
Individual Lab Report 
 

 

 

 

 

 

 

Erik Sjoberg 

 

Team C – Column Robotics 
Rohan Thakker, Job Bedford, Cole Gulino 

 

IRL 7 

 

February 10, 2016 

 

 

 

 

 

 

 

 

 

 



Individual Progress 
Configured RGBD-based SLAM system on Iris+ SBC 

This week, the majority of my work consisted of configuring our onboard computer and sensor 

to perform real-time SLAM for global position estimation and obstacle detection.  The purpose 

of this task is to enable the more advanced “stretch” goals of our project, namely obstacle 

avoidance and unstructured search.  

Because our single-board computer uses an Arm processor (se Figure 1) instead of an Intel or 

AMD x86 processor, installing programs can be significantly more difficult than a single ‘apt-get 

install’. As expected, the RTAB-Map SLAM system did not function properly when installed 

following the usual instructions. It appears that the creator of the system has not yet attempted 

to install it on Arm, and as a result documented installation instructions were not available.  

 

Figure 1: Odroid XU4 SBC mounted on the Iris+ 

Following advice of a user online, I attempted to install the package and several of its 

dependencies from source, including the Boost libraries and Point Cloud Library (PCL), including 

several modifications which would supposedly improve performance. Unfortunately, after all 

this work with manual dependency installation, RTAB-Map was still unable to run.  

I eventually had success after using apt-get to install standard dependencies, then building 

RTAB-Map from source on the SBC. Apparently, the advice regarding required changes to the 

PCL source code was inaccurate for my system. Figure 2 below shows the working SLAM system 

mounted and running completely on our Iris+ quadcopter.  



 

Figure 2: Iris+ Quadcopter and RGBD sensor with onboard SLAM system running 

The map in the background of the quadcopter in Figure 2 exceeds the field of view of the 

sensor, and consists from several stitched sections of depth and color data.  With default 

settings the RTAB-Map system is able to perform 6-DOF odometry as well as loop closure at a 

rate of approximately 1-3 HZ. Further tuning (including shifting from VGA to QVGA and reducing 

the rate of loop-closure detection) should enable odometry at 2-4 times this speed, meeting 

our requirements for mapping during conservative flight of the quadcopter.  

 

Challenges 
Slow build times on the Odroid XU4 

Our Odroid XU4 SBC only contains an SD card as a filesystem, and as a result reading and 

writing many small files takes a very long time. The limited filesystem combined with the 

weaker processor meant that building PCL alone took several hours for each attempt. One 

takeaway is that having a fast filesystem, in addition to the processor, is critical of you intend to 

build large software dependency chains.  

 



Incorrect and missing documentation 

When building software products on Arm processors, it is often necessary to debug compiler 

problems yourself. This was definitely the case for getting RTAB-Map working on the Odroid, 

and troubleshooting incompatibilities took up the majority of my time during this week. 

Although I was able to find tips and advice online, in the end this advice ended up causing more 

work and taking more time than would have been required if I had debugged the system myself 

without attempting to save time by following their recommendations.   

Teamwork 
Once again splitting up the work into three teams was successful. Job was able to continue to 

reduce our programmatic risk by integrating the capabilities of our AR.Drone backup platform, 

while Cole and Rohan continued their work on the critical flight integration. Meanwhile I was 

able to set up the capabilities which will enable obstacle avoidance and more advanced search. 

The focus on delivering demos after each two-week sprints has continued to be successful. 

Plans for Upcoming Work 
Validating Autonomous Landing 

The next chunk of work I will be tackling is the most critical piece – getting the autonomous 

landing working within the requirements of our dock.  We will be testing the built-in capabilities 

of the drone platform to land under its current position, as well as integrating the tag-based 

localization in order to achieve precision landings.  

 


