
10/16/2015

Sensor and
Motor Control
Lab
Individual Lab Report #1

Abhishek Bhatia

Team D: Team HARP (Human
Assistive Robotic Picker)
Teammates: Alex Brinkman, Feroze
Naina, Lekha Mohan, Rick Shanor

1 | P a g e

I. Individual Progress

 For the Sensors and Motor Control Lab, I was responsible for controlling the stepper

motor using the ultra-sonic range finder sensor. I used a MERCURY SM-42BYG011-25 bipolar

stepper motor and a Pololu A4998 motor driver. Bipolar stepper motors have a single

winding per phase. The current in the winding needs to be reversed in order to reverse a

magnetic pole, hence an off-the-shelf motor driver is required. The stepper motor I received

already had the wires soldered on the pins. I used wires and connectors to complete the

circuit shown below.

Figure 1: Pololu A 4988 Stepper Motor driver (left) and MERCURY SM-42BYG011-25

Stepper Motor (right)

(Image Courtesy: Erin Hicks, ILR#1 (MRSD Team A, 2014) and Sparkfun.com)

Figure 2: Circuit Diagram connecting Stepper motor and motor driver to Arduino Uno

(Image Courtesy: Erin Hicks, ILR#1 (MRSD Team A, 2014) and Sparkfun.com)

2 | P a g e

 After setting up the circuit, I wrote the code to control the stepper output, number

of steps and direction by setting the appropriate output at the step and direction pin. High

output at the direction pin meant clockwise rotation of the stepper motor and low output

meant anti-clockwise. Similarly, a toggle from high to low output at the step pin indicated

stepper motor to rotate by 1 step in the direction indicated. 1 stepper motor step is

equivalent to 1.8 degrees (datasheet). So a rotation of 360 degrees required 200 steps in the

specified direction.

 After testing stepper operation for various configurations. I set up the ultra-sonic

range finder sensor circuit on the breadboard and then proceeded to write the code to

acquire data from the sensor. The sensor works by sending out a burst of ultrasound and

listening for the echo when it bounces off of an object. I used the trig pin to send out the

pulse and echo pin to detect the same reflected pulse. I used the pulsein() arduino function

to calculate the duration for ultrasound to travel back to the sensor. I used the simple

calculation (Equation 1) mentioned below to convert the duration to distance in

centimetres. The speed of sound is 29 microseconds per centimetre.

Equation 1:

The pseudo code for both the stepper motor and sensor can be seen in Appendix A and B,

respectively.

Figure 3: HC-SR04 Ultrasonic Range Finder Sensor

(Image Courtesy: Sparkfun.com)

 Besides working on the stepper and ultrasonic range finder sensor, I worked on

integrating the complete Arduino code for different motor-sensor combinations. Rick and

Alex helped me set up the complete circuit including 3 motors and 4 sensors. I used a push

button to switch states between different sensor/motor configurations. I designed the state

machine such that in the initial configuration, state 0 controlled position of a DC motor

3 | P a g e

using IR range finder sensor, state 1 controlled speed of DC motor using pressure sensor,

state 2 controlled RC servo motor using potentiometer and finally state 3 controlled stepper

using ultrasonic range finder. This was the initial configuration of sensor and motors.

 Finally I worked with Alex and Rick to verify and fine-tune the complete operation.

We ended up changing the sensor motor combinations as to design the best possible stable

system. In our final setup, we controlled position of a DC motor using an IR range finder

sensor, speed of DC motor using pressure sensor, RC servo motor using potentiometer and

finally stepper using ultrasonic range finder. We mapped the sensor outputs to appropriate

values in centimetres (IR and ultrasonic range finder) and percentage (potentiometer and

pressure sensor), similarly motor outputs to appropriate speed (DC speed) and

degree/direction (DC position, servo and stepper).

Figure 4: Final Circuit Diagram of the complete system

(Image Courtesy: Lekha Mohan)

II. Challenges

 The first challenge I faced was with the Pololu A4998 stepper motor driver. The first

two motor drivers I used were not working. I spent couple of hours trying to understand

why the first driver was not working, debugging the circuit, ensuring all connections were

proper. Finally, when I was confident that the circuit was correct, I tried two more drivers

and the stepper operation worked with the third driver on the same circuit. This also made

sure that the 2 drivers were in fact faulty.

4 | P a g e

 Other minor challenge I faced was during integrating the complete code. Since we all

did not follow structured coding standards, the complete code, once in place was messy and

hard to understand. I was getting an error because one of my variable was getting over-

written. The same global variable was being used at 2 different places in the integrated

code. Once I got the whole operation to work, I refined the code by adding comments and

removing anything unused code.

III. Teamwork

 As a team we followed a very structured approach to divide the task within

ourselves. We created a github repository to keep the code organized and decided the pin

layout for Arduino with respect to each sensor and motor before starting with individual

tasks. This really helped me integrate the complete code without any major issues. We then

worked on our individual tasks:

Alex: Started with DC motor speed control using pressure sensor. Later took over the GUI

development from Feroze and Lekha. Finally demonstrated the working of the system as a

whole.

Feroze: Started with RC servo control using a potentiometer and later took care of the initial

QT GUI development.

Lekha: Worked completely on GUI development, initially with Feroze and finally with Alex.

Rick: Started with DC motor position control using IR range finder sensor. Later worked with

me and Alex to set up the complete circuit and helped me integrate the complete Arduino

code.

Abhishek: I initially started with stepper motor control Ultrasonic range finder sensor. Later

I worked to integrate the complete code and finally worked with Alex to test the system as a

whole.

Although we had designated individual tasks to everybody, but we always worked as

a team and helped each other. This way, we were able to accomplish the complete task

successfully.

IV. Future Plans

 For the Progress Review 1, my target areas are to work with Alex and Feroze to

finalize the ROS skeleton code (base code) for our project. Besides, I will be working on

doing extensive research on previous years Amazon Picking Challenge teams, understanding

their game strategy, and pros and cons of their approach. This will help us in developing the

best system for the required approach. On a whole, for the remaining part of this semester I

will be targeting on two major things:

5 | P a g e

1. Electronic Design of the gripper sus-system.

2. Navigation Control of our system.

 I will break down these tasks into smaller weekly goals and try to successfully

accomplish these.

6 | P a g e

Appendix A

Pseudo code for stepper operation:

//Stepper Operation

// scale to use it with the stepper (value between 0 and 200,

stepper rotates by 1.8 degree per step)

val = map(motor_control_value, -100, 100, 0, 200);

stepper_val = val;

if (val>val_old) {

 digitalWrite(4,HIGH); // Set Dir high

}

else {

 digitalWrite(4,LOW); // Set Dir low

}

// Number of steps to rotate is based on the change in the pot

value

int steps;

if (val > val_old)

 steps = val-val_old;

else

 steps = val_old-val;

for(int x = 0; x < steps; x++) // Loop step times

{

 digitalWrite(5,HIGH); // Output high

 delayMicroseconds(1000); // Wait

 digitalWrite(5,LOW); // Output low

 delayMicroseconds(1000); // Wait

}

7 | P a g e

Appendix B

Pseudo code to read Ultrasonic range finder sensor value:

digitalWrite(trigPin, LOW);

delayMicroseconds(2);

digitalWrite(trigPin, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin, LOW);

duration = pulseIn(echoPin, HIGH);

//Calculate the distance (in cm) based on the speed of sound.

distance = (duration/29.1)/2;

