
CMU Amazon Picking Challenge
Team Harp (Human Assistive Robot Picker)

1

Graduate Developers
Abhishek Bhatia
Alex Brinkman
Lekha Walajapet
Feroza Naina
Rick Shanor

Search Based Planning Lab
Maxim Likhachev
Venkatraman Narayanan
Andrew Dornbush

System Overview

2

https://youtu.be/ko8Cr8kBc-Q

Why the Picking Challenge
Great Learning Experience for MRSD

Exposure to huge variety of robotic domains

Fits the MRSD schedule

Real world application of SBPL planners (Perch, ARA*)

Visibility for CMU, SBPL, and team

It’s fun!.. Sometimes…

3

Functional Architecture

4

Suction Gripping
• High flow low pressure vacuum
system

•Custom suction cup mounted to UR5
wrist

• Capable of acquiring 36 / 38 items in
list

•Simplifying the grasping problem.
Most teams converged on similar
designs.

• Make suction tube co-axial with last
DOF to help planning problem

• Find a quiet vacuum

5

Simulation and
State Control
 SMACH state controller manages
robot actions

 Actions simulated and visualized in
RVIZ to aid in development

 RVIZ visualizations help validate
robot actions

SMACH is not recommended,
userdata is not handled efficiently

6

Configuration Space Analysis
• Ensured UR5 feasibility

• Brute force configuration space search allows
visualization of workspace within bins

• Optimized placement of robot origin with
respect to shelf

• This did not indicate how difficult the
planning problem would be.

• Recommend a UR10 to increase
configuration space

• Linearly actuated base or end effector would
also help

7

Localization

• Images captured from multiple
perspectives merged using robot
kinematic chain

• ICP Algorithm minimizes error
between point cloud and shelf CAD
model

• Algorithm runs twice during
competition

• Worked sufficiently well for our needs,
but recommended future algorithm
constraining shelf height, etc.

8

Motion Planning

• MoveIt! software package manages
arm kinematics and path planning

•Base, end effector, and shelf modeled
as collision objects

•Hierarchy of planners was
implemented
1. Lookup Table

2. Cartesian Plan

3. Simple E-graph

4. SBPL (ARA*)

5. OMPL (RRTConnect)

9

Planner Hierarchy
• A planning request prioritizes planners and returns the first successful plan

augmented by velocity scale factor

1. Lookup Table
◦ A directed graph from joint state -> goal pose learned from single queries
◦ Pros: Fast and consistent. Mitigated Hose entanglement
◦ Cons: Manual process to learn paths, difficult to delete specific learned plans
◦ Improvements: Bidirectional Graph, DOT visualization, debugging tools

2. Cartesian Plan
◦ End Effector moves in straight line interpolated from current pose to goal pose
◦ Partials solutions can be returned if desired
◦ Pros: Fast, good solution quality
◦ Cons: only applies to a limited set of joint configurations
◦ Improvements: Better understand Moveit! implementation or Build our own

3. Cartesian Snap
• Andrew’s coupled version that performs a Cartesian plan to the nearest node on lookup graph
• Pros: Improved in-bin planning times, good solution quality
• Cons: Very painful to learn the in-bin plans using single-query planning
• Improvements: Automate trajectory saving. Quantify Solution quality for our problem

10

S g

G

S

G

G

S

Planner Hierarchy
Initial development used OMPL RRT planners. SBPL Integration required family planner
workaround (courtesy of Andrew)

4. SBPL (ARA*)

◦ Used SBPL ARA* for single queries

◦ Pros: planning in-bin

◦ Cons: Trajectory execution was jerky, Planning times longer. Sometimes optimal solutions
were undesired (bin 6 solutions inverted hose 360 Deg).

◦ Improvements: Modify SBPL plugin to allow arbitrary planning groups. Quantify Solution
quality

5. OMPL (RRT Connect)

◦ OMPL Randomized planners for single queries

◦ Pros: Fast, randomization was often helpful. Planning outside of bins

◦ Cons: non-deterministic, solution quality varied greatly

Planning through walls was an intermittent issue but fixed by upsampling collision checking

UR5 high joint velocity disables were a problem despite slowing down trajectory execution

 Need trajectory smoothing or optimization for UR5 on all returned solutions

11

OMPL
Plugin

Moveit!

Family
Planner
Plugin

SBPL
Plugin

Before Upsampling

SBPL Planning
Required addition of 2-finger heuristic to solve
for goal orientations

A well designed system should require minimal
planning

12https://youtu.be/qqdvioAipnU

Grasp Planning
1. Perform normal estimation

2. The centroid and bounding points of the pc are

computed

3. Select Grasp Primitive (top-down or sideways)

4. sort best normals

◦ 100 candidates, ordered

5. Compute EE poses (RPY randomization added)

◦ ~100 pose-sets

6. Check pose sets against fastIK and only keep

feasible goals

◦ 5 – 25 candidates feasible, ordered

7. If too few candidates, generate default poses (At

least 12 guaranteed candidates)

13

Grasp Execution
Every pose is attempted by following process

snap - snaps the target pose to the limits of the bin

set – update visual pose marker

call - move_arm_server to move the arm

sleep - sleep briefly to reduce concurrent

move_arm_server request

The execution ends when :

- Suction sensor determines success

- The end of the pose list is reached

- The amount of time executing grasp > 1 minute

Most of the time was spent in this operation. Single query

plans inside the bin are slow.

14

Try the
next pose

Enter Bin

Withdraw

Vision: Segmentation
Geometric Filtering - Shelf contents isolated
from shelf based on localization results and
Kinect Pose

15

Segmentation - Shelf content clustered into
shelf/not-shelf regions.

SegNet CNN was trained on acquired data but
eventually not used.

Raw Geometric Filtering images were passed to
identification CNN

Vision: Identification CNN
SLIC (1) Divide image into small “superpixel”
segments based on colors and edges

Segment Identification (2) Individual
segments are classified using AlexNet CNN

Graph Generation (3) Neighboring
“superpixels” are connected, forming a graph

Item Identification (4) Individual “superpixel”
identification outputs are merged to solve for
an optimal scene

16

1

2

3

4

Vision: Database Generation
A turntable was developed to automatically
rotate items and scenes and record images.

100 - 200 images were collected for each item

Images were rotated, mirrored, colored
skewed to upsample to add variety to the
dataset

6,000 Raw images -> 400,000 training
superpixels

17

Vision: Perch
Perch: Geometry based search recognition and
location solver developed by Venkat Narayanan and
the Search Based Planning Lab

Perch was enabled on 4 of 40 items at the final
competition. The pose estimate of these items was
great. Perch processing took approximately 60
seconds

◦ Glucose tablets

◦ Folgers coffee

◦ Paper towels

◦ Kleenex tissues

18

Vision: Parallel Perception
Executive improvement to parallelize vision processing

◦ Runtime 14:30 min -> 12 minutes

Make subsystems as fast as possible. Best teams could attempt 30+ bins in 15
minute time slot

19

Captur
e

image
1

Process Image 1

Grasp and
Deposit 1

Captu
re

image
2

Captu
re

image
3

Process Image 2

Grasp and
Deposit 2

Grasp and
Deposit 3

Process Image 3
Repeat 4x

Vision: Lessons Learned
• Need functionality to determine confidence in perception results
during runtime

• Lighting WILL be an issue, so plan accordingly

• Point cloud fusion techniques should be used to generate more
dense point clouds

• Reconsider sensor selection

20

Competition Results:
Stowage

Due to a judging error (we were given the
wrong input JSON file), we ended up running
our robot twice.

During the first run, we successfully put 7
items back onto the shelf. Our JSON was
scored as perfect due to the organizers error,
giving us a score of 88.

During the second run, we successfully picked
8 items but were deducted for a
misidentification, scoring 77.

Picking

During our picking run, we successfully picked
4 correct items but picked one incorrect item,
giving us an overall score of 33 points.

Due to some of our go/no-go criteria on which
items to pick to maximize score, we only
attempted picking up items in 7 of 12 bins,
which was a bit of a disappointment to watch
but definitely the right call due to all our
previous testing.

21

Additional Lessons Learned
• Improve traceability between off line testing and running the robot

• Dedicate time to optimizing score

• Make everything run as fast as possible

• Keep up good software development throughout the development
process

• Plan shipping, competition setup, and system verification well in
advance

22

Questions

23

SVE:
Testing Results Breakdown

Overall Results Failure Breakdown

Total Runs Successes Failures Overall % Segmentation ID grasping Suction arm motion

203 96 107 47% 11 35 44 12 5

24

SVE Encore:
Status

25

Upper 73.0%

mean 62.4%

Lower 51.9%

std 10.6%

7 Random Shelf Configurations

244 Grasp attempts

147 Successful Picks

97 Failed Picks

Vision: Stowage Identification
Stowage Identification Architecture 5/7/2016 ---
2nd slave computer will run kinect and tell the master which bin to go to and provide JSON changes
Filessrc/preprocess_id_image - subscribes to kinect and segments pc to cnnscripts/perception/* - Utilities for running CNN. Server for getting predictions
‘stowage_perception_srv’scripts/prediction_utilities.py - utilities for performing prediction. Can be used for offline simulations

scripts/stowage_perception_server.py - Main supernode; manages userdata and provides master a server interface
Network-setup.bash - exports ROS_IP and other network params

MessagesTo conform to new proposed architecture, should be contained in harp_apc/apc_msgsMaster-Slave Interface

Stowage_bins2targetapc_msgs/bin[] bin_contents

◦ 5int8[] tote_contents

◦ ---int8 target_bin

Stowage Perception Functions, upon service call...Call preprocess_image server to perform pointcloud segmentation

Call CNN to perform predictionUpdate Item belief state

◦ Perform prediction on all available predictions

◦ Does not renormalize after taking best guess (it provides betteroverall accuracy)Assign item to shelf bin

◦ If item is confusable -> send it to the bin with the confusable item

◦ If item is small -> send it to more dense bins

◦ If item is large -> send it to less dense bins

26

