

Sensors and Motors Lab
Individual Lab Report

Erik Sjoberg

Team C – Column Robotics
Rohan Thakker, Job Bedford, Cole Gulino

IRL 1

October 16, 2015

Individual Progress
Implemented PID DC motor control (position, velocity) via an IR distance sensor

I implemented the complete chain of functionality which enabled the position and velocity

control of a DC motor via an IR distance sensor. The work consisted of:

1. Hooking up the Solarbotics L298 motor controller circuit

a. Reading datasheets, debugging problems (multiple data sheet versions)

2. Interfacing with quadrature encoder via pin-change interrupts

3. Calculating a smoothed velocity measurement from encoder values

4. Writing a simple PID control loop which is (relatively) insensitive to irregular timings

a. Decided against interrupt-based implementation for simplicity’s sake

5. Interfacing with the SHARP 2Y0A02 IR sensor to acquire an analog distance measure

6. Smoothing and transforming raw values from the IR sensor

7. Tuning the controller for both speed and velocity control

a. Motor state input from encoder position or calculated velocity

b. Setpoint input from transformed distance measurement from IR sensor

8. Debugging and integrating code with the rest of the project state machine

After working out the bugs of the system, PID control of the DC motor was quite successful

at smoothly reaching the desired velocity or position. It was a good learning opportunity to

implement the controller myself, as opposed to leveraging the available PID control packages.

Figure 1: Transfer function of SHARP 2Y0A02

New Scrum management processes and tools researched, developed, and implemented

As our team’s project manager, I’ve driven the continued iteration of our management

processes and tools. The initial iteration of our “agile” planning process resulted in a large

backlog of user stories (chunks of functionality) which lacked enough organization to be useful.

This week I developed a new framework which organizes our deliverables (chunks of

functionality) around the specific demos we plan to give in the fall.

A dramatic increase in clarity and utility was achieved by organizing the new

deliverable/task tracking framework around the specific demos we will be performing in

December. Since all table rows now map to individual tasks, progress and remaining work can

be tracked effectively. The increased visibility of a google sheet that all teammates can access

and update (notably absent from MS Project) is another massive advantage of this new

management framework which we will use to organize our releases and sprints going forwards.

Figure 2: Scrum management eye-chart: Function-focused (left) vs. Demo-focused (right)

Challenges

Solarbotics PWM pin datasheet version inconsistency

When implementing the PWM control for the DC motor, I experienced issues with PWM

control in one direction. It turns out that there are two versions of the datasheet linked on the

solarbotics homepage, one under “datasheet” and the other under “documentation”. Both of

these are the same document, where the “datasheet” document is the 2008 revision:

https://solarbotics.com/download.php?file=43 and the “documentation” is the 2010 revision:

https://solarbotics.com/download.php?file=40.

It turns out I had implemented the circuit using the incorrect version of the datasheet

(PWM on the ENABLE pin is the correct approach for the hardware I was given). Unfortunately,

the circuit still worked to some extent, even with the wrong logic table but showed a very

jittery behavior under reverse PWM control. To avoid this type of issue in the future I intend to

confirm the waveforms for each input/output on my circuits behave as expected before moving

to the next steps.

Figure 3: Solarbotics L298 Logic Table 2010 revision (left) vs 2008 revision (right)

Teamwork
The team has been working well together, and I could not ask for better teammates.

 Cole: Quite busy with Machine Learning class, but participating well and motivated.

 Job: Not a fan of meetings, but pulls his weight when working on systems.

 Rohan: Has a tendency to return re-evaluate decisions after they’ve been made, but this

has worked to the team’s benefit more often than not. Incredibly capable and a

definitely the most experienced roboticist on our team.

https://solarbotics.com/download.php?file=43
https://solarbotics.com/download.php?file=40

We have up until this point been suffering from a lack of organization around

deliverables and due dates for course assignments due in large part to the lack of a consistent

tracking / assignment method for tasks which is accessible to all team members. I believe that

the latest iteration of our management framework (discussed above) will remedy this lack of

organization.

Plans for Upcoming Work
For the coming week, I plan to do the following:

 Research and document tools in the robot_localization package

 Implement a 2d x,y map in ROS to display estimated position

 Continue refining WBS and management tool usage patterns

Appendix A: DC Motor Control Code
#include <pins_arduino.h>

// Define pin numbers
#define dcMotorEnablePin 6
#define dcMotorPinA 11
#define dcMotorPinB 8
#define encoderPinA 4
#define encoderPinB 5
#define opticalPin A1

// Variables
volatile int state;
long debounceDelay;
long opticalSensorVoltage;
long opticalSensorVoltageSmooth;
int dcMotorAngle;

//DC encoder
volatile int encoderPos = 0;
int lastEncoderPinA = LOW;
int lastEncoderPinB = LOW;
int lastEncoderPos = 0;

double lastSpeedTime = 0;
int epA = LOW;
int epB = LOW;
double dcSpeedMeasured; //Degrees per second
double dcSpeedSmoothed;
double dcTargetSpeed; //Degrees per second

//PID: Reference http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-
introduction/
//Define Variables we'll be connecting to
/*working variables*/
unsigned long lastTime;
double Input, Output, Setpoint;
double errSum, lastErr;
double kp, ki, kd;
double avgSpeed = 0;
double avgOutput = 0;

// pins_arduino Reference http://playground.arduino.cc/Main/PinChangeInterrupt
void pciSetup(byte pin){
 *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
 PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
 PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
}

ISR (PCINT2_vect){ // handle pin change interrupt for D0 to D7 here
 epA = digitalRead(encoderPinA);
 if (epA != lastEncoderPinA) //Only trigger if pin A has changed = 360 counts per revolution
 {
 if (epA == digitalRead(encoderPinB)) {
 encoderPos++; //360 counts per revcolution clockwise
 } else {
 encoderPos--;
 }
 lastEncoderPinA = epA;
 }
}

void setup(){
 digitalWrite(dcMotorEnablePin, HIGH);

 //DC motor control
 pinMode(encoderPinA, INPUT);
 pinMode(encoderPinB, INPUT);

 digitalWrite(dcMotorPinA, LOW);
 digitalWrite(dcMotorPinB, LOW);
 pciSetup(encoderPinA);
 //PID
 Input, Output, Setpoint = 0;
 lastTime = 0;
 SetTunings(2, 0, 0);

 opticalSensorVoltage = 0;
 Serial.begin(9600);
 Serial.setTimeout(5);
}

void loop(){

 switch(state){ // Potentiometer servo control
 case 1: { // DC Motor Velocity Control
 // Sensing range ~ 50 (far) to 550 (close)
 opticalSensorVoltage = measureOpticalSensorVoltage();
 if(opticalSensorVoltage > 50){
 dcTargetSpeed = 2 * (300 - opticalSensorVoltage);
 dcSpeedMeasured = measureDCSpeed();
 dcDirect = (dcSpeedMeasured < 0)? 0 : 1;
 //Update PID values
 Input = dcSpeedMeasured;
 Setpoint = dcTargetSpeed;
 Compute(); //Modifies Output variable
 moveDCMotor();
 }
 else{
 digitalWrite(dcMotorPinA, LOW);
 digitalWrite(dcMotorPinB, LOW);
 lastTime = millis();
 }
 break;
 }
 case 2: { // DC Motor Position Control
 // Read sensor voltage
 opticalSensorVoltage = measureOpticalSensorVoltage(); // int(50-550)
 // Set PID input and setpoint
 // Setpoint is the desired state
 Setpoint = (guiCntrl) ? dcMotorAngle : opticalSensorVoltage; // Target state in degrees
 Input = encoderPos; // Actual encoder degree value
 // Compute direction we need to go

 Compute(); // Modifies Output Global variable
 moveDCMotor(); // Run DC motor control
 break;
 }

 if (state != 1 && state != 2){
 lastTime = millis(); //Prevent PID windup
 digitalWrite(dcMotorPinA, LOW); // Switch off the DC Motor
 digitalWrite(dcMotorPinB, LOW);
 }
 }
 delay(15);
}

void Compute(){
 /*How long since we last calculated*/
 unsigned long now = millis();
 double timeChange = (double)(now - lastTime);

 /*Compute all the working error variables*/
 double error = Setpoint - Input;
 errSum += (error * timeChange / 1000);
 double dErr = (error - lastErr) / timeChange;
 /*Compute PID Output*/
 Output = kp * error + ki * errSum + kd * dErr;

 /*Remember some variables for next time*/
 lastErr = error;
 lastTime = now;
}

void SetTunings(double Kp, double Ki, double Kd){
 kp = Kp;
 ki = Ki;
 kd = Kd;
}

double measureDCSpeed(){
 double speedNow;
 double speedNowSmooth;
 long now = millis();
 if(now - lastSpeedTime > 0){
 speedNow = 1000 * //Units in seconds
 (encoderPos - lastEncoderPos) / // 360 encoders per rev

 (now - lastSpeedTime);
 lastEncoderPos = encoderPos;
 lastSpeedTime = now;

 dcSpeedSmoothed = (2 * dcSpeedSmoothed + speedNow) / 3;
 }
 return dcSpeedSmoothed;
}

long measureOpticalSensorVoltage(){
 long osv;
 osv = analogRead(opticalPin);
 //Smoothing
 opticalSensorVoltageSmooth = (3 * opticalSensorVoltageSmooth + osv) / 4;

 return opticalSensorVoltageSmooth;
}

void moveDCMotor(){ //Limit output
 if (Output > 255){
 Output = 255;
 }
 if (Output < -255){
 Output = -255;
 }
 if (Output >= 0){ //counter clockwise
 digitalWrite(dcMotorPinB, HIGH);
 //analogWrite(dcMotorPinA, Output);
 digitalWrite(dcMotorPinA, LOW);
 analogWrite(dcMotorEnablePin, Output);
 }
 else{ //clockwise
 double reverse = -Output;
 //Serial.print("\t rev: ");Serial.println(reverse);
 digitalWrite(dcMotorPinB, LOW);
 digitalWrite(dcMotorPinA, HIGH);
 analogWrite(dcMotorEnablePin, reverse);
 }
}

