
2/24/2016

Progress Review 9
Individual Lab Report #8

Abhishek Bhatia

Team D: Team HARP (Human
Assistive Robotic Picker)
Teammates: Alex Brinkman, Feroze
Naina, Lekha Mohan, Rick Shanor

1 | P a g e

I. Individual Progress

 For this progress review, our team’s major task was to get ready for the UR5 arm, wait
and pray that the arm gets delivered on time, and finally if the arm arrives, setup the arm
physically, interface the arm with ROS and access the APC configuration space. Luckily, the
arm got delivered just a day before the progress review and we were able to complete the
physical and software setup smoothly and were able to access the complete APC
configuration space.

After the last progress review, the first thing that I worked on for this progress review
was fixing the lab machine. During my last progress review, I had mentioned about the driver
issue making the Kinect_bridge to run only on CPU and not on GPU. Since, I was unable to fix
this issue with re-installing libfreenect drivers, I thought the fastest way was to reset the
machine, install Ubuntu from the scratch and reinstall all the drivers. This was a clean
approach and fixed the driver issue. To overcome such issues in future, we have decided to
not install any auto updates and install only the necessary drivers and updates.

After this, I worked on exploring color based object identification approaches. The

idea behind this was that since some of the items from the item dictionary had very distinct
colors, like the oreo’s with a lot of blue pixels, or the cheezeit box with a lot of red pixels, or
the duck toy (which gave us difficulty in identification using just the depth based method last
semester) with a lot of yellow pixels etc, it was probably worth for us to explore some simple
rgb based object identification techniques that can give us some prediction percentage which
we can combine with our current depth based metric to solidify our prediction. For this, I
started with a simple approach of making color histograms and comparing them with the
training dataset.

The first step was to read the point cloud and parse the rgb color values corresponding

to each pixel and convert it into the Lab color space. A Lab color space is a color-
opponent space with dimension L for lightness and a and b for the color-opponent
dimensions, based on nonlinearly compressed coordinates. The most important attributes of
the L*a*b*-model are device independence and is considered to be more robust in situations
with variable lighting conditions. The space is mapped onto a three-dimensional integer space
for device-independent digital representation, and for these reasons, the L*, a*,
and b* values are usually absolute, with a pre-defined range. The lightness, L*, represents the
darkest black at L* = 0, and the brightest white at L* = 100. The color channels, a* and b*, will
represent true neutral gray values at a* = 0 and b* = 0. The red/green opponent colors are
represented along the a* axis, with green at negative a* values and red at positive a* values.
The yellow/blue opponent colors are represented along the b* axis, with blue at
negative b* values and yellow at positive b* values, as shown below in Figure 1. The scaling
and limits of the a* and b* axes will depend on the specific implementation of Lab color, but
they often, and for our application run in the range of ±100 or −128 to +127 [1].

https://en.wikipedia.org/wiki/Opponent_process
https://en.wikipedia.org/wiki/Opponent_process
https://en.wikipedia.org/wiki/Lightness_(color)

2 | P a g e

Figure 1: Image displaying the color distribution along different axes for Lab color space

I wrote a simple parser in C++ to read a point cloud in rgb color space and wrote a

function to convert it to Lab. After this, I wrote a function to generate histogram bins. I kept
the bin width variable for all the three channels. The idea behind keeping the bin width
variable is to leave slack for experimentation and fine tuning. Finally, I wrote a function to
compare histograms. The compare function takes 2 histograms as input and returns the
comparison error, the less the error, the better the comparison. I researched a lot of methods
for histogram comparison and concluded on using the Quadratic-Chi histogram method for
bin-to-bin and cross-bin comparisons. The bin-to-bin comparison was simple root mean
square error comparison, but for the cross-bin comparison, I averaged the errors using
variable weights for comparisons within the bins that are not adjacent. Further details about
the approach can be figured out through this research paper: The Quadratic-Chi Histogram
Distance Family [2].

After this, Rick and I worked together to integrate rgb based histogram generation and
comparison as part of our original vision pipeline. The vision pipeline now uses the data from
both the depth based ICP approach and rgb based histogram approach to generate scores for
identifications of various objects. We still need to generate a huge database of test images
and test the integrated framework extensively, but for now, Rick generated a database of 20
images for some 4-5 objects from the APC item dictionary and we tested the integrated
framework which seemed to generate satisfactory results. Figure 2 displays the results from
our testing, we have 3 different items and 2 different images per item. The figure displays 20
bins generated, first 10 bins for ‘a’ color space and next 10 bins for ‘b’ color space. As it is
visible from the figure, each object type had very similar histograms for images in different
orientations and lighting conditions. We ignored comparison between the ‘L’ space as it
mostly concerns with the lighting condition.

3 | P a g e

Figure 2: Image displaying histograms generated for various test images

After this, the last thing I worked on before the progress review was to setup the UR5

arm as soon as we received it on Tuesday. Alex, Rick and I worked together to setup the base
and bolted the UR5 securely on the base, Figure 3. Later, Alex and I focussed on setting up
the arm to work with ROS. I installed the Universal Robots UR5 bring-up ROS package. First I
tested with the base package and standard test scripts, once I had that working, Alex and I
worked together to setup our teleoperation scripts and other scripts to test the APC
configuration space.

4 | P a g e

Figure 3: UR5 arm mounted on the base and 9-bin shelf visible in the background

II. Challenges

 The biggest challenge we faced this week was while setting up the UR5 arm to work

with ROS. While trying to work with the base UR5 bring-up package, we discovered there was

a bug with the UR5 bring up package. It was interfering with the updated firmware that our

UR5 arm had come with. One option was to downgrade the UR5 firmware, but we instantly

decided against it as we thought it was not a good idea to mess with the firmware on the first

day itself. Some further research and debugging landed us on a bug report online that

mentioned this issue was fixed with another unofficial release of the UR5 bring-up package.

We installed this updated package and it fixed this issue for us. Besides, to make the UR5 work

with our existing scripts, we had to do a lot of workarounds and hacks, but we were able to

make everything work eventually.

III. Teamwork

For this week’s progress review, we worked together to get ready and have all the

dependencies sorted out such that we could setup the UR5 arm seamlessly, as soon as we

receive it. Besides this, we worked towards trying out having a rgb based object identification

approach along with our current framework to improve the prediction accuracy. We also tried

5 | P a g e

out off the shelf perception packages such as simtrack [3] for identifying partially occluded

objects, and aruco hand-in-eye [4] ros package for Kinect camera calibration.

Alex: Alex wrote scripts for teleoperation of UR5 and other scripts to setup UR5 and test APC

configuration space once we setup the arm. He also worked on Kinect camera calibration

using the aruco eye-in-hand Kinect camera calibration package.

Feroze: Feroze worked on setting up simtrack and modelled some items from APC item

dictionary.

Lekha: Lekha continued with her work on the grasp planner. She generated grasping models

for 5 items from APC item dictionary.

Rick: Rick worked on setting up PERCH for some items from the APC dictionary. He also

worked on setting up the vision pipeline to include the rgb based identification functions

generated by me. He also worked on making minor modifications to the UR5 base to increase

its stability.

Abhishek: I worked on exploring and generating color histogram based object identification

techniques and later worked with Rick to integrate them with our existing vision pipeline.

IV. Future Plans

 My major targets for the next Performance Review are to continue working with rgb

histogram based object identification approach. There are multiple things to be done in this

respect that includes database generation and extensive testing, and parameter fine-tuning.

Besides this, Rick and I will also work to explore different machine learning techniques that

we can include as part of our vision pipeline to further improve the object identification

accuracy and look for techniques that can work well with partially occluded scenes. One major

bottleneck with these tasks is an updated list of APC item dictionary for this year, which we

hope to get by end of this week.

IV. References

1) https://en.wikipedia.org/wiki/Lab_color_space

2) http://www.ariel.ac.il/sites/ofirpele/publications/ECCV2010.pdf

3) http://www.karlpauwels.com/simtrack/

4) https://github.com/jhu-lcsr/aruco_hand_eye

https://en.wikipedia.org/wiki/Lab_color_space
https://en.wikipedia.org/wiki/Lab_color_space
http://www.ariel.ac.il/sites/ofirpele/publications/ECCV2010.pdf
http://www.karlpauwels.com/simtrack/
https://github.com/jhu-lcsr/aruco_hand_eye

