Progress Review 9

Cole Gulino
Team C / Column Robotics
Teammates: Job Bedford, Erik Sjoberg, Rohan Thakker
ILR #8

February 25, 2016

Individual Progress

During the last two weeks, | along with the rest of the team was focused on getting the Iris+ to
dock.

| started by running commands in order to gather data as shown in Figure 1:

roslaunch mavros px4.launch # Mavlink topics from pixhawk

roslaunch mavros_extras px4flow.launch # Mavlink topics from PX4FLOW
rosbag record -a # Record the topics

rosrun april_tag april_tag # Run the april tag reading and publishing node
rosrun column offb_node # Run the custom offboard control node

T A BB H

Figure 1) Commands to Run OFFBOARD Control Mode

The offb_node is a custom node written so that we can send commands through mavlink to
the Pixhawk flight controller. The code is shown in Figure 2:

#include <ros/ros.h>

#include <geometry_msgs/PoseStamped.h>
#include <geometry_msgs/Pose.h>
#include <mavros_msgs/CommandBool.h>
#include <mavros_msgs/SetMode.h>
#include <mavros_msgs/State.h>

bool flag = false;

mavros_msgs: :PoseStamped current_pose; // Global variable for current position
void position_cb(const gemoetry_msgs::PoseStamped: :ConstPtr& pose){
current_pose = * pose

}

int main(int argc, char **argv){
ros::init(argc, argv, "offb_node");
ros: :NodeHandle nh;
ros::Subscriber local_pos_sub = nh.subscribe<geometry_msgs::PoseStamped>
("mavros/local_position/local"”, 1@, position_cb); // Callback function to get local
pos
ros::Publisher local_pos_pub = nh.advertise<geometry msgs::PoseStamped>
("mavros/setpoint_position/local”, 10);

geometry_msgs: :PoseStamped ref_pose;
while(ros::ok()){
if(!flag){ // Set to current position once
ref_pose = current_pose;
flag = true;
}

local_pos_pub.publish(ref_pose); // Try to maintain original pose

Figure 2) Code to Maintain Pose

The code that we ended up using was different than this, and we changed the code many times
as a group. This was the original code that | wrote to see how well the position control and local

position estimates worked.

Figure 3 shows a plot of the position setpoints and position estimates from the Pixhawk flight

controller.

g /mavros/setpoint_positionflocal__ Plot

POO +:

0.5

0.0
0.5}
-1.0}
—1.5}
—2.0.

B @ v .

pose.position.x
pose.position.y
pose.position.z

20 40

& /mavros/flocal_position/local__Plot

POO + ¢

0.5

0.0

0.5}
—1.0.f
=1.5:}
=2.0t
=25t

60 80 100

8@

pose.position.x
pose.position.y
pose.position.z

|/

20 40

60 80 100

Figure 3) Position Setpoints and Local Position Estimates

The top figure shows the setpoints that we send to the Pixhawk. These plots were a test to
determine if we were sending accurate position setpoints. In this plot, the position setpoints
were given based on the previous position estimates.

Figure 3 shows the Pixhawk can be given local setpoints correctly.

Doing these tests allowed us to figure out how to send setpoint positions to the Pixhawk in the
local frame.

It also gave us an idea on how accurate the Pixhawk’s position estimates were. We found that
even whenever the quadcopter drifted while holding position, the position estimates were
accurate.

| also worked on the website during this PR.

For the website, | put the test plan information in the appropriate section. Figure 4 shows a
screenshot of the page.

Test Plan

W gcheduls
e < iy it Tosh Woapir e
[P
e P N T e pp———
et s e e —
g o L S TR
e e | . . G [pr e ——
praseety ety
ey
tarforany mEro— 1 bt | T iy o e e
Fepry B g meme pa e |
s i A Do e
sy
(e
PREITPI L PR A ——
e Wanen g e st
i) o - i, (i gy . G
rY .
AN S
AMGimace | e one s | P G seacE | e mewcne i svsre—g w
gL P . AL S P, S
a1 =
Loy dpet v g | 8 T e
ey e N]
LT e m
g e, e R T e p——
S g s b e et bk, fed
W 13 [rmg———
B | s | 0 e | e T o, S
=T Semmsmame | Oeeeewmos | s Cras SN W
pety S | s e s
e =N
=

. Backup Iris+ Drone Hardware

ive: The purpe

ase of this test is to demonstrate a second complete, wo ’k'l'lg Iris+ drone with all sensors and hardware niegrated

&
ements: This test will feature the following elements:
1. Hardware 5ubsystem - The complete and working hardware of the Iris+ drone
2, ROS Framework - The high-speed integration of our Linux SBC (ROS) and the flight-control firmware running on the Pixhawk
microcontroller
s Location: MRSD Lab
= Equipment:
1. Iris+ Drone
2. Laptop PC
« Persannel:
1. Erik Sjoberg - Erik will demonstrate the functioning powered-up hardware
s Procedure;
1. Power up drone from battery and demonstrate blinking lights on 58C and PX4 Flow camera
. Connect to drone from PC via Wifi network
. Connect to ROS master running on Iris+ SBC

.
3
4, Display high-rate IMU and height sensor readings fram fris+ on PC

Figure 4) Screenshot of the Test Plan on the Website

Challenges

A major challenge this sprint was understanding the coordinate frames of quadcopter, odometry
frame, and the camera.

Figure 5 shows an image of the different coordinate frames we are considering.

{ Body}
]

{ Ca.mea*‘a.} f

{ Odometry }

Figure 5) Coordinate Frames of the System

Figure 5 shows the coordinate frames that we are considering. A major challenge that we faced
was determining how each of the frames were oriented. The odometry frame is based on where
the quadcopter is at the start of its mission. The frame starts off in the same place as the world
frame. errors in the state estimation are carried out in the odometry frame. This frame will drift.

We were able to generalize some of the coordinate frames through experiment. We are in the
process of carrying out more rigorous tests in order to prove our understanding.

Figure 6 shows the orientations of the odometry and the camera frames.

{ C'amera }
Y
T

Z

e \
{Omometry} ™y
Figure 6) Frame Orientation

Another problem that we had was that it was difficult to figure out how to enable OFFBOARD
mode so that we could send velocity and position setpoints.

We could not find any documentation on the problem, but we eventually found the parameters
that we needed to change. From this, we were able to get the drone into OFFBOARD mode and
we were able to set position and velocity setpoints.

Teamwork

Most of the work that we did this sprint was in a team setting. We broke up into two different
teams, Me and Rohan: Job and Erik. Me and Rohan spent a lot of time focusing on getting
OFFBOARD control to work. We also used pair programming to iterate over the node I initially
wrote shown in Figure 2.

Erik and Job focussed on shifting from local position setpoints to velocity setpoints. These
proved more fruitful as of now.

Once we had worked separately, we got back together in one group to finish the demo that we
showed in Progress Review 9. We again used pair programming to get multiple eyes on the
code.

Working on two separate threads for the same topic was very successful for us. By doing this,
we had some work that was lost, but we increased our chances of finding a successful solution
by a lot. We expect to use this tactic in the next PR.

Future Work

For the next PR we are going to get autonomous docking with our hardware completed. We will
again be working in groups of two on separate threads for the same topic. We are doing this,
because we want to try two different methods. By trying two different methods, we can increase
our chances of finding the right answer within the next two weeks.

Erik and | will be working on getting autonomous position control using local position setpoints.
Job and Rohan will be working on getting autonomous velocity control using velocity setpoints.
The whole team will shift to the solution that works best once one team has completed their

work. This will ensure that we find the right solution as soon as possible. We can then move on
to working on separate tasks.

