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Abstract 
Amazon has automated their warehouses by using robots to move storage shelves. However, they 

still require human intervention to pick each object from the shelf bin and place it into the shipping box. 

Our primary goal is to solve this problem by developing a robot system that can automatically parse a list 

of items, identify desired items on a shelf, and pick and place them into the order bin. We have partnered 

with Professor Maxim Likhachev and the Search Based Planning Lab to compete in the 2016 Amazon 

Picking Challenge. 

Our system, the Human Assistive Robotic Picker (HARP), consists of perception, gripping and 

platform sub-systems. The perception system identifies items of interest based on their known geometric 

models. The UR5 robot platform, outfitted with a suction gripper, picks up small household objects from 

the twelve shelf bins. This semester we have validated the individual subsystems by achieving desired 

perception accuracies and demonstrating UR5 pick-and-place task planning in simulation. Next semester’s 

primary focuses will be on integration and testing. 

During the Spring Validation Experiment, the team demonstrated the warehouse pick-and-place 

task with a 60% success rate, compared to the 33% depicted in the requirements. Failure modes were 

analyzed; primary failure modes were grasping and perception. This report gives the details of current 

status and technical analysis of Team Harp’s progress toward competing in the 2016 Amazon Picking 

Challenge. The conclusion highlights remaining tasks and deliverables to complete before the 

competition. 
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Project Description 
Rapid growth in the worldwide market for warehouse automation and control systems is being 

driven by the global boom in e-commerce. Amazon is able to quickly package and ship millions of items 

to customers from a network of fulfillment centers all over the globe. Amazon sells 306 items per second 

and has 96 fulfillment centers across the United States. This would not be possible without leveraging 

cutting-edge advances in technology. 

We developed the Human Assistive Robotic Picker (HARP) as an entry to the competition 2016 

Amazon Picking Challenge. The goal of HARP is to enhance warehouse automation. HARP is equipped with 

highly-sophisticated features: item identification, suction-based manipulation, and 6DOF motion 

planning. This allows the system to operate in dynamic environments and perform the core functions of 

item retrieval and item stowage. Team HARP developed the algorithms around the UR5 robotic arm to 

achieve the pick-and-place warehouse task. 

Use Case 
John’s final project demonstration for the MRSD spring validation experiment is due tomorrow. 

While running tests, the primary drive motor of his robot burnt out. With limited amount of time and no 

spares left, John thought he was out of luck. As a last resort, he logged onto amazon.com to check how 

fast he could receive the spare parts. Fortunately for John, Amazon recently implemented the Human 

Assistive Robotic Picker (HARP) in its fully autonomous warehouses. The Human Assistive Robotic Picker 

works alongside the existing Kiva shelving system to fulfill orders round the clock without human 

supervision. 

John places his order on Amazon.com. The order is dispatched to a collection of robots in the 

warehouse. First, the Kiva shelves autonomously drive from storage to their place in the order queue. This 

is where HARP comes into play.  

HARP performs the task of grabbing items off shelves and putting it in the order bin. HARP can 

easily handle shelf bins with multiple partially occluded items. First, HARP parses John’s order and 

determines the items of interest – the motor. Next, the vision subsystem computes the position of the 

requested product on the shelf. Then a robotic arm strategically grabs the item off the shelf using a suction 

gripper. Finally, HARP places the motor into the order bin. This is then packaged into a box for delivery. 

In less than thirty minutes, Johns motor is out for delivery. Hours later, the box arrives on John’s 

doorstep, just in time to impress the MRSD professors before the final demo. The use case is graphically 

depicted in figure 1. 

 

Figure 1: Use Case Depiction 
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System Level Requirements 
The functional, nonfunctional, and performance requirements are driven by the primary 

objective of creating a pick-and-place robot to compete in the 2016 Amazon Picking Challenge. 

In reading through the requirements, it is useful to understand the types of items we hope to 

pick-and-place. The item list for the 2016 Amazon Picking Challenge is shown in Appendix A. All 

requirements are identified as mandatory in order to compete in the challenge in accordance 

with the competition rules and specifications. The objects are of different shapes, sizes and 

transparency. 

Functional and Performance Requirements 
The functional requirements were written from analyzing the pick and place task. The 

performance requirements were produced by analyzing the operation of the top three teams 

during the competition last year. Our goal is to be competitive with these teams by successfully 

picking three items off the shelf in twenty minutes. Throughout the design process, the 

performance requirement metrics have shifted as we have learned more about the technical 

aspects of this problem. Specifically, accuracy requirements for the perception system have 

decreased. However, requirements for the grasping subsystem have proportionally increased 

such that our major functional goals are still met. 

FR1 Accept order list from user 

PR1 Interpret work order with 100% accuracy 

Description Amazon provides a list of target items which the robot must pick from the 
shelf. The item is input in JSON format and must be interpreted by the 
robot. 

 

FR2 Autonomously determine positions and orientations of target items on 
shelf 

PR2 Autonomously identify target object with 75% accuracy 

Description The position and orientation are calculated by the perception module 
using state-of-the art algorithms. The pose must be determined in order 
to acquire the objects. Shelf contains up to three items from the item list, 
non-occluding. 

 

FR3 Accurately determine item grasp position 

PR3 Autonomously determine suction grasping surface on 90% of attempts 
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Description The perception module outputs position of end-effector for optimal 
grasping. After correct identification, a grasp surface is determined. 

FR4 Autonomously picks item from shelf bin 

PR4 Autonomously picks item of known pose from shelf bin on 75% of 
attempts 

Description After a grasp surface is determined, the kinematics planning is done to 
pick up the items from the shelf. 

 

FR5 Autonomously places item in order bin.  

PR5 Autonomously places 90% of picked item in order bin from a height of no 
more than .3 meters 

Description Once the item is picked, the robot drops it off it in order bin. 

 

FR6 Must follow the dimensional constraints set by Amazon Picking Challenge 

PR6 Acquire items from bins located at a max height of 1.86m and minimum 
height of .78m 
Acquire items from a .27m x .27m shelf bin 
Be able to lift items up to .5kg mass 

Description The items and shelf units specified by the Amazon Picking Challenge rules 
add constraints to our design. 

 

FR7 Does not drop or damage items during grasping from shelf bin or during 
transportation to order bin. 

Description During robot operation, the robot should not allow items to fall down. The 
robot should not deform the items in any way. This ensures we are only 
adding value. 

  

PR7 Acquire at least 3 items  in under 15 minutes 

Description A time constraint of 15 minutes is set in place by Amazon. We must 
maximize the number of items successfully picked and placed in the given 
time. 
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Nonfunctional Requirements  
Nonfunctional requirements are driven by both the MRSD course and requirements set forth 

to compete in the Amazon Picking Challenge rules.  

NF1 Cost no more than $4000 

NF2 Be completed by May 1st, 2016 

Description MRSD project requirement. 

 

NF3 Transportable or available at ICRA 2016 

Description The robot should be capable of being disassembled and reassembled 
easily. Alternatively, the robot platform must be available for use at the 
ICRA competition in Sweden, Stockholm in May 2016. 

 

NF4 Perception robust to lighting between 320-500 lux 

Description The robot’s perception system should operate reliably under different 
lighting conditions and changes in physical geometry. This is because of 
the possible variations in test environment and competition environment. 

 

NF5 Be available for testing at least 1 day per week 

Description Algorithms must be tested on the real platform every week to ensure 
consistency with simulation model. This is a desired requirement which 
aided in the selection of a suitable robotic platform to develop our system 
around. 

 

NF6 Start and stay within a 2m by 2m boundary (except the end effector) 

Description The competition rules state that the robot should stay within the 2m x 2m 
work cell and only the end effector can reach into the shelf. The shelf is at 
least 10cm away from the work cell area. 

 

NF7 Have an emergency stop 

Description The Amazon Picking Challenge requires a stop button to halt the 
manipulator platform in case of accidents. This is a safety requirement.  
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Functional Architecture 
The functional architecture, shown in figure 2, is broken down into 4 main subsystems.  

Input Handling: The robot autonomously parses the items in the list to generate an item plan. 

Perception: The perception function is responsible for scanning the shelf, scanning individual bins, 

determining item pose and providing the system with sufficient data to plan the manipulator trajectory 

to grasp the item from the shelf bin and place it in order bin. 

Platform: The platform planner takes the item pose data as input and generates a valid collision-free 

motion plan to move the arm to a valid grasp position. 

Grasping: The grasping function decides on the best grasp strategy and orients the end effector with 

respect to the object pose consisting of a suction system. Once the suction arm is close to the object, the 

grasping function switches on the suction mechanism and grasps the object. 

 

Figure 2: Functional Architecture 

Cyber Physical Architecture 
The cyber-physical architecture breaks down the system into physical and software 

architectures. The physical architecture describes the interaction of the hardware components 
and the software architecture describes the actual flow of data and synergy between different 
subsystems. 
 

Physical Architecture  

The physical architecture diagram (figure 3) shows the interaction of Universal Robots 
UR5 robot arm with perception and suction subsystems and various components. For planning 
and perception, we have a Quad-Core i7 Processor based processing unit that runs on Ubuntu 
14.04 and ROS Indigo and takes care of the perception subsystem and state controller including 
UR5’s arm planning. The Gripper subsystem consists of the suction mechanism which is 
controlled by the ROS state controller through an Arduino microcontroller and relays. The 
pressure sensor interacts with ROS state controller through the Arduino, using the ROSserial 
protocol and provides the grasp status for the current item.  
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Figure 3: Physical Architecture 

Software Architecture 
The software architecture diagram below explains the control and feedback mechanisms 

necessary in order to achieve the functional architecture. The user input, in the form of a text 
file, is given to the master ROS controller, which begins the SMACH based state machine. In the 
‘input-handling’ state, the master ROS controller passes in an item of interest, which also includes 
the specific bin number. The arm path planning is done using the MoveIt package. MoveIt uses 
the OMPL family of algorithms for planning. Using the arm planner, the robot aligns the Kinect2 
to the specified bin and captures data. This raw data is passed back (over USB) to the workstation 
where vision processing happens. The item recognition algorithms then determine the item’s 
position on the shelf.  

 
Figure 4: Software Architecture 

Using this image data, we determine the grasp surface of the items using the grasp 
planner. The grasp planner outputs best grasp poses. This results in a position and orientation of 
the end-effector with respect to the base. These coordinates are passed back into the ROS state 
controller.  

This desired position is passed into the MoveIt arm planner. The arm planner creates a 
series of actuator commands that are required to position the arm relative to the item. Collision 
detection checks are performed to ensure that we will not intersect with the shelf. Position 
feedback, supplied by encoders and other sensors, verifies that the trajectories are executed 
properly. Once this occurs, the final position of the arm is sent to the ROS state controller. 
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Finally, arm and grasp positions are sent to the planner. Using trained methods of item 
acquisition, unique to each item, a grasping plan is generated using IKFast Cartesian planner. A 
microcontroller is responsible for low level commands for controlling the suction. Tactile 
feedback (from a pressure sensor), indicates successful grasp. Once the item is acquired, the ROS 
controller receives a grasp success signal from the grasp controller. The motion and arm planner 
repeats, moving the item from the shelf bin to the order bin. This cycle repeats until all items 
from the input text file have been acquired. 

System Level Trade Study 
The primary trade study performed over the last semester was comparing the UR5 to the 

PR2. Initially, we planned to use the PR2 for the pick-and-place task. However, this system has 

several drawbacks, outlined below. Primarily, the PR2 was overly complicated, slowing 

development. In addition, one major programmatic risk was availability of the PR2 at the Amazon 

Picking Challenge. By switching to the UR5, we decreased the scope of the necessary technology 

without cutting the scope of requirements.  

UR5 
+ 850mm radius workspace 
+ Easy to use teleop interface 
+ Consistent viewing angle with Kinect 
+ More accurate localization / collision object generation 
+ Fast 
+ 5 kg payload capacity 
+ Transportable (could use same robot for testing and competition) 
+ Good ROS support 
- Inexperience using UR5 
- Must return after competition 
 
PR2 
+ Possibility of 2 arm manipulation 
+ SBPL knowledgeable user base 
+ Already developed baseline performance / set up simulation 
- Can’t transport to competition 
- More complex planning (base, spine, neck, arms) 
- Requires base movement 
- Relatively slow 
- Requires external mounted Kinect or 2 Kinects (sternum and head mount) 
- Modifications may not be desired on SBPL PR2 or possible on the provided PR2 
- Requires booster platform 
- ROS groovy and 2 computer requirements 

- Risk of Hardware or Software Version compatibility issues with the PR2 provided @ Robocup 
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System Description and Evaluation 
  The following section describes the technology developed to perform the pick-and-place task. A 

stationary robot arm with an eye-in-hand Kinect and suction end-effector was the hardware platform 

selected to fulfil the functionality and requirements outlined above. Main subsystems include high level 

planning and state control, shelf localization, motion planning and collision avoidance, and perception. 

Figure 5 shows the final robot configuration and test setup.  

 

Figure 5: Team HARP Test Setup 

Simulation and State Control 
  All software developed for HARP runs in the Robot Operating System (ROS). A SMACH 

state controller manages the high level states of the robot. The state controller has a similar state flow as 

the functional architecture. The state controller progresses through states by calling various ROS services. 

These ROS services perform actions like moving the arm, enabling suction, or capturing a Kinect frame.  

Localization 
 After startup, a localization algorithm (figure 6) runs to determine the location of the shelf with 

respect to the world. The robot moves to a predefined position approximately 1 meter away from the 

shelf. A single Kinect depth cloud is captured. Then, the shelf CAD model, in the form of an STL, is loaded 

into the scene, approximately aligned with where the shelf is expected to be. From there, an iterative 

closest point algorithm runs. This algorithm iteratively minimizes the least squares error between the CAD 

model and the input point cloud. This algorithm solves for the optimal transformation of the shelf in world 

frame. Localization is critical for later avoiding collisions with the shelf.   

 

Figure 6: Localizing the Shelf (White Point Cloud) to the Kinect Image 



12 
 

  

Motion Planning and Collision Avoidance 
Arm planning is implemented through ROS and 

Moveit! using Open Motion Planning Library planners 

(figure 7).  A URDF of the robotic arm is provided by the 

manufacturer and modified to include our custom end 

effector.  The default planning group starts at the base 

mounting point and extends through all 6 joints to the tool 

attachment mount.  Our planning group is extended to 

include the end effector to enable target poses defined in 

the world coordinates for suction cup locations.   Collision 

models for the mounting frame, order bin, and kiva pod 

shelf are loaded in using the MoveIt! planning scene 

interface.  Plan details are specified using Moveit! like 

maximum planning time and which OMPL planner to use.   

 Each single query plan took approximately 5 seconds to find acceptable paths. Given the 
competition time constraint, planning between setpoints would take too long and inhibit the effectiveness 
of the robot.  A feature to precompute the path plans was developed and implemented in our system. 
The trajectory replay feature learns paths when learning mode is enabled. Whenever the trajectory-
playback execution order is specified, the feature looks through the learned database for similar start 
configurations and goal poses and execute the stored trajectory.  Otherwise, a Cartesian or single-query 
plan must be computed. 

 Our implementation of arm control implements a ROS blocking server that can accept planning 
details and execution orders. The motivation was to abstract planning as another step in our state 
controller so that infinite planning loops are not possible. Multiple plans and planning details can be tuned 
for the needs of each motion plan request. The available execution orders are trajectory-playback, 
Cartesian plan, strict Cartesian plan, fast single-query, and slow single-query. Trajectory-playback is a 
feature that and replay precomputed trajectories. The Cartesian plan is a fast planner that uses FastIK to 
quickly solve the inverse kinematics of the arm at short intervals along the path.  Straight-line paths are 
computed from start and goal poses. Additional waypoints can be specified and the Cartesian planner will 
attempt to find collision-free, straight-line plans between each waypoint.  The Strict version of the 
Cartesian execution order forces the arm to be able to travel to the goal state whereas the normal 
Cartesian execution order will result and execute a partial path. Finally, the single query execution order 
uses the OMPL planner to perform a traditional motion planning query.  The only difference between fast 
and slow planners is the allowable planning time.  The OMPL planner could be specified for each request.  
RRT* was our default planner for its ability to find valid plans and improve them as time allows. RRT plans 
were fast but caused large swinging motions that are not desired for our picking application.  

  

Perception: CNN Item Identification 
 Our primary perception pipeline identifies items using a CNN. First, using the kinematic chain of 

the robot as well as the location of the shelf, the image is masked using the four corner points of the shelf. 

Next, a pixel-by-pixel labeling CNN, SegNet, is used to label each pixel in the image as shelf or item. After 

segmentation, the image is divided into superpixels using the SLIC algorithm. Each SLIC superpixel is then 

Figure 7: Environment Model and Motion Planning 



13 
 

classified using an identification CNN based on Alexnet. Once each superpixel is classified, the outputs are 

merged to solve for the globally optimal solution. The entire vision process is outlined in in figure 8.  

 

Figure 8: Perception Pipeline 

Perception: Dataset Generation 
Using a CNN approach for item identification requires a large amount of training data to create a 

classifier.  An automated data collection method was created to generate a database of the 39 possible 

items.  A turntable rotates in 10 degree increments over 360 degrees of rotation and an actuator varies 

the view angle of the Kinect v2 RGB-D sensor. HSV thresholding and convex hull filters were applied to the 

images to automatically remove the background from the training images. In total, approximately 100 

masked images were captured for each of the 40 items in the item dictionary.  These images were rotated, 

distorted, mirrored, lightened, and darkened to create approximately 400,000 images for future classifier 

training. The turntable is shown in Figure 9. An example output training image is shown in figure 10. 

 

Figure 9: Data Collection Setup 
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Figure 10: Example Turntable Data 

Perception: PERCH Item Identification  
 A second perception algorithm runs in parallel to CNN identification. PERCH, Perception via Search 

for Multi-Object Recognition and Localization, globally searches to match known geometric item models 

to the Kinect point cloud. PERCH specializes in identifying items with known geometry models under heavy 

occlusions. PERCH was developed by Vankatraman Narayanan and Maxim Likhachev in CMU’s Search 

Based Planning Lab. An example of PERCH identification can be seen in Figure 11. 

 

Figure 11: PERCH Output (left) and Noisy Depth Data (right) 

Grasping 

Initial trade studies showed suction systems would be far superior to traditional grippers 

for the pick-and-place task. After prototyping several solutions, we determined a high flow 

system was required to deal with imperfect seals of porous items. A custom suction cup gripper 

was designed which can be mounted to the end of the UR5. The gripper shown is capable of 

acquiring 36 out of 38 objects from the 2016 amazon picking challenge list. The grasping system 

is shown in figure 12 below.  

 

Figure 12: Custom Suction End Effector 
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All the electronics for the suction system are packed into the enclosure shown in Figure 

13. A custom PCB holds an Arduino, reads up to four analog pressure sensors, and controls two 

AC relays. The box contains inlet power connector, two output plugs to connect two vacuums, 

two serial connectors to attach up to four sensors, and status LED’s. Pressure sensors installed 

on the vacuum hose detect when a drop in pressure has occurred, indicating that an item has 

been acquired. This subsystem communicates with the main computer over ROS serial and is 

controlled by the main state controller.  

 

Figure 13: Custom Suction PCB Enclosure 

Modeling, Analysis, and Testing 

Simulation Environment 
All elements of our system visualized in RVIZ. Verifying motion plans and visualizing point clouds 

aids in debugging. Our simulation setup can be seen in figure 14 below. This shows the robot model, the 

robot base, the order bin, and the shelf as collision objects, the Kinect point cloud, and the results of the 

perception pipeline. First, in simulation, the trajectories generated by OMPL are visualized to verify that 

the arm will not collide with the shelf. In addition, we verify the perception results in real time. The images 

on the right of figure 14 are the intermediate perception outputs. The final output point clouds are then 

rendered in the shelf frame. 

 

Figure 14: Simulation Environment  
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Mechanical Design 
 Before building any hardware, Solidworks was used 

to understand the workspace of the UR5. Our Solidworks 

model can be seen in figure 15. In the modeling environment, 

we were able to move the end effector around inside the 

shelf to verify the end effector could move into each of the 

bins. In addition, we verified the mating between the UR5 

and our custom end effector.  

The base was designed out of 80-20 aluminum. 

Although 80-20 is expensive, it is very modular and easy to 

manufacture. This will enable easy transportation to the 

2016 Amazon Picking Competition. 

Reachability 
One of the first tests run in ROS was verifying the 

configuration space of the UR5. To do this, we sampled approximately N points from in the workspace 

surrounding the robot. From there, we used inverse kinematic calculations to verify that the robot could 

reach a desired point in the workspace. Figure 16 shows points the robot can reach in the workspace.  

 

Figure 14: Reachability Study 

Suction System Feedback 

 A pressure sensor, installed inside the shopvac hose, detects when items have been acquitted. A 

custom ROS node was written to monitor the state of the system. Preliminary results of the 

suction filter are shown in Figure 17. The raw pressure data (blue) is very noisy. Even after 

applying a rolling average filter, the signal to noise ratio is fairly small. In the test below, four 

items are picked up by the gripper. However, the filter only accurately detects three of four 

pressure drops in the example below.   

Figure 15: System CAD 
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Figure 15: Pressure Sensor Feedback 

Perception Testing 
 A dataset of 120 images was created to analyze the perception system. The images were captured 

in the same format expected in competition: a python script generates random shelf configurations. This 

allows for us to quickly verify any changes made to the perception algorithms. To label the dataset, we 

used a tool called LabelMe. Labeling the dataset allowed us to automate perception system tests to 

validate algorithm changes. This dataset will be published online after the competition. 

SVE Performance Evaluation 
The objective is to demonstrate the working of our integrated system. Random input lists (JSON 

files) were generated that spanned over all the items in the item dictionary. End-to-end test runs were 

carried out to generate the following statistics. During each test, the Kiva shelf was stocked with 30 items 

distributed over different shelf bins (between 1 - 4 items per shelf). 

Elements 

 Complete system demonstration 

 Shelf localization 

 Collision avoidance 

 Item identification 

 Item Post estimation 

 Path planning 

 Grasp planning 

 Suction based grasping 

 Grasp feedback 

 Error handling 

Verification Criterion 

The SVE performance evaluated verified all system level requirements, including: 

 Automatically recognize items in the bin and report results to a GUI on the computer 

 Automatically detect object and recognize its pose to find a valid suction surface 

 Automatically move the arm to the desired grasping location 

 Grasp the item without damaging or dropping it 

 Withdraw the item from the shelf bin and place it into the order bin 
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While testing, we had a 61% success rate with 147 successful picks and 97 failed picks. Items such as 

the plush puppies squeaky toy, pencils, bunny book, scotch bubble mailer had really good success rates 

as they had distinct textures and easily graspable surfaces. The table below shows the high level overview 

of our performance 

 

Figure 16: SVE System Test Results 

System failures are broken down in figure 19. A majority of our failures were due to identification 

errors. It is difficult to correctly identify items if they are occluded. Identification failure occurred between 

items with similar textures such as the 40w light bulb and dove soap. Suction and grasping failure occurs 

for objects such as the DVD, joke book and duct tape. Also, some items such as the water bottle, glue 

sticks and command hooks were specular – creating sparse point clouds. This made it difficult to compute 

correct grasp surfaces. The figures below show our failure analysis statistics. Item by item failure shown 

in Appendix B. 

 

Figure 17: Failure Analysis 

Strong and Weak Points 
During the course of testing our system, we have been able to collect and log data of the successes 

and failures of various subsystems. Using this data, we have made observations on the strengths and 

weaknesses of our project and identified methods to improve overall system accuracy. 

Strong Points 

 Perception system can correctly identify non-occluded items with an accuracy of 80%. This is 

higher than our original requirement of 60%. 

 We are able to handle partially occluded items which was not in the original scope 

 We are able to segment and correctly identify items with 70 %. 

7  Random Shelf Configuration

1-4  Items per shelf

244  Grasp Attempts

147  Successful Picks

97  Failed Pick

61%  Success Rate
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 The system is capable of grasping 36 of the 38 items for Amazon Picking Challenge 2016. 

 The improved end effector can reach the corners of all the shelf bins and has a thinner profile, 

increasing our workspace 

 Trajectory caching and playback has greatly improved speed and quality of placing items from 

bin to order bin 

 Parallelized perception system has reduced our run-time from 14:30 minutes to 11:30 minutes. 

The remaining time can be used for picking items missed in the first iteration 

Weak Points 

 Grasping is the biggest weak point – it is hard to correctly determine grasp surfaces for specular 

items or noisy point cloud data 

 Occasionally, items may brush against the shelf when being moved to the order bin. This is 

because we are not planning paths with collision checking for picked up items. If suction 

grasping is not strong enough, the item may fall down 

 Certain items such as the shirt and bear toy have a tendency to get stuck inside the end effector 

 While using Cartesian IKFast for planning inside the shelf bin, the arm may occasionally collide 

with the wall 

 Items which have similar textures or colors are easily misidentified – we have observed this with 

items such as the Folgers coffee and joke book, dove soap and the 40w light bulb 

 If due to any accidental collision, if the robot’s force safety stop gets enabled, there is no 

autonomous way to reset it 

Project Management 

Schedule 
In order to complete all project goals, a schedule comprising deliverables for each progress 

review, shown in figure 20. In addition, we kept a more detailed schedule which assigned deliverables to 

individuals. This full schedule can be found in appendix C. As the Amazon Picking Challenge approaches, 

we have a day-by-day schedule to ensure all required tasks are completed by competition. 

 

Figure 18: Test Schedule 

Budget 
 Overall, the team managed our budget well and stayed under the MRSD requirement of $4000. 

Luckily, Universal Robots was generous enough to loan us the UR5 for the semester, a robot that sell for 
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around $38,000. Our biggest purchase was of computer parts, which were required to run the robot and 

train our various CNNs. Detailed budget is shown in figure 21. 

 

Figure 19: Project Budget 

Risk Management 
The risk management chart (figure 22, below) highlights the major technical risks team HARP 

mitigated during the spring semester. Our biggest technical risks, #1 and #3, related to the perception 

system. Through lots of hard work and software development, these were mitigated. Gripper design was 

another major risk, since we did not know the item dictionary until about two months ago. Luckily, no 

major changes occurred between this year and last.   

 

Figure 20: Risk Management 

Conclusions 
As the MRSD project course comes to an end, we have completed our project successfully while 

increasing the original scope to align with newly released Amazon Picking Challenge 2016 rules. We would 

continue making improvements to our system during summer to give us a competitive edge. 
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Lessons Learned 
Perception was the hardest subsystem to develop. We had to try many different approaches and 

algorithms before we found one suitable for our item set and lighting. Using software from research 

papers of previous APC teams did not help us as they were designed for items placed without occlusions. 

Also, for training a CNN, dataset generation is an essential step. We had to build our own turntable and 

this gave us good insights on generating data with different lighting, background and item orientations.  

We chose to use suction end-effectors over tradition robot manipulators. Using a conventional 

manipulator would have provided us the means to grasp all the 38 objects and given a greater freedom 

and control over item manipulation. However, the effort required to design the planning algorithms was 

outweighed by the simplicity of the suction end-effector. 

We also made a good decision to first build the simplest version of the entire system before 

focusing on improving any one sub system. This allowed us to iterate improvements for various sub-

systems, helping us to refine them independently. 

It was a good lesson to break up trajectories into several smaller parts and cache common 

trajectories instead of replanning every time. This helped us speed up the entire system.  

Our biggest take-away was learning how to design the complete software architecture and 

keeping various components like grasping modular. Since this was the first time we developed a complete 

system, we made a lot of mistakes and had to refactor our code numerous times. Using ros param server 

to store configurations and settings helped us greatly speed up development and tested as we did not 

have to recompile the program every time. In order to ensure compatibility between various software 

modules, we created a software specification document to capture all the interfaces and flowchart. 

Another important lesson was to choose the right robot for the task. We took a risk to switch to 

UR5 from PR2 and develop software for it even though we did not have access to UR5 robot at that time. 

The PR2 had several drawbacks for use in our particular application. It would have been much slower and 

would have added another layer of complexity for base and spine planning. 

Future Work 
There is still a long way to go before Team HARP flies to Germany to compete at the Amazon 

Picking Challenge in June 2016. The chart below describes the relationship between the current accuracy 

and the desired accuracy with respect to the functionality yet to be added. 
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Figure 21: Future Work Before the 2016 Amazon Picking Challenge 

Perception system would be modified to improve performance for occluded item segmentation 

and white and specular object identification. For planning subsystem, we need to the functionality to 

check trajectories for collision when an item is grasped by the end effector. This would help prevent arm 

motion failure when the item collides against the shelf while moving to the order bin. Sideways grasping 

will be implemented to pick up books and other items placed close to the shelf walls. 

For the SVE, our overall accuracy was around 61%. With these improvements, we would be able 

to increase accuracy to at least 80% 
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Appendix A: 2016 Item Dictionary 
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Appendix B: Item-by-item Failure Analysis 
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Appendix C: Detailed Schedule 

 

 


