aspects that are above the rest in importance.

We felt that the docking approach slope was very important in order to make the

precision needed to dock successfully much easier to obtain. This did indeed turn out to be the

critical factor for our design, and we should have given it even more weight in hindsight.The size

and weight of the mating device on the docking vehicle must be kept small in order to meet the

physical and payloads limitations of the chosen UAV.

 Other important considerations were robustness of dock to reduce breakage and

complexity in order to reduce scope on our project.

Schematics of our four dock designs can be seen below in Figure 9, in the following order:

4x Funnel Dock C-leg on Bar

Mesh Dock Decapitated Pyramid

15

Figure 9) Dock Concept Designs

7. Cyber-physical Architecture

 The cyber-physical architecture, shown in Figure 10, has been broken down into five

main parts: Infrastructures, sensors, single board computer, motor control & UAV, and user

interface. We have organized our cyber-physical architecture based on how the systems are

physically organized and interact.

16

Figure 10) Cyber-physical Architecture

The infrastructure comprises of the APRIL tag and the docking mechanism. The APRIL

tag consists of features that can be easily detected using image processing. These features are

then used to estimate the pose of the robot with respect to the tag. Docking mechanism is

designed to constrain the robot in 5 DOF.

 The sensors consists of the camera, IMU, and height and optical-flow sensor. The

downward facing camera allows the drone to view the dock and ground april tags. The IMU is

used for the drones state-estimation. A sonar height and an optical flow sensor is also used for

the state estimation, localization and height stabilization.

 For the single board computer we have an underlying software architecture that

implement the ‘Toaster-Wedding Cake’ model. The ‘Toaster-Wedding Cake’ model constitutes

the flow of data and information in a sense-plan-act format. The toaster is the vertical blocks of

perception and world mapping. The systems perceives the environment through the sensors, then

develops a model of that environment. The wedding cake is the flow of data through the high

level global plan to the low level local planning. This planning structure dictates the actuation the

system will have on the environment.

 The microcontroller is the hardware running the low level controller and is a part of the

UAV. The microcontroller and UAV sections are broken into two parts. The AR.Drone2 is the

drone we used for testing of high level searching algorithms and exists as a backup if Iris+

cannot perform the necessary tasks. The high level software will be run on the single-board

17

computer with information being passed to it from the wireless communication and low level

microcontroller.

8. System Description and Evaluation

8.1 Subsystem Descriptions/Depictions:

8.1.1. Infrastructure Subsystem

Figure 11) Infrastructure

Landing a quadrotor at desired a location is a hard problem because of the turbulence in

the airflow of the thrusters when the quadrotor is close to the ground. Hence, one of main design

criterion was to be able to tolerate large variance in pose at which the quadrotor can approach the

dock. To meet this requirement for the docking mechanism, we are using four cones to funnel the

quadrotor down to the desired location, as shown in Figure 11. Using this strategy we can

tolerate larger tracking errors in our control algorithm during landing. We will be manufacturing

a mock-up of the wellhead infrastructure in the next semester. The details of the tag are covered

in the perception subsystem.

8.1.2 Sensor Subsystem

 Table 2 shows the description of the components of the sensor subsystem, and Figure 12

shows the components of the sensor subsystem mounted on the Iris+.

Table 3) Sensor Subsystem Description

18

Sensor Sony Playstation

Eye

PIXHAWK PX4FLOW KIT Asus Xtion

Pro Live

Function Downward camera whose

feed is used to detect the

APRIL Tags

Flight controller to run

the attitude control loop

of the quadrotor

Sensor to provide

visual odometry

estimates

Sensor to provide

RGB-D

Information

Features Supports a framerate of

120hz at 320x240

resolution.

ST Micro L3GD20 3-

axis 16-bit gyroscope

ST Micro LSM303D 3-

axis 14-bit

accelerometer /

magnetometer

Invensense MPU 6000

3-axis

accelerometer/gyroscope

MEAS MS5611

barometer

PX4FLOW V1.3.1

optical flow sensor

smart camera

compatible with PX4

PIXHAWK flight

controller. Used to

obtain visual odometry

updates

30 Hz of VGA

depth data with

color information.

Image

source:

http://amazon.com

source:

https://pixhawk.org

source:

https://pixhawk.org

source:

https://www.asu

s.com/us/3D-

Sensor/Xtion_P

RO_LIVE/

19

Figure 12) Sensors

8.1.3 World Modeling Subsystem

Figure 13) World Modeling

As shown in Figure 13, the world modelling subsystem consists of the following three nodes:

1. Pose Estimation: This node will estimate the pose of the quadrotor in the world frame.

2. Wellhead Detection: This node will estimate the position of the wellhead in the quadrotor

frame.

3. Obstacle Avoidance: This node will update the occupancy grid with the obstacles, once

they are detected.

20

We did not focus on implementing these systems during the fall semester, however, we

have experimented with some algorithms that will help us implement this system. The following

are the algorithms that we explored:

APRIL tag detection

Reference [2] shows a library by Mike Kaess, written in C++ that detects APRIL tags and

estimates the pose of the robot. We can use this to detect the wellhead and the docking

mechanism.

The pose estimates from the april tag are given as the april tag frame with respect to the

camera frame. This causes the frame’s coordinates to change as the camera frame rolls and

pitches with the movement of the quadrotor. In order to remedy this, we inverted the frame in

order to get the quadrotor in the april tag frame. This allowed us to get a frame that is fixed to the

april tag and does not shift with rotation. This data in practice was found to be noisy. In order to

provide better data, we implemented RANSAC in order to filter out the noisy data.

Lucas-Kanade based optical flow

We can use this algorithm to estimate the velocity of the quadrotor using the camera feed.

Scale estimation is one of the major problems with this algorithms. We are using the PX4Flow

sensor that implements this algorithm and estimates the scale using an integrated ultrasonic

sensor which measures the distance to the ground. After consulting last year’s MRSD teams, we

are confident that this solution works.

RTAB-Map

RTAB-Map [4] is graph and node based system that uses SIFT features in order to find

points of detection. It uses structured light in order to improve the performance of the stereo

information. It prunes the graph based on a powerful TORO graph optimization technique in

order to reduce computation. The algorithm uses a bag-of-words technique in order to detect

loop closures.

8.1.4 Planning Subsystem

Figure 14) Local Planning

As shown in Figure 14, we are using a 3 layered architecture for the planning. Each layer

acts like a state machine for the layer below it. For example, the global planning starts with

21

“Search For Wellhead”, on finding the wellhead, it transitions to the “Move To Pre-Docking

Position”. On reaching pre-docking position, it transitions to the “Attempt Docking” state.

Similarly, “Search For Wellhead” is a state machine that uses “Take off” and “Hover in Plane”

states. For this semester we have implemented the entire local planning and hence, most of

tactical planning on the AR.Drone. We demonstrated this functionality in FVE by doing a lawn

mower search using the AR.Drone. The details of this are covered in the next section.

Local planner consists of the proportional-derivative position controller which was

implemented in C++. We implemented the global and tactical planning nodes in python. This

enabled us to the test the higher level code without recompiling. Hence, it decreased the time we

took to develop and test the software once the local planner was implemented and tested. We

leveraged the ROS Parameter server to serve as a “blackboard” of shared state variables such as

controller gains, setpoints, and event flags which enable us to easily script behaviors for the

entire system from nodes written in Python instead of relying entirely on hard-coded C++

behaviors. Using these setpoint parameters, we were able to script various movement patterns

and conditional behaviors, including manual control of the sequence start time from the hand-

held controller as well as automatic landing after completing a search sequence.

Figure 15) Hardware Subsystem

8.1.5 Microcontroller and UAV Subsystem

The figure 15 shows the components of hardware subsystem. The AR.Drone is reliable

quadrotor system that we obtain from the MRSD storage at no cost to us. The AR.Drone acted as

our initial test bed to run our high level search algorithms and code. The AR.Drone is also our

fall back and risk mitigations if the Iris+ drone cannot perform our desired tasks. The drone does

not require any extra hardware and is controlled via wifi from a host computer. It has a forward

facing and downward facing cameras, and the downward facing camera doubles as an optical

flow sensor.

 The Iris+ drone is a commercially bought quadrotor that we are modifying to with

sensors and a SBC. The Iris+ drone’s motors’ low level controls are commanded via Pixhawk,

which also has a compilation of various sensors, such as 9 axis IMU, and barometers. It also

22

handles our communication to the RC controller. The SBC will be communicating to the

Pixhawk via UART to control the drone’s movements.

8.2. Modeling, Analysis and Testing

8.2.1. AR Drone Odometry Estimates

Initially we were trying to track a trajectory by doing closed loop control by using

feedback from visual odometry based on optical flow. To evaluate the performance of our

algorithm we moved the quadrotor in a 3x3m square, 2 times. The Figure 16 shows the result of

our experiment. It can be inferred from the graph that we have a drift of 1m for a displacement of

1m. Clearly, we cannot implement our lawn mower search with such a large magnitude of drift.

Figure 16) X vs Y Odometry Readings From Flight Test

We solved this issue by using extended kalman filters to fuse the odometry estimates with

the motion model of the quadrotor. The kalman filter equations used by the algorithm are shown

below in figure 17:

23

Figure 17) Kalman Filter Equations

8.2.2. Dock Tolerance

The A and B matrices for the motion model and the control input model were obtained by

linearizing the quadrotor dynamics about the hover position using Taylor’s expansion. This was

implemented using the tum_ardrone [3] API. The final result of the tracking algorithm running

with the EKF can be seen in the video on our website.

Figure 17) Docking Mechanism Compliance Test

Figure 17 shows the results of our compliance test performed to validate that we meet our

functional requirement of the docking subsystem. Figure 18 shows the images of the drop test

performed using IRIS+ quadrotor. As shown in the figure, the docking mechanism was

successfully able to funnel the quadrotor to the center of mechanism.

Figure 18) Docking Mechanism Drop Test

24

8.2.3. Landing Characterization

 During development we were successful in stabling landing within approximately 2 feet

of the dock in a highly repeatable manner. Figure 19 below shows one such test, where we

landed 7 out of 7 tries all within the specified circle.

Figure 19) Leg locations of seven landing attempts

The red circle indicates a radius of 2 feet, and each red X indicates the location of one of

the quadcopters feet after a landing attempt. The four small black circles shows the size of the

landing cones of the dock itself. As can be seen from the image, although we were unfortunately

not able to land within the black circles reliably we were able to consistently land within 2 feet of

the target location.

25

8.2.4. Control Architecture and Implementation

 Based on optical flow and IMU updates, the Kalman filter extracts position and velocity

estimates for measurements. Figure 20 shows the architecture of the cascaded controller which is

used on most quadrotors. The reference trajectory is generated for the x, y, z position and yaw of

the quadrotor. The position controller calculates the reference attitude and sends it to the attitude

planner. The attitude planner generates a smooth trajectory to reach that reference attitude. The

attitude controller follows this trajectory by running a PID loop.

Figure 20) Control Scheme

In our first attempt to implement the above architecture we were running the position and

attitude controller on the PIXHAWK. We sent reference positions using MAVROS from the

ODROID to the PIXHAWK over UART interface. However, gains of the PID loop running on

the PX4 stack were too aggressive and we were not able to get stable flight. Instead of investing

time to debug the controller which was running on the PX4 stack, we decided to implement our

own proportional controller on the ODROID in ROS. This worked much better than the position

controller that was running on the PIXHAWK but there was significant oscillations visible in the

response of the system.

 We implemented a PD controller to enable higher gains and damp the resulting

oscillations. Figure 21 below shows the successful position and command velocity results of a

square flight pattern with the new PD controller. The flight successfully followed the offset

pattern (0,0) -> (+0.3, 0) -> (+0.3, +0.3) -> (0, +0.3) -> (0, 0) starting from the location (-0.28,

0.25) using a P gain of 4 and a D gain of 1. Command velocities peaked to +/- 3 m/s, but position

is still able to quickly reach the target setpoint with minimal oscillation.

26

Figure 21) Square flight pattern under enhanced PD Controller

Position holding also exhibited very good stability with the new PD controller. As can be

seen in Figure 22 below, we were able to maintain a very steady position of +/- 10cm over

approximately 4 minutes.

Figure 22) High-accuracy (+/- ~10cm) position hold over approximately 4 minutes

This high positional accuracy enabled arbitrary search patterns similar to those shown in our fall

validation experiment and gave us a good base from which to built out further functionality.

27

8.2.5. Dock Design Compliance

 The cute and bright dock was designed with the drone geometric dimensions in mind. In

order to leave as much marginal error as possible for docking, we decide on 10” diameter conical

funnels that would direct the drone descents into the specific dock configuration. For ease of

manufacturing the dock utilized commercially bought funnel and laser cut materials. The dock

houses the drones landing gear, and constrain it in 5 DOF, when perfectly docked. The legs of

the drone’s landing gear are funneled into the docks center. The dock is able to disperse the

impact of the drone fall and through deformation lessen the drone impulse to ensure no abrupt

damage is done.

8.2.6. April Tag Localization

 Pose estimates from the April Tag after the transformation were analyzed for accuracy

and speed. During the analysis, it was determined that there was significant noise in the pose

estimates. This noise was due to the poor orientation updates from the quadcopter due to the

frequent pitching and rolling of the quadrotor that the camera was attached to.

 In order to remedy this, we used RANSAC filtering in order to remove the the outliers

from the system.

28

Figure 23) Bottom: Unfiltered April Tag Pose Estimates; Top: Filtered April Tag Pose Estimates

 NOTE: Colors for x and y are flipped in the bottom plot of Figure 23.

 This data shows that we were able to effectively filter out the outliers, however, the

frequency of the updates is much lower for the filtered data. This is due to the large number of

outliers present.

8.2.7. Optical Flow Estimates

 Figure 24 below shows the raw velocity updates from the PX4Flow optical flow camera.

29

Figure 24) Visual Estimates from Optical Flow Camera

 Figure 25 shows the position estimates from the internal extended kalman filter onboard

the Pixhawk microcontroller.

30

Figure 25) Position from the Internal Extended Kalman Filter

 The pose updates shown in Figure 25 correspond to the quadrotor trying to maintain

position in x and y.

 These position updates are fairly stable, but overtime there is a linear drift associated with

providing velocity updates to the extended kalman filter. We evaluated this drift in simulation as

shown in Figure 26.

31

Figure 26) Linear Drift Associated with Velocity Updates

 Figure 27 shows odometry information showcasing the drift from using optical flow vs.

ground truth.

Figure 27) Odometry Information vs. Ground Truth

 In this Figure, the orange arrows are odometry information. The base of the arrow is the

position, and the arrow is the velocity direction and magnitude.

32

 As can be seen, this information has a serious amount of drift over time on our system in

real-time.

8.2.8. Depth Information

 In order to get accurate pose estimates, we wanted to use a SLAM system in order to

localize ourselves. We utilized the RTAB-Map [4] package in order generate our map. We used

the Asus Xtion Pro Live as our depth sensor, which provides RGB-D information using OpenNI

to manipulate the point clouds.

 Figure 28 shows the mapping information while the quadrotor was stationary and while

being moved by hand.

Figure 28) Mapping Information for Stationary (Left) and Moving by Hand (Right)

 The information gathered was working well. The problem is that the mapping is

incredibly slow. We were only able to get the information at around 0.5 Hz. Because this

information was so slow, there were not enough inliers in the SIFT features to be able to get the

transformations needed to calculate odometry information. This made the sensor and system

unusable in our system.

 We decided that we could still use the depth information for detecting obstacles. This

way we could build a local costmap with raytracing on our point cloud data to fill and clear the

map. We were able to get the point cloud data at around 20 Hz, and we updated our map at

around 3 Hz. We were able to show in flight that we could accurately track obstacles in real-time

onboard.

 Figure 29 shows the costmap with the point cloud information.

33

Figure 29) Costmap with Point-Cloud Information

 This showed that we could get accurate obstacle detection real-time onboard while in

flight.

8.3. SVE Performance Evaluation

8.3.1 Spring Validation Experiment

Needed Equipment:

1. Iris+ with mounted sensors and computer hardware

2. wellhead

3. dock

4. caution tape

Operational Area:

25m2 in B - Level Basement

Test Process:

1. Cordon off section of hallway

2. Place wellhead at one corner of search area and dock 1m in front of the wellhead

3. Place Iris+ on ground at opposite corner of search area facing wellhead within +/- 5

degrees

4. Hit START button on PC to initiate sequence

5. Manually take off Iris+, switch to OFF_BOARD mode, and begins searching for

wellhead (marker)

34

6. Confirm Iris+ arrives within 3 meter radius of wellhead

7. Confirm Iris+ orients above dock in pre-docking position (within 1 meter of dock)

8. Confirm Iris+ successfully lands in dock, constrained in 5 DOF

Success Conditions / Metrics:

Mandatory:

1. Manually take off with Iris+ from ground

2. Iris+ arrives within 3 meter radius of wellhead

3. Dock with docking station, constrained in 5 DOF

Desired:

1. Dock constraints 5 DOF

2. Successfully avoid obstacles

35

Figure 30 shows a schematic view of our spring semester validation experiment.

In its initial condition, the drone will not be able to detect the wellhead which is outside the

visual range of the downward facing camera, simulating the underwater environment of a real

wellhead. It will be placed within an initial 10 degree range.

Figure 30) Sketch of Spring Validation Experiment

The drone followed a search path similar to the one sketched in blue above, and once it

36

detected the dock the drone moved to center itself over the it. Once the drone has a stable visual

lock on the dock with it’s downward-facing camera it executes an automatic docking sequence

and arrives in its final docked position.

8.4. Strong and Weak Points

8.4.1 System Strengths:

● Good control architecture and implementation

As described in the previous section, our implementation of the proportional-derivative

controller on the ODROID was pretty robust.

● Fast development and testing cycles

The high level functionalities were implemented in python, this reduced the development

time because we did not need to recompile the code. Further, we set up an automated

bash script to run all the launch files and record the data for the desired topics. This

reduced the time required for testing.

● Good controller environment for optical flow

The optical flow sensor was not returning good state estimates because of shadows of the

drone. Hence, we hung a translucent cloth above the net which served as a diffuser of the

light and hence prevented the formation shadows. Also, we spray painted features on

wood on the floor of the net. This provided good features for the optical flow sensors.

● Well designed and integrated hardware system

During testing, we had crashed the drone several times into the wall, floor and ceiling.

Apart from the one accident before our SVE, we did not have any hardware problems

once all the hardware development and implementation was completed. Further, our

power system fit entirely inside the original chassis of the drone itself, reducing the need

for delicate external components. Compact design for sensor and SBC mounting, i.e. a

3d-printed mounting plate and careful component selection has enabled a compact, sleek

solution for our add-on sensors and single-board computer

8.4.2 System Weaknesses:

● Low accuracy of docking

Docking accuracy of the robot was very poor. This was mainly because we were not able

to get high frequency accurate updates from the APRIL tag. By running the ARPIL tag

detection algorithm, we were able to estimate the pose only at 7-8 hz. Further, these

readings were very noisy, hence we implemented a RANSAC filter to remove outliers.

This further reduced the frequency of the filtered poses that we could estimate.

● Optical flow estimates not robust to environment changes

As described in our strengths, we had to modify the environment for the optical flow

sensor to work. Also, the sensor had a very narrow field of view because it was designed

for quadrotors flying at a height greater than 20m.

37

9. Project Management

9.1 Schedule Status

Figure 31) Fall and Spring Schedule

As shown in Figure 31, we have split our work time into 2-week sprints. We have a total

of 6 of these sprints between January and the start of April, with an extra two-weeks is also set

aside for final demo preparations. The remaining yellow sections in the schedule above indicate

areas where some functionality was unfortunately not completed in time for the SVE.

One significant date is March 20th, at which point we decided to focus efforts on the

Iris+ instead of the backup AR.Drone platform. In the case autonomous flight had not been

demonstrated and a high-confidence path forwards for autonomous docking was not available by

this point, we would have focused all work on our backup platform.

38

9.2 Budget Status

Total budget: $4000

Total spent to date: $3170.52

Table 4) Detailed Budget for big-ticket items (over $50 total cost)

No. Item Name / Description Unit Cost Total Cost

1 3DR IRIS+ Quadcopter $599.99 $599.99

1 MINNOWBOARD-MAX-DUAL $145.95 $145.95

1 Odroid XU-4 Board $83.00 $83.00

8 3DR IRIS+ Propellers $9.99 $79.92

1 PX4Flow $149.00 $149.00

2 Iris+ Battery $40.00 $80.00

2 NicaDrone Perment Magnet $45.00 $90.00

4 Electrically Conductive ABS/PVC $13.57 $54.28

3 3DR Cable Pack $16.99 $50.97

1 3DR IRIS+ Quadcopter $599.99 $599.99

1 PX4Flow $149.00 $149.00

1 Asus Xtion Pro Live $329.99 $329.99

1 Odroid XU-4 Board $83.00 $83.00

1 Intel R200 RealSense Camera $99.00 $99.00

8 3DR IRIS+ Propellers $9.99 $79.92

9.3 Risk management

Table 5 shows our Risk Management Table, where we have tracked all of the major risks

to our system.

Table 5) Risk Management Table

39

 The two major risk that we identified is shown in Figure 32.

Figure 32) Risk 16 Mitigation Strategy

 This risk has been tracked and mitigated since the PDR. We were able to get a second

AR.Drone from inventory. We are also going to be tracking this risk for the Iris+ during the

Spring semester. During this semester, we built a second Iris+ with the full electrical hardware.

This ensured that we were able to handle a serious breakage. During the night before the SVE,

40

we had a major breakage, whenever the quadrotor fell from the net and broke one of its arms. By

having a second quadrotor, we were able to present our final demo.

 The main risk that we tracked during the spring semester is shown in Figure 24.

Figure 33) Risk 6 Mitigation Strategy

 This risk was the biggest problem in our system. We did not accurately characterize the

main risks of the system. We believed that by working on the dock and spending the majority of

our time on the quadcopter controls and state estimation that we would be able to get the

precision in landing that we needed. Unfortunately, we did not take into account some serious

issues. We did not analyze the risk that the dock itself would provide poor features for the optical

flow sensor. This caused our state estimation to be far less robust over the dock than it was over

the ground. We also did not take into account that the april tag updates would not be accurate

enough. These risks should have been tracked and mitigated during the semester.

 Figure 34 shows the updated Risk Likelihood-Consequence Matrix.

41

Figure 34) Risk Likelihood-Consequence Matrix

10. Conclusions

10.1 Lessons Learned

 The major lessons learned during the spring semester by Team C can be summarized

below:

● It is difficult to communicate and get everyone on the same page

● One person’s plan may not meet what the others in the group feel it should be

● It is easy to get busy with other things and not deliver what you need to deliver every

sprint.

● It is important to accurately profile the performance and errors of sensors early. Optical

flow is very sensitive to lighting and shadows, hence these sensors specially need to be

tested early.

● It is very valuable to have a single board computer with an x86 architecture because there

can be several required packages which don’t have binaries available for ARM

architecture.

● It is better to leverage APIs that are popular and tested rather than implement everything

on our own. We spent a lot of time implementing the transformations for representing

pose estimates from APRIL tag in our local frame. We could have saved this time if we

used the TFs in the navigation stack in ROS.

 Team C found that it was often difficult to get everyone on the same page during

meetings. Oftentimes, one person would say one thing and it would mean something completely

different to another person. This would range from technical definitions to emotions to

scheduling conflicts. The most detrimental miscommunications happened when technical

definitions were not properly communicated. Often, two people would be arguing about a

technical question without realizing that they were both on the same side. Other times, a person

would get hung up on a simple aspect of a technical question because they were not

understanding the definitions another team member was using.

 Another form of miscommunication was during the planning stage. This would happen

whenever the team would delegate tasks. Oftentimes, one team member's idea of what they are

working on should look like. This can often lead to problems whenever the sprint is over. Work

that the rest of the team felt should have been done will not get done because of this

miscommunication. This leads to a lot of wasted effort on the part of every team member and

could be detrimental at the later parts of the semester, whenever things get into crunch time.

Luckily this miscommunication did not the outcome of our fall deliverables, but this

miscommunication lead us to be less productive each sprint than we would have liked.

42

One of the major lessons that we learned is that the MRSD program can be very time

consuming. Our technical classes require a lot of our time, and that time can often be

miscalculated by the team. Often, work during the sprint would either go undone or half done,

because other work cropped up for the team. If work was not essential to completing our FVE

goals, it would always go undone. This was because we did not have a proper accountability

system in place during the semester.

10.2 Future Work

 Due to the lessons the team has learned during the Spring semester, the team has come up

with a few key aspects we would work on if project was extended:

● Revising Optical flow sensing to ensure environment changing robustness

● Testing and validation of subsystem performance at every milestone

● Prepping drone for usage as MSRD legacy.

● Showcase better relation of terrestrial analog to underwater application

 Obtaining reliable optical flow readings was one of our biggest challenges this semester.

We trusted too much in the PXFlow. The PXFlow has a narrow scope and only operates at high

frequency. It gave us noisy data and and requires a heavily featured landscape to provide

adequate measurements. Over the course of the semester we spent unnecessary amounts of time,

modify the floor of flight cage to make optical flow perform better. If a flood light went off, or

shadows from surrounding infrastructure were involved, a previously work test would perform

horridly due to optical lack of robustness to changes in the environments. If we had more time,

we would convert to higher grade state estimation sensor so we would be so dependent on

finicky PXFlow. We may switch to a more beacon based, navigation system.

 Test and validation of subsystem performance could have been more thoroughly done.

One of our major flaws in the SVE was that one of subsystem the April tag rectifying node was

not accurate and quick enough to provide the succeeding pipeline good april estimates. The

failure of this system resulted in our in ability to dock during the demos. If we had better tested

the frequency updates of this node as well as the accuracy of its measurement we would have

been able to demo a working system that meet all of our requirements. If we had more time in

the future we would stress test and validate all of our performing subsystems.

 Since we must return all elements of our project to the MSRD inventory, we would like

to leave an instruction manual for our drones so that future MSRD students might be able to put

them to good use.

11. References

[1] http://charliedeets.com/3d-robotics-x8-multicopter/

[2] http://people.csail.mit.edu/kaess/apriltags/

http://charliedeets.com/3d-robotics-x8-multicopter/
http://charliedeets.com/3d-robotics-x8-multicopter/
http://people.csail.mit.edu/kaess/apriltags/
http://people.csail.mit.edu/kaess/apriltags/

43

[3] http://wiki.ros.org/tum_ardrone

[4] http://introlab.github.io/rtabmap/

12. Appendices

Appendix A: Spring Test Plan

Table 6 identifies key capability milestones for the spring-semester Progress Reviews.

 Table 6) Test Plan for Spring

http://wiki.ros.org/tum_ardrone
http://wiki.ros.org/tum_ardrone
http://wiki.ros.org/tum_ardrone

