Alex Brinkman

Team D: Project HARP (Human Assistive Robotic Picker)

Teammates: Abhishek Bhatia, Lekha Mohan, Feroze Naina, Abhishek Bhatia

ILR #1: Sensors and Motor Control Lab

Submitted 10/16/2015



1.

Individual progress

My individual contribution to the sensors and motor control lab was in creating
the DC motor speed controller, helping with GUI development, and establishing the
serial data communication. | have implemented PID controllers for other projects
and knew | could leverage that experience for this project. We decided to use the
Encoder Arduino library to interface with the integrated encoder on the DC motor to
enable closed-loop feedback on both the speed and position controllers. | set a
configurable speed controller task rate to ensure enough time passed to get a
smooth speed reading from the encoder counts. Next, | implemented a configurable
gain PI controller with integral burn-off and chose to omit the derivative term since it
is most sensitive to sensor noise. The controller gains were tuned and evaluated
using a potentiometer sensor as desired speed where the sampled potentiometer
voltage was mapped to motor speed in rpm. The potentiometer signal showed low
noise and provided an easy way to modify the controller speed set point, which
allowed for rapid controller evaluation and modifications. To ease integration, the
controller setpoint was implemented so we could direct signals from the GUI controls
or any other sensors by changing only one line of code.

Next, | began work on the QT GUI for the project. Feroze and Lekha set up a
working outline for the GUI using QT Developer, PyQt, and Pyserial. Using QT
Developer, | was able to create a user interface and define the graphical control
objects that would display data from the Arduino and send commands from the GUI.
Once these features were defined, | assigned callback functions to execute once the
user interacted with the control elements or when serial data periodically arrived
from the Arduino. In order to test the GUI elements were working correctly, | had to
connect to the Arduino and stream test data. This forced me to define a method for
passing data to and from the Arduino to continue the GUI design. Once | was able
to show the GUI could accept data from the Arduino, | had to send data over the
serial bus to control the Arduino from the GUI control elements. Figure X depicts the
final version of the GUIL.



- =
{7 MainWindow - state_control_gui_form.ui* =[5
Type Here

Motor Select
Conktrol Mode Sensors -

Control Value (%) o 0

Current Values

Motor

sensor

Figure 1: Motor Lab GUI

The control elements consist of a drop-down menu that is used to switch
between sensor control and GUI control modes, a slider that updates the motor
control signal when configured for GUI control, and a integer text box that
numerically defines the motor control signal when configured for GUI control. The
fields shown as ‘Motor’ and ‘sensor’ in Figure 1 changed depending on the motor
select state and control mode to reflect the correct units and appropriate readings.
After these elements were debugged and shown to work, | attempted to use a Qwt
plot to show a live data stream, but this task proved to be out of my abilities.

After Abhishek integrated the Arduino code for each individual sensor, | worked
with Abhishek and Rick to further debug the serial interface between the Arduino
and GUI to improve packet loss and erratic signal passing.

. Challenges

When developing the DC motor speed controller, | quickly found the motor to
exhibit poor controllability at low speeds due to the ratio of the static and dynamic
coefficients of friction and tried to tune the controller to account for this. | eventually
had to saturate the desired speed signal to zero for low desired speeds to avoid
erratic stick-slip behavior. The final implementation saturated desired speeds lower
than a magnitude of 18 rpm to zero.

| had experienced several problems when setting up Qt and PyQt. | have
developed GUIs in MATLAB’s GUIDE, so | was comfortable with design of the
callbacks program flow. It turned out PyQt did not run on my laptop for still unknown
reasons. | was, however, able to get everything working on my home desktop and



learn Qt, so | developed as much as | could there and then worked in the lab with
the team to finalize the GUI.

Serial data passing required significant debugging on both the GUI client side
and the Arduino when reading from the serial data buffer. The Qt GUI would
sometimes stream the data flawlessly and other times stop displaying the data
stream. We ensured we could both simultaneously read and write to the serial port
was supported in PySerial so that was not the issue. Next, we thought the problem
could be the serial port was not held open long enough before reading the buffer, so
we changed the code accordingly and performance improved significantly. On the
Arduino serial receiving logic, we noticed after integrating the code the Arduino
would show intermittent or delayed response to GUI motor commands. We first
increased the baud rate from 9600 to 115200 bps to no effect. We then tried to add
a delay after sensing the serial buffer contained new data. This allowed the buffer to
fill with data from the GUI before reading the buffer and the Arduino response
improved drastically.

. Teamwork

To begin, we decided to delegate tasks individually and then come together once
our individual components were completed to integrate the system. We created a
Github repo to both organize the code and familiarize our team with the Github
workflow in preparation for the software development needed for our project. We
also agreed to an Arduino pin out map to help integration down the line. Feroze and
Lekha started the GUI development, Abhishek tackled the stepper motor, Rick
created the DC position speed controller and again, | made the DC speed controller.
Once these individual tasks were completed, Abhishek integrated the Arduino code
segments and | worked on finalizing the GUI and serial communication. Finally, we
all worked over the next few days to improve the serial communication, controller
performance. Some of these tasks proved easier than others, but | was impressed
with the team’s willingness to always be willing to meet and work together to meet
our goal.



4. Figures
The motor control hardware and electronics can be seen in Figure 2.

e

Ultra Sonic Range
Finder &

Figure 2: Motor Board

The IR sensor Transfer function was taken from the manufacturers data sheet and
adapted to use with the Arduino ADC, seen in Figure 3.

IR Sensor Transfer Function

90
¢
&
70 x
.
60 :
— L]
5 )
= 50 ’
g * ® IR 5ensor Transfer Function
= i
g4 .
a W Power (IR Sensor Transfer
30 L] Function)
"o
20 . y= 15327125
... R*=0.9974
.
10 e .
0

0 100 200 300 400 500 600 700

Arduino ADC value [0,1023]
Figure 3: IR Sensor Transfer Function



5. Plans

For the next design review, | will be working on establishing the Git repo and
creating a formal Software specification for our ROS software. In two weeks, Feroze
and | plan to demo a working software system that runs a state controller that will
control the robot during autonomous operation and show a PR2 moving in Rviz. Finally,
| will update our work breakdown structure and schedule to reflect changes made from
our latest meeting with Prof. Maxim.

6. Code

#include <Encoder.h>
#include <Servo.h>

Encoder myEnc (2, 3);
Servo myservo; // create servo object to control a servo

/* PIN DEFINITIONS */
//Digital

const int pin DC mod = 10;
const int pin DC H1 = 11;
const int pin DC H2 = 6;
const int stepper dir = 4;
const int stepper step = 5;
const int echoPin = 7;
const int trigPin = 8;
const int button pin = 12;
const int servo pin = 9;

//Analog
const int potpin = A4;
const int IR pin AS;

void setup() {

Serial.begin(115200);
pinMode (5, 0UTPUT); // Step
pinMode (4,0UTPUT); // Dir
pinMode (trigPin, OUTPUT) ;
pinMode (echoPin, INPUT) ;
pinMode (button pin, INPUT);
myservo.attach (servo pin);

}

/* GLOBAL VARIABLES */
int val = 0;
unsigned int integerValue = 0;



char incomingByte;

int control value pct = 0;

int control mode = 0;

int motor control value = 0;

int servo val = 0;

int stepper val = 0;

int dc_pos val = 0;

int dc_speed val = 0;

int button value old = 0;

int sensor value;

int control mode old = 0;

int button state = 0;

int next state = 0;

static unsigned long last interrupt timeO = 0;
unsigned long interrupt timeO;

int maximumRange = 200; // Maximum range needed
int minimumRange = 0; // Minimum range needed

long duration, distance; // Duration used to calculate distance
int motor control value new = 0;

float DC _desired speed rpm = 0;

float DC_actual speed rpm = 0;

float DC_actual pos revs = 0;
int DC motor command value = 0;
float DC_speed error sum = 0;
unsigned long last millis = 0;

float last DC actual pos revs = 0;

long DC motor command pos = 0;
long DC _actual pos = 0;

long DC last pos = 0;
float DC_actual speed
float DC last speed
float dt = 0.0;
float DC _pos error sum = 0;
int entry = 0;

long IR reading = 0;

= 0.0;
0.0;

/* CONFIGURATION PARAMTERS */
unsigned long DC_speed control task rate = 50; //ms // okay 50

int DCstate = 1; // 0 for speed control, 1 for position(angle)
control,

float DC kp = 1.25; // okay 1.25, 1.25

float DC_ki = .7; // okay .6, .7

float DC_integral burn off = .98; //okay .95, .95

float DC kp pos = 3; // okay 1.25, 1.25

float DC kd pos = .7; // okay .6, .7
float DC_ki pos = 1;
float DC_integral burn off pos = .98;

/* FUNCTION PROTOTYPES */
void Motor command(float);

void loop () {
int button value = digitalRead(button pin);
if (button value - button value old > 0) {
button state++;



}

button value old = button value;
IR reading = .96*IR reading + .04*get IR reading();

if (Serial.available() > 0) {
integerValue = 0;
delay (10);
while (1) {
incomingByte = Serial.read();
if (incomingByte == '\n') {
control value pct = integerValue;
break;
}
if (incomingByte == -1) break;
if (incomingByte == "', ") {
control mode = integerValue;
integervValue = 0;
lelse(
integerValue *= 10; // shift left 1 decimal place
// convert ASCII to integer, add, and shift left 1 decimal place

integerValue = ((incomingByte - 48) + integerValue);
}
}
}
if (control mode == 1) {
motor control value = control value pct-100;
} else {

switch (button state%4) {
case 0: //DC POSITION CONTROL
motor control value = map (analogRead (potpin),0,1023,-100,+100);

break;
case 1: //DC SPEED CONTROL
motor control value = map (analogRead(A0),0,1023,-100,+100);

break;
case 2: //SERVO CONTROL
digitalWrite (trigPin, LOW) ;
delayMicroseconds (2) ;

digitalWrite (trigPin, HIGH);
delayMicroseconds (10) ;

digitalWrite (trigPin, LOW) ;
duration = pulseln(echoPin, HIGH);

//Calculate the distance (in cm) based on the speed of sound.
distance = duration/58.2;
motor control value new = map (distance,0,100,-100,+100);
motor control value = motor control value new*.l +
motor control value*.9;
break;
case 3: //STEPPER CONTROL
motor control value = map(get IR reading(),0,800,-100,+100);
break;



}

switch (button state%4) ({
case 0: //DC POSITION CONTROL
// Go To Position

if (entry || control mode old!=control mode) {
myEnc.write (0);
entry = 0;

}
control mode old = control mode;
DC actual pos = myEnc.read();
dt = millis() - last millis;
// Run loop every 30ms
if(dt > 30){
last millis = millis();

DC motor command pos = map (motor control value,-100,100,0,1023);

//Dropped off the multiplication by 4 factor.
// PID CONTROLLER

DC motor command value = DC _kp pos * (DC motor command pos -
DC actual pos);

DC _actual speed = (DC_actual pos - DC last pos) / dt;

DC motor command value = DC motor command value + DC kd pos *
(DC_last speed - DC _actual speed);

DC pos error sum = (DC pos error sum + (DC motor command pos -
DC_actual pos)) * DC integral burn off pos;

DC motor command value = DC motor command value +

DC_ ki pos*DC_speed error sum;

// Save Last States
DC last speed = DC_actual speed;
DC last pos = DC_actual pos;

// Command Motor
DC Motor command( DC motor command value);

int DC_actual pos_sent value = map(DC_actual pos,

serial op(button state%4,DC motor command pos,
DC actual pos sent value);
}
break;
case 1: //DC SPEED CONTROL
// SPEED CONTROL

0, 1023, 540, 0);

// speeds estimates not very accurate over small periods,
// only update estimate and speed controller periodically

entry = 1;

if(millis() - last millis > DC speed control task rate) {

// Update position estimate of DC Motor

DC_actual pos revs = ((float)myEnc.read())/180.0/4.0;

counts/rev * 4 for quadature encoder

// Update speed estimates of DC Motor

// 180

DC actual speed rpm = ( (DC_actual pos revs -
last DC actual pos revs) / ((float)millis() - last millis) ) * 1000.0 * 60.0;
// Reference: Speed at 255 ~= 60 rpm Speed at -255 ~= -60 rpm

// Get desired speed from sensor reading



// DC_motor command value = map (analogRead(pin pot), 0, 1023, -255,

255);
DC desired speed rpm = map(motor control value, -100, 100, -80, 80);
dc speed val = DC _actual speed rpm;
if (abs (DC_desired speed rpm) < 18) {
DC desired speed rpm = 0;
}
// update speed command from estimated error
float error = DC desired speed rpm - DC actual speed rpm;
DC speed error sum = DC_speed error sum*DC_integral burn off + error;
DC motor command value = DC_kp*error + DC ki*DC speed error sum;
// Update motor command and difference variables
DC Motor command( DC motor command value);
last DC actual pos revs = DC actual pos revs;
last millis = millis();
sensor_ value = map (dc_speed val, -80, 80, 1023, 0);
serial op(button state%4,sensor value, dc_speed val);
}
break;
case 2: //SERVO CONTROL
DC Motor command(0); // Don't forget to set motor command to 0!!
val = map (motor control value, -100, 100, 0, 180); // scale it to
use 1t with the servo (value between 0 and 180)
myservo.write (val); // sets the servo position
according to the scaled wvalue
servo_val = val;
sensor value = map(val, 0, 180, 0, 100);
serial op(button state%4,sensor value, servo val);
delay (15);
break;
case 3: //STEPPER CONTROL
DC Motor command(0); // Don't forget to set motor command to 0!!
int val old = val;
val = analogRead (potpin) ; // reads the value of the
potentiometer (value between 0 and 1023)
val = map (motor control value, -100, 100, 0, 200); // scale it to

use it with the stepper (value between 0 and 200, stepper rotates by 1.8
degree per step)
stepper val = val;

if (val>val old) {
digitalWrite (4,HIGH); // Set Dir high
} else {
digitalWrite (4,LOW); // Set Dir low
}
// Number of steps to rotate is based on the change in the pot value
int steps;
if (val > val old)
steps = val-val old;
else
steps

val old-val;

for(int x = 0; x < steps; x++) // Loop step times

{



digitalWrite (5,HIGH); // Output high
delayMicroseconds (1000); // Wait
digitalWrite (5,LOW); // Output low
delayMicroseconds (1000); // Wait
}
delay(10); // pause one second
sensor value = map(val, 0, 200, 0, 1023);
serial op(button state%4,sensor value, stepper val);
break;

}
delay(10);//ms

/* FUNCTION DEFINITIONS */

void DC Motor command(float cmd) {

}

if (cmd > 0) {
digitalWrite(pin DC _H1, LOW);
digitalWrite(pin DC_H2, HIGH);

}else if( cmd < 0){
digitalWrite(pin DC_H1, HIGH);
digitalWrite(pin DC_HZ2, LOW);

lelse(
digitalWrite (pin DC HI1, LOW) ;
digitalWrite (pin DC H2, LOW) ;

}

if (abs (cmd) > 255){
analogWrite (pin DC mod, 255 );
telse(
analogWrite (pin DC mod, abs(cmd) );
}

// Read IR Sensor
long get IR reading() {

}

long sensorReading = analogRead (IR pin);

// Cut off noise at low values

if (sensorReading < 100) sensorReading = 0;
return sensorReading;

void serial op(int button state, int sensor val, int motor val)

String str out;

str out= String(button state%4);
str out+=",";

str out+=String(sensor val);
str_out+=",";

str out+=String(motor val);
str_out+="\n";
Serial.print (str out);



Python code for GUI controls:
Note: ‘state_control_gui_form.ui’ is the user interface file created from Qt Developer
also depicted in Figure 1.

#!/usr/bin/python

import sys, time, threading, random, Queue
from PyQt4 import QtGui, QtCore as (gt
import serial

from PyQt4 import QtGui, QtCore, uic

State_list = ['DC POSITION', 'DC SPEED', 'SERVO', 'STEPPER']

motor list = ['DC motor position(Deg)', 'DC motor speed (rpm)', 'Servo (Deg)',
'Stepper (Steps) ']

sensor list= ['Potentiometer (Volts)', 'Pressure (%)', 'Sonar (cm)', 'IR

(cm) ']

control mode global = 0

SERIALPORT = '/dev/ttyACMO'
BAUD = 115200

class GuiPart (QtGui.QMainWindow) :
def init (self, queue, endcommand, *args):
QtGui.QMainWindow. init (self, *args)
self.setWindowTitle ("Arduino Serial Motor Controller')
self.queue = gqueue

self.ui = uic.loadUi('state control gui form.ui', self)

self.connect (self.control mode,

QtCore.SIGNAL ("currentIndexChanged(int) "), self.control mode cb)
self.connect (self.control value slider,

QtCore.SIGNAL ("valueChanged(int)"),self.control value slider cb)
self.connect (self.control value text,

QtCore.SIGNAL ("valueChanged(int)"), self.control value text cb)
self.endcommand = endcommand

def control mode cb(self, value):
#self.ui.actual servo value.setText ("motor select = " + str(value))
global control mode global
control mode global = value
ser = serial.Serial (SERIALPORT, BAUD)
ser.write (str(control mode global)+",0\n")
ser.close()
self.control value text.setValue (0)
self.control value slider.setValue (0)

def control value text cb(self, value):
self.control value slider.setValue (value)
global control mode global
ser = serial.Serial (SERIALPORT, BAUD)
ser.write(str(control mode global)+"," +str(value+100) +"\n")
ser.close()

def control value slider cb(self, value):
self.control value text.setValue (value)



global control mode global

ser = serial.Serial (SERIALPORT, BAUD)

ser.write (str(control mode global)+"," +str(value+100) +"\n")
ser.close ()

def closeEvent (self, ev):
self.endcommand ()

def processIncoming (self):

woin

Handle all the messages currently in the queue (if any).
#while self.queue.gsize(): #seems to cause problems not sure why...
global control mode global
try:
msg = self.queue.get (0)
# Check contents of message and do what it says
# As a test, we simply print it

#if str(msg) [0] == '1':
msg_str = str(msg)
[state, sensor value, motor value] = msg_str.split(",")

self.motor select text.setText (state list[int(state)])

self.motor label.setText (motor list[int(state)])
self.actual motor value.setText (motor value)
if (control mode global):
self.sensor label.setText ("GUI Control Value")
self.actual sensor value.setText ((sensor value))
else:
self.sensor label.setText (sensor list[int(state)])

my value = int (sensor value)
if (int (state)==0) :
my input = 5.0*my value/1023.0
my flt = float("{0:.2f}".format (my input))
self.actual sensor value.setText (str(my flt))
elif (int (state)==1):
my input = 100.0/1023.0*my value
my flt = float("{0:.2f}".format (my input))
self.actual sensor value.setText (str(my flt))
elif (int (state)==2):
self.actual sensor value.setText (sensor value)
else:
if (my value == 0):
my input = 0
else:
my input = 15327.0*my value**-1.195
my flt = float("{0:.2f}".format (my input))
self.actual sensor value.setText (str(my flt))

except Queue.Empty:
pass
#self.actual dcspeed value.setText ("incoming: not found")



clas

root
clie

s ThreadedClient:

won

Launch the main part of the GUI and the worker thread. periodicCall and

endApplication could reside in the GUI part, but putting them here
means that you have all the thread controls in a single place.
def init (self):

# Create the queue

self.queue = Queue.Queue (0)

# Set up the GUI part
self.gui=GuiPart (self.queue, self.endApplication)
self.gui.show ()

# A timer to periodically call periodicCall :-)
self.timer = gt.QTimer ()
gt.QO0bject.connect (self.timer,
gt .SIGNAL ("timeout () "),
self.periodicCall)

# Start the timer -- this replaces the initial call to periodicCall

self.timer.start (25)

# Set up the thread to do asynchronous I/0

# More can be made if necessary

self.running =1

self.threadl = threading.Thread(target=self.workerThreadl)
self.threadl.start ()

def periodicCall (self):

wan

Check every 100 ms if there is something new in the queue.
self.gui.processIncoming()
if not self.running:

root.quit ()

def endApplication(self):
self.running = 0

def workerThreadl (self):
This is where we handle the asynchronous I/O0.
Put your stuff here.
ser = serial.Serial (SERIALPORT, BAUD)
while self.running:

msg = ser.readline();
if (msg):
self.queue.put (msqg)
else:
pass

ser.close()

= QtGui.QApplication(sys.argv)
nt = ThreadedClient ()



sys.exit (root.exec ())



