Sensors and Motors Lab

Individual Lab Report

Erik Sjoberg

Team C — Column Robotics
Rohan Thakker, Job Bedford, Cole Gulino

IRL1

October 16, 2015

Individual Progress
Implemented PID DC motor control (position, velocity) via an IR distance sensor

| implemented the complete chain of functionality which enabled the position and velocity
control of a DC motor via an IR distance sensor. The work consisted of:

1. Hooking up the Solarbotics L298 motor controller circuit
a. Reading datasheets, debugging problems (multiple data sheet versions)
2. Interfacing with quadrature encoder via pin-change interrupts
Calculating a smoothed velocity measurement from encoder values
Writing a simple PID control loop which is (relatively) insensitive to irregular timings
a. Decided against interrupt-based implementation for simplicity’s sake
5. Interfacing with the SHARP 2YOAOQ2 IR sensor to acquire an analog distance measure
6. Smoothing and transforming raw values from the IR sensor
7. Tuning the controller for both speed and velocity control
a. Motor state input from encoder position or calculated velocity
b. Setpoint input from transformed distance measurement from IR sensor
8. Debugging and integrating code with the rest of the project state machine

> oW

After working out the bugs of the system, PID control of the DC motor was quite successful
at smoothly reaching the desired velocity or position. It was a good learning opportunity to
implement the controller myself, as opposed to leveraging the available PID control packages.

3 | | | |
—— White paper (Reflectance ratio : 90 %)

25 f ---9--- Gray paper (reflectance ratio : 18 %) |
E 2 /
o
en
s
215
E /
o
é 1 ~

\L\‘N
0.5 -

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Distance to reflective object L [cm]

Figure 1: Transfer function of SHARP 2YOA02

New Scrum management processes and tools researched, developed, and implemented

As our team’s project manager, I've driven the continued iteration of our management
processes and tools. The initial iteration of our “agile” planning process resulted in a large
backlog of user stories (chunks of functionality) which lacked enough organization to be useful.
This week | developed a new framework which organizes our deliverables (chunks of
functionality) around the specific demos we plan to give in the fall.

A dramatic increase in clarity and utility was achieved by organizing the new
deliverable/task tracking framework around the specific demos we will be performing in
December. Since all table rows now map to individual tasks, progress and remaining work can
be tracked effectively. The increased visibility of a google sheet that all teammates can access
and update (notably absent from MS Project) is another massive advantage of this new
management framework which we will use to organize our releases and sprints going forwards.

'y — M < | sk N vtk o T4 No. | Deme Funetionality | Tasks |owner I~ sprint | status | Est. Work | Remaining]

pe . wor
] 2 User Stary « Epic: Search and Identify 179hrs High
an 21 UserStory “Low-level control of drone / takeoff via ROS (AR~ 32hrs High

drone) 3 Research atemative global reference strategies 4 4
@ 211 Task Write noda to acquire drone data 7hrs 4 Research and choose best localization tag type 2 2
2 212 Task Document and share MOVER / READER intarface: & hrs S Display global position Create mat tle of tags 4 4
213 Task design and write MOVER node to issue command 14 hrs 6 reference Extract pasition of tags from video feed 4 4
214 Task Wirite test script to show control 1hr T Calibrate & verify global position estimate 4 4
215 Task Add takeoff / land / abort features tc MOVER 2 hrs 8 Calculate + publish global position based on tag positions 2 2
22 UserStory +Plan + execute next movement (lawnmower) 10hrs High o Research exsisting methods of visual odometry and sensor fusion 4 4
221 Task Resaarch robot_lacalization package Zhrs 10 Research + document robot_localization package Erik 1 2 2
222 Task Research planning framewaorks (movelet, ompl] 2 hrs ", Display calculated giobal Implement 2d x y map display in ROS. Erik 1 4 4
223 Task Implement planner (commands MOVER) Ghrs 12 position estimale Test various algorithms on existing datasets 8 8
0 23 UserStory - Estimate current position in environment (localize) Ohrs High 13 Implement algorithm on pixhawk or PCISBC 16 |G|
1 231 Task Resaarch robot_lacalization package Qhrs 1 Evaluate estimate against global position 8 8
52 23.2 Task Write state-estimator node Qhrs 15 Figure out how to communicate with AR Drone 2 2
24 UserStory Detect + avoid walls / stationary obstacles 35his Medium 16 g AUIE sensorinformalion Oy e anER nage for AR Drone 4 4

8 8

camera and position sensors.

241 UserStory Detect obstacles 15hrs Medium 17 Write READER node for Iris+
56 242 UserStory Plan path around obstacles 20hrs Medium 18

25 UserStory + Control (maintain) pose automatically (8X) sOhrs High 1 Decide on sensors and purchase 8 8
8 251 UserStory +Track changes in pose 30hes High 21 ";‘ET;"‘ sensorsand SBOON (p 4 mounting hardware P 4
9 2501 User Story Detect distanca from floor 10hrs High 2 Fabricate and assemble 8 8
60 25.1.2 User Story Detect rotation/translation 20hrs High 2 .5 Develop electronics for power Evaluate onboard pixhawk power supply 2 2
&1 252 UserStory Track changes in pose w/ low visibility 0k Low u and interfacing Wire up power for SEC/ Sensors. 4 4
26 UserStory Detect environment features Shrs Medium 2 Setup serial Communication between Sensors and processor 8 8

27 UserStory Display drone heartbeat signal Shis Medium 5 Develop communication Setup communication protocois between pixhawk and SBC 8 8
64 28 User Story Estimate current position w/ low visibility 20hrs Low 26 interface. Setup manual control / auto control switching 4 4
5 29 Usar Story Identify wellhead 22hrs High a Gather video feed 4 4
13 3 User Story « Epic: Autonomously maneuver to pre-dack 32hrs High a

31 UserStory Status update to user for "At Wallhead" Zhs Medium . Manual docking atwellhead Develop safety protocols 2 2

32 UserStory « Avoid contact with wellhead Whrs Medium 0 (inis+) Test manual docking 4 1
76 321 UserStory Detect wellhead structure 0hrs Medium terate dock concepts / design 4]

322 UserStory Plan path around wellhead to find dock 10hrs Low ™ 32 Prototype of dock subsystem D100 Fabricate, build, develop rough prototype 8 8
® 33 UserStory Steadily hold position above dock Shrs Medum 3D print needed parts 4 4
z] 34 User Story Orient appropriately for dacking Shrs Medium : Marolly Febriceie nesded parts 4 4

4 User Story < Epic: Dock at wellhead 141hrs High

a2 User Story Status update to user for "Docking" ahrs Medium i: 1 Display ROS node graph g:‘f ‘:D":';::E::q;:f"dw'“ - o i :

a3 User Story Manual docking st wellhead (prototype) 0hs Medum Wm:mde P A‘R Dmr:‘";m o © . e

44 UserStory Automated docking at wellhead 60hrs High " Lowelevel apen-i0op control o Document and share MOVER { READIER inarfaces s)

441 UserStory Controlled appraach ta dock 30hrs High 4.2 drone | takeoff via ROS (AR

m drcna) Design and write MOVER node to issue commands Job 1 8 8

90 442 UserStory Detect abnormal/failed docking attempt 10hrs Medium) Wit test<crpt 1o show contrl . .
a1 443 UserStory Return to pre-dock position 20hrs Low “ Ak takeott / land | abort fetures o MOVER . .
Z 45 UserStory Detect successful docking Shrs Medium . I ‘ i o
@ 46 UserStory Rigidly lock to dock 0hrs Medium Wrie node 1 acquire i data “‘H
47 UserStory Make electrical connaction with dock 10hrs Low 15 5 Lowlevel opendoopcontolof o inven READER merfaces . 7
g a8 User Story Take image (post-docking) ahrs Low ~ Ins+ Wie test serpt o show control 8 8
96 48 User Story Transmit image of dock 2hrs Low a1 Ensure stabilty ®
a7 H UserStory Epic: Fully integrated system Ohrs High s S Automatedtakeofl fland Inst o radual landing 15-

Figure 2: Scrum management eye-chart: Function-focused (left) vs. Demo-focused (right)

Challenges

Solarbotics PWM pin datasheet version inconsistency

When implementing the PWM control for the DC motor, | experienced issues with PWM
control in one direction. It turns out that there are two versions of the datasheet linked on the
solarbotics homepage, one under “datasheet” and the other under “documentation”. Both of
these are the same document, where the “datasheet” document is the 2008 revision:
https://solarbotics.com/download.php?file=43 and the “documentation” is the 2010 revision:
https://solarbotics.com/download.php?file=40.

It turns out | had implemented the circuit using the incorrect version of the datasheet
(PWM on the ENABLE pin is the correct approach for the hardware | was given). Unfortunately,
the circuit still worked to some extent, even with the wrong logic table but showed a very
jittery behavior under reverse PWM control. To avoid this type of issue in the future | intend to
confirm the waveforms for each input/output on my circuits behave as expected before moving
to the next steps.

Enable L1 L2 Result ENABLE L1 L2 Result
L L L OFF L L L OFF
L L H OFF L L H OFF
L H L OFF L H L OFF
L H H OFF L H H OFF
H L L BRAKE H L L BRAKE
H L H FORWARD H L H FORWARD
H H L BACKWARD H H L BACKWARD
H H H BRAKE H H H BERAKE
H L L BRAKE PWM L L PULSE-BRK
H PWM H FWD-SPD PWM L H FWD-SPD
H PWM L BCK-SPD PWM H L BCK-SPD
H H H BRAKE PWM H H PULSE-BRK

Figure 3: Solarbotics L298 Logic Table 2010 revision (left) vs 2008 revision (right)

Teamwork
The team has been working well together, and | could not ask for better teammates.

e Cole: Quite busy with Machine Learning class, but participating well and motivated.

e Job: Not a fan of meetings, but pulls his weight when working on systems.

e Rohan: Has a tendency to return re-evaluate decisions after they’ve been made, but this
has worked to the team’s benefit more often than not. Incredibly capable and a
definitely the most experienced roboticist on our team.

https://solarbotics.com/download.php?file=43
https://solarbotics.com/download.php?file=40

We have up until this point been suffering from a lack of organization around
deliverables and due dates for course assignments due in large part to the lack of a consistent
tracking / assighnment method for tasks which is accessible to all team members. | believe that
the latest iteration of our management framework (discussed above) will remedy this lack of
organization.

Plans for Upcoming Work
For the coming week, | plan to do the following:

e Research and document tools in the robot_localization package
e Implement a 2d x,y map in ROS to display estimated position
e Continue refining WBS and management tool usage patterns

Appendix A: DC Motor Control Code
#include <pins_arduino.h>

// Define pin numbers
#define dcMotorEnablePin 6
#tdefine dcMotorPinA 11
#define dcMotorPinB 8
#tdefine encoderPinA 4
#define encoderPinB 5
#define opticalPin Al

// Variables

volatile int state;

long debounceDelay;

long opticalSensorVoltage;

long opticalSensorVoltageSmooth;
int dcMotorAngle;

//DC encoder

volatile int encoderPos = 0;
int lastEncoderPinA = LOW;
int lastEncoderPinB = LOW;
int lastEncoderPos = 0;

double lastSpeedTime = 0;

int epA = LOW;

int epB = LOW;

double dcSpeedMeasured; //Degrees per second
double dcSpeedSmoothed;

double dcTargetSpeed; //Degrees per second

//PID: Reference http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-
introduction/

//Define Variables we'll be connecting to

/*working variables*/

unsigned long lastTime;

double Input, Output, Setpoint;

double errSum, lastErr;

double kp, ki, kd;

double avgSpeed = 0;

double avgOutput = 0;

// pins_arduino Reference http://playground.arduino.cc/Main/PinChangelnterrupt
void pciSetup(byte pin){
*digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
}

ISR (PCINT2_vect){ // handle pin change interrupt for DO to D7 here
epA = digitalRead(encoderPinA);
if (epA !=lastEncoderPinA) //Only trigger if pin A has changed = 360 counts per revolution
{
if (epA == digitalRead(encoderPinB)) {
encoderPos++; //360 counts per revcolution clockwise
}else {
encoderPos--;
}
lastEncoderPinA = epA;
}
}

void setup(){
digitalWrite(dcMotorEnablePin, HIGH);

//DC motor control
pinMode(encoderPinA, INPUT);
pinMode(encoderPinB, INPUT);

digitalWrite(dcMotorPinA, LOW);
digitalWrite(dcMotorPinB, LOW);
pciSetup(encoderPinA);

//PID

Input, Output, Setpoint = 0;
lastTime = 0;

SetTunings(2, 0, 0);

opticalSensorVoltage = 0;
Serial.begin(9600);
Serial.setTimeout(5);

}
void loop(){

switch(state){ // Potentiometer servo control
case 1: { // DC Motor Velocity Control
// Sensing range ~ 50 (far) to 550 (close)
opticalSensorVoltage = measureOpticalSensorVoltage();
if(opticalSensorVoltage > 50){
dcTargetSpeed = 2 * (300 - opticalSensorVoltage);
dcSpeedMeasured = measureDCSpeed();
dcDirect = (dcSpeedMeasured < 0)? 0: 1;
//Update PID values
Input = dcSpeedMeasured;
Setpoint = dcTargetSpeed,;
Compute(); //Modifies Output variable
moveDCMotor();
}
else{
digitalWrite(dcMotorPinA, LOW);
digitalWrite(dcMotorPinB, LOW);
lastTime = millis();
}
break;
}
case 2: { // DC Motor Position Control
// Read sensor voltage
opticalSensorVoltage = measureOpticalSensorVoltage(); // int(50-550)
// Set PID input and setpoint
// Setpoint is the desired state
Setpoint = (guiCntrl) ? dcMotorAngle : opticalSensorVoltage; // Target state in degrees
Input = encoderPos; // Actual encoder degree value
// Compute direction we need to go

Compute(); // Modifies Output Global variable
moveDCMotor(); // Run DC motor control
break;

}

if (state I=1 && state != 2){
lastTime = millis(); //Prevent PID windup
digitalWrite(dcMotorPinA, LOW); // Switch off the DC Motor
digitalWrite(dcMotorPinB, LOW);
}
}
delay(15);
}

void Compute(){
/*How long since we last calculated*/
unsigned long now = millis();
double timeChange = (double)(now - lastTime);

/*Compute all the working error variables*/
double error = Setpoint - Input;

errSum += (error * timeChange / 1000);
double dErr = (error - lastErr) / timeChange;
/*Compute PID Output*/

Output = kp * error + ki * errSum + kd * dErr;

/*Remember some variables for next time*/
lastErr = error;
lastTime = now;

}

void SetTunings(double Kp, double Ki, double Kd){
kp = Kp;
ki = Ki;
kd = Kd;

}

double measureDCSpeed(){
double speedNow;
double speedNowSmooth;
long now = millis();
if(now - lastSpeedTime > 0){
speedNow = 1000 * //Units in seconds
(encoderPos - lastEncoderPos) / // 360 encoders per rev

(now - lastSpeedTime);
lastEncoderPos = encoderPos;
lastSpeedTime = now;

dcSpeedSmoothed = (2 * dcSpeedSmoothed + speedNow) / 3;
}

return dcSpeedSmoothed;

}

long measureOpticalSensorVoltage(){
long osv;
osv = analogRead(opticalPin);
//Smoothing
opticalSensorVoltageSmooth = (3 * opticalSensorVoltageSmooth + osv) / 4;

return opticalSensorVoltageSmooth;

}

void moveDCMotor(){ //Limit output

if (Output > 255){
Output = 255;

}

if (Output < -255){
Output =-255;

}

if (Output >= 0){ //counter clockwise
digitalWrite(dcMotorPinB, HIGH);
//analogWrite(dcMotorPinA, Output);
digitalWrite(dcMotorPinA, LOW);
analogWrite(dcMotorEnablePin, Output);

}

else{ //clockwise
double reverse = -Output;
//Serial.print("\t rev: ");Serial.printIn(reverse);
digitalWrite(dcMotorPinB, LOW);
digitalWrite(dcMotorPinA, HIGH);
analogWrite(dcMotorEnablePin, reverse);

}
}

