Systems Engineering Presentation 2

- 1. Requirements to be verified at the Fall Validation Experiment
- 2. Significant changes to the architectures
- 3. Work Breakdown Structure
- 4. Critical path on your schedule
- 5. Top 3 risks and planned mitigation actions

Requirements to Verify at Fall Validation Experiment

Requirements:

Autonomously Maneuver to Desired Wellhead.

Locate Wellhead

Dock at Wellhead

Requirement 1: Autonomously maneuver to desired wellhead

Position Tracking with AR. Drone2

System must Autonomously maneuver (A) to desired position (B) within +/- 2 ft

Validation: Test - initiate sequence, measure results from point of origin

Requirement 2: Locate Wellhead

Hardware Setup on Iris+ Drone

Physical Integration of sensors and computational components on IRIS drone

Validation: Proper powering and initialization of sensors and onboard processor. Rigidly Mounted component, ready for flight

https://masterthesisiseeyouthere.wordpress. com/

Requirement 3: Dock with Wellhead

Deliverable: Dock prototype

Validation: Drone can be manually docked and rigidly constrained in 5DOF.

Cyber-physical Architecture

Work Breakdown Structure

Demo	No.	Functionality	Status
			Started
			Done
	1.1		Started
Demo Functionality		chunk one	Not S
			Not S
Simple Description			Not S
			Not S
	1.0	Description of functionality	Not S
	1.2	chunk two	Not S

Demo	No.	Functionality	Status
Position tracking: Demonstration of optical odometry accuracy. Manual control of drone.	1.1	Display calculated position estimate against known baseline with Iris+	S D S N N N
	1.2	Aquire sensor information from camera and position sensors	N N
	2.1	Mount sensors and SBC on IRIS	N N N N
Hardware setup on Iris+ Drone: Demonstrate camera feed, data feed, SBC talking to Pixhawk	2.2	Develop electronics for power and interfacing	S S N N
	2.3	Develop communication interface	N N N N N

Demo	No.	Functionality	Status
Prototype of dock:	3.2	Prototype of dock sub-system	N N
Demonstrate one proof of concept, one actual prototype	3. <mark>1</mark>	Manual docking at wellhead (iris+)	N N
	4.1	Display ROS node graph	S
Open-loop ARDrone Control: Demonstrate takeoff, move, land at push of ROS button	4.2	Low-level open-loop control of drone / takeoff via ROS (AR drone)	Done Half Started N N N
Non-Demo Focus Areas:	<mark>5.1</mark>	Low-level open-loop control of Iris+ (ROHAN)	N N N
not be ready for fall demo	5.1	Automated takeoff / land lris+ (ROHAN)	N N

Critical Path on Schedule

Demo	No.	Functionality		Sprint	Status	Est. Work	Remaining	Done	Critica	I Path
			Research exsisting methods of visual odometry and sensor fusion	2	s	4	2	2	7	
			Research + document robot_localization package	1	D	2	0	2		
rosition tracking.	11	Display calculated position	Implement 2d x,y map display in ROS	2	S	4	2	4		
Demonstration of		baseline with Iris+	Test various algorithms on existing datasets	2	N	8	8			
optical odometry			Implement algorithm on PC (for AR.Drone)		N	16	16		7	7
control of drone.			Re-implement algorithms on Iris+ SBC			4	4			7
			Evaluate estimate against global position		N	8	8			7
	10	Aquire sensor information from	Acquire camera feed from AR.Drone		N	2	2		7	
	1.2	camera and position sensors	Acquire camera feed from Pixhawk camera		N	8	8			
		Mount sensors and SBC on IRIS	Decide on sensors and purchase (CAMERA)		N	8	8		1	
			Design mounting hardware		N	4	4			1
	2.1		Modify hardware to fit safely on Iris+ with not jutting edges and loose wires		N	2	2			1
			Fabricate and assemble		N	8	8			1
		Develop electronics for power and interfacing	Evaluate onboard pixhawk power supply	2	S	2	1	1	2	
Hardwara actus on			Evaluate power protection needed	2	S	2	2		2	
Iris+ Drone:	2.2		Design power circuit			4	4		1	2
			Fabricate and assemble power circuit		Ν	2	2			2
Demonstrate camera			Wire up power for SBC / Sensors.		Ν	4	4			2
talking to Pixhawk			Setup serial communication between sensors and processor		N	8	8			1
			Setup communication protocols between pixhawk and SBC		N	8	8		4	
	2.3	interface	Develop ABORT button		N	8	8		1	2
			Develop LAUNCH button		Ν	8	8		4	4
			Setup manual control / auto control switching		N	4	4			
			Publish video feed over network		N	4	4			1

Demo	No.	Functionality		Sprint	Status	Est. Work	Remaining Done	Criti	cal Path
Prototype of dock:			Iterate dock concepts / design		Ν	4	4	3	
Demonstrate one proof	3.2	Prototype of dock sub-system	Design, fabricate, build, develop rough prototype.		N	8	8		3
of concept, one actual	2.1	Manual docking at wellhead	Develop safety protocols		Ν	2	2		
prototype	3.1	(iris+)	Test manual docking		Ν	2	2		З
Open-loop ARDrone Control: Demonstrate takeoff, move, land at push of ROS button	4.1	Display ROS node graph	Setup launch script for nodes and topics	2	S	2	1 1	5	
			Set up ROS framework / GIT repo	1	Done	4	0 3	5	
			Write READER node to acquire AR.Drone data	2	Half	8	1 8		5
	42	Low-level open-loop control of drone / takeoff via ROS (AR	Design and write MOVER node to issue commands	2	Started	8	6 4		5
		drone)	Document and share READER interfaces	2		1	1		5
			Document and share MOVER interfaces	2	N	1	1		5
			Integrate and test control script	2	N	8	8		5
			Add takeoff / land / abort features to MOVER	2	N	4	4		5

The critical path is hardware setup on Iris+ $(2.1 \sim 2.3)$ and dependent tasks below

Non-Demo Focus		Low-level open-loop control of	Write node to acquire Iris data	N	16	16	6		
Areas:	5.1	Iris+ (ROHAN)	Modify MOVER / READER interfaces	N	4	4		6	
Critical work, but may not be ready for fall demo			Write test script to show control	N	8	8			6
	E 4	Automated takeoff / land Iris+ (ROHAN)	Ensure stability	N	32	32		6	
	D. I		Ensure gradual landing	N	16	16			6

On track for completion working at 40hr/week (total)

Date

Three Top Risks

- We cannot get the UAV to dock successfully
- UAV goes wild during the run damaging itself or someone/something else
- Extra payload on UAV throws off dynamics of system

Consequence Likelihood Matrix

Consequence

Risk Mitigation Strategies

Risk ID:	Risk Title:	Risk Owner:	Date Submitted:	Date Updated:			
6 Description:	Cannot get UAV to successfully dock	Job	10/21/2015	10/25/2015			
Dock design and manufacturing does not have the properties needed to successfully dock, or the quadcopters dynamics or structural properties stop the quad from successfully docking.							
Consequenc	es:	Risk Type:		Risk Level:			
The quadcopter will not be able to dock, and a major performance - Technical requirement will not be able to be accomplished - Programmatic							
Risk Reducti	on Plan	Expected Ou	Comments				
 Prototype Focus reso Maintain e 	multiple dock designs early and often ources on precision landing xisting AR.Drone system as fallback	Majority of we spent on dev controls and dock	ork time eloping hardware of				

Risk Mitigation Strategies

Risk ID:	Risk Title:	Risk Owner:	Date Submitted:	Date Updated:			
2	Extra payload on UAV throws off dynamics	Rohan	10/21/2015	10/25/2015			
Description:							
The extra payload on the quadcopter might change the dynamics of the system and will require modification of controller							
Consequence	es:	Risk Type:		Risk Level:			
The UAV will not move in expected way and will not be able to complete its task - Technical							
Risk Reduction	on Plan	Expected Ou	tcome:	Comments			
 Test manu Test integr Use AR.Dr 	al dynamics with weights as soon as possible ated control systems as soon as possible rone as back up	Controls will tweaked sign handle the ex Will cost time	need to be ificantly to ktra payload.				

Risk Mitigation Strategies

Risk ID:	Risk Title:	Risk Owner:	Date Submitted:	Date Updated:
14	UAV runs wild and damages itself or someone/something else	Cole	10/21/2015	10/25/2015
Description:				

Quadcopter has unexpected motion that can be damaging to the quad or others around it

Consequences:	Risk Type:	Risk Level:
Quadcopter could damage itself or other structure and cause significant costs or harm someone physically	- Schedule - Cost	12
Risk Reduction Plan	Expected Outcome:	Comments
 Use a net while testing Buy multiple backup parts Save around \$600 in budget for replacement drone 	Some drone parts will break and need to be replaced. Will lose time and money.	

QUESTIONS

