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 Abstract 

Our problem statement is inspired by the challenges faced by FMC Technologies Schilling 

Robotics personnel, while docking their Remote Operated Vehicle (ROV) to the Tether 

Management System (TMS). The ROV detaches and deploys from the bottom of the TMS when 

the system is at depth. The TMS is negatively buoyant and is suspended from a ship. As the ship 

heaves on the surface of the water, the TMS heaves up and down with a slight lateral motion. ROV 

Operators must dock and latch the ROV to the underside of the moving TMS before resurfacing. 

This can be very challenging for even experienced operators. Autonomous docking is the core 

problem we aim to solve. Through this project we will demonstrate the autonomous docking of a 

quadcopter to the underside of a suspended moving platform. The underwater environment will be 

simulated by functioning in a GPS degraded environment. At the end of fall semester we have 

completed our docking platform mechanical design and motion. For the quadcopter we have 

achieved autonomous hovering, pose estimation using Computer Vision (CV), and integration of 

CV and position control of quadcopter in simulation. The details of our design and implementation 

are outlined in this report. 
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1.   Problem Description 

1.1. Project Motivation 

Our problem statement is inspired by the challenges faced by FMC Technologies Schilling 

Robotics personnel, while docking their Remote Operated Vehicle (ROV) to the Tether 

Management System (TMS). The ROV detaches and deploys from the bottom of the TMS when 

the system is at depth. The TMS is negatively buoyant and is suspended from a ship. As the ship 

heaves on the surface of the water, the TMS heaves up and down with a slight lateral motion. ROV 

Operators must dock and latch the ROV to the underside of the moving TMS before resurfacing. 

This can be very challenging for even experienced operators. Collisions frequently damage the 

ROV and TMS. The tether is sometimes squeezed between the ROV and the TMS, which degrades 

the communication and power supply between the TMS and the ROV. At times, the tether breaks 

and the ROV falls to the bottom of the seabed, resulting in the need for another ROV to be deployed 

to bring it back. 

1.2.  Project Goal 

Through this project we will demonstrate the autonomous docking of a quadcopter to the 

underside of a suspended moving platform. This model will approximate the subsea system of 

ROV and TMS, complete with determining the safe conditions to dock and providing mechanical 

latching system that minimizes the forces between the quadcopter and the platform. The project 

focuses on an aerial counterpart as water testing and water-proofing an electric system provides 

challenges that the sponsor isn’t interested in. The underwater environment is simulated by 

functioning in a GPS degraded environment. 

2.   Use Case 

A developer at Schilling Robotics visits a trade fair and sees a retrofit kit that adds a minimal 

payload and the capability of autonomous docking to a platform moving in a single axis.  Having 

several customers of his unmanned undersea vehicle branch who want a method of navigating to 

a tether management system with their underwater remotely operated vehicle, he purchases the 

retrofit.  He reasons that it will be fun and possibly get him a pay point on his next performance 

cycle if he can demonstrate its usefulness to his supervisor.  He purchases the retrofit and declines 

to fill out a customer survey asking him what further features he wants to see in the next version, 

since this one has all the features he wants already. 

He receives the kit and spends a weekend setting up a dock as shown in figure 1.  The addition 

of the software changes to his Phantom 2 takes a few minutes and the hardware install is almost 

as swift.  It’s a windy day and the tree he’d tied his platform to was swaying quite a bit, and after 

his initial disappointment at the app telling him it was impossible to dock in those conditions, 

repeatedly mashing the ‘dock’ button finally proved effective and the drone successfully attaches 

itself to the dock without running into the tree.  It even weaves around his bird feeder and succeeds 

in avoiding a starling that appeared intent on driving the drone out of the air. He is pleased that the 

retrofit is light and not very cumbersome. 
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Figure 1: Quadcopter and Platform in adverse environment 

The developer secures funding from his supervisor and contacts the student team who launched 

the retrofit into a full product.  Though hesitant at first, they engage an attorney and draw up a 

limited use contract for the TDP of the docking kit.  The developer is happy, his boss less so when 

he sees what kind of royalties the developer had agreed to, and the developer realizes he’s going 

to have to work very hard for that pay point.  He gets going and succeeds in adapting the code for 

his customers’ ROV and TMS.  On its first test, the ROV collides with an undersea vent. However, 

the entire test is invalidated when they discover an octopus had attached itself to the ROV camera 

and that a warning had been displayed by the adapted software, but not where the ROV operator 

is used to viewing warnings and cautions. 

Finally, launch day arrives and the customer is pleased at the results.  The ROV docks without 

needing the use of a heave-compensated winch.  The ROV smoothly detaches from the TMS, goes 

about its mission, and returns to be hauled up on the TMS without incident (figure 2). The customer 

is also very happy with the user interface, which is a single toggle button, removing the need for 

lengthy training and decreasing the costs of using the ROV, since the operators don’t have to be 

as skilled at docking any more.  The developer gets a bonus from his supervisor, an angry letter 

from the sailors’ union, and a bill from the UAV kit developers after an independent audit.   

 
Figure 2: Successful Retrieval 

Future deployments of ROV systems aboard ships include the changes and a program to make 

sure the necessary changes is implemented on legacy ROV carriers as they are brought in for 

routine maintenance.  Costs across the fleet decrease and AO increases significantly. 
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3. System level requirements 

3.1. Functional Requirements 

3.1.1. The system shall 

F1. Have two major components: a quadcopter and a moving docking platform 

F2. Detect and communicate when docking and undocking is not possible 

3.1.2. The docking platform shall  

F1.1 Be moving until the quadcopter has been docked 

F1.2 Withstand the weight of the quadcopter once it has been docked 

3.1.3. The quadcopter shall 

F2.1 Localize itself w.r.t. the platform 

F2.2 Plan a path to the docking platform 

F2.2 Generate a trajectory from the starting position to the platform 

F2.3 Navigate to the platform 

F2.4 Dock/undock to/from the platform without any collision 

3.2. Non-Functional Requirements 

3.2.1. The system shall 

NF1. Function in a GPS degraded environment 

NF2. Be easy to operate, maintain, and repair 

NF3. Provide a user interface with DOCK and UNDOCK options and provide status 

NF4. Cost less than $3,000 to own over its life cycle 

3.2.2. The quadcopter shall 

NF2.1 Have a payload capacity of > 500g 

3.3. Performance Requirements 

3.3.1. Mandatory Requirements 

The docking platform will 

MP1.1. Have 1 degree of freedom along Z-direction 

MP1.2. Oscillate in harmonic motion with dominant frequency < 0.3Hz 

MP1.3. Have oscillations’ span ±200mm 

MP1.4. Have a locking mechanism which supports weight of 5kg  

The quadcopter will 

MP2.1. Localize w.r.t. platform within 50mm accuracy 

MP2.2. Navigate to the platform within 10 minutes 

MP2.3. Dock to the platform autonomously and without colliding within 10 minutes  



 MRSD Project – Dock-in-Piece  
December 17, 2015 

 

7 
 

3.3.2. Desirable Requirements 

The docking platform will 

DP1.1. Have 3 degrees of freedom along X, Y and Z-direction 

DP1.2. Have random movements in 3D space 

The quadcopter will 

DP2.1. Localize w.r.t. platform within 30mm accuracy 

DP2.2. Navigate to the platform within 5 minutes 

Changes in requirements since the preliminary design review 

F2.4 Dock/undock to/from the platform without any collision 

NF3. Provide a user interface with DOCK and UNDOCK options and provide status 

The requirement for undocking has been removed and more focus has been set on the docking 

process. This was done because we are making the project as analogous to the undersea problem 

that the Schilling personnel as possible. They are more interested in the autonomous docking 

process. 

MP2.1. Localize w.r.t. platform within 50mm accuracy 

Initially, we had planned for the quadcopter to dock to the platform with +/- 5cm accuracy, but 

during testing, the quadcopter faced significant drift indoors. Thus, we changed the requirements 

to +/- 50 cm accuracy. The docking mechanism has also been changed accordingly.  

F2.2 Plan a path to the docking platform 

 F2.2 Generate a trajectory from the starting position to the platform 

The previous requirement suggests that the quadcopter plans the shortest path to destination in 

an obstacle filled space. But what we plan to do is to have the quadcopter move from the starting 

point to the point that is right underneath the platform and then dock to the platform at the right 

moment. 

4. Functional Architecture 
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5. Cyber-physical Architecture 

5.1. Docking Platform 

 
Figure 4: Cyber-physical Architecture for Docking Platform 

The architecture, shown in Figure 4, is divided into three abstractions for the docking platform. 

The software abstraction encompasses the algorithms used to create the up-down harmonic motion 

of the platform at a user-defined frequency within a fixed range. The algorithm is shown in figure 

6. It also processes the sensor readings from the IMU to determine the frequency of platform 

motion as outlined in figure 5. The electronic abstraction shows the different electrical equipment 

and electronic devices and their connections to run the algorithms from the software abstraction. 

It comprises of an IMU, two Arduino Unos, and stepper motor and driver for creating and sensing 

the platform motion. There are two different power supply voltages. The motor driver requires 24 

V to 92 V DC and the Arduino and sensors need 5V DC. The information gathered from the sensors 

will be sent to the quadcopter SBC using a Wi-Fi module which comprises the communication 

block. The lines from the software abstraction show which processor runs the processes. There are 

two separate Arduinos: (1) for the motor speed control and (2) for processing sensor data. Lastly, 

the mechanical abstraction holds the mechanisms that allow the software algorithms to manifest 

into the physical realm. The stepper motor rotates the crank of the crank-slider mechanism which 

causes the slider and hence the platform to move up and down. The gear train is used to obtain 

high torques. For the locking mechanism a metal sheet would be placed on the bottom of the 

platform to which the quadcopter can attach using an electro-permanent magnet.  
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Figure 5: Flowchart for frequency calculation using IMU readings 

 
Figure 6: Flowchart for Stepper motor control 
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5.2.  Quadcopter (DJI Matrice 100) 

Similar to the docking platform’s sub-division, the cyberphysical architecture of the 

quadcopter is divided into three subsystems: Software, Electronics, and Mechanical. The 

architecture shows the flow of data and energy, in addition to which electronic components harbor 

which software process. First, figure 7 shows the energy flow in the quadcopter. As shown, there 

are 4 different types of power flowing in the quadcopter. The main power is supplied by the 

quadcopter’s battery (22.2V). This power is pulled down to 5V using a Batter Eliminator Circuit 

(BEC) to power the Nicadrone and the Odroid. The Odroid in turn provides power via USB to the 

webcam and the Wi-Fi module. Lastly, the Guidance sensors are powered internally by the 

Guidance package. 

QUADCOPTER

Electronics

Processor

ESC

Odroid XU4

N1 Flight 

Controller

4 ESCs

Communication

Module Antenna

Software

Flight Controller 

Controls

SBC Processes

Trajectory Generation

Communication

Sensor

(Guidance SDK)

Vision

April Tag Detection

Dock Detection and 

Tracking

Mechanical

Sensors

Motors

4 Motors

Guidance mount

Docking

Locking Mechanism

Nicadrone

Sensors

Guidance

IMU
5 Stereo 

Cameras

10 

Sonars

Webcam

USB

22.2v

5v

iNTERNAL

LEGEND (Connections)

PDU

Power Source

LiPo 4500mAh

Battery 

Eliminator 

Circuit

Software

Electronics

Mechanical

LEGEND (Blocks)

Figure 7: Energy Flow Cyberphysical Architecture of Quadcopter 

Second, figure 8 provides the data flow within the quadcopter. The guidance internally 

communicates with the IMU, stereo cameras, and sonars and fuses them to provide information 

over USB to the Odroid. The Guidance also communicates, internally, with the N1 flight control, 

making the flight more stable in a GPS degraded environment. Since images aren’t transferred to 

the N1, the communication is done through UART. On the other hand, the communication with 

the Odroid occurs over USB to gain more bandwidth. The Webcam communicates its images via 

USB to the Odroid, which is used for AprilTag detection. The Odroid communicates with the user 

via the wireless module, using a USB link to the module. Lastly, the motors are controlled via 

ESCs, which are controlled by the N1 flight controller. 
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Figure 8: Data Flow Cyberphysical Architecture of Quadcopter 

Last, figure 9 shows the electronic components the harbors each of the two software processes. 

There are two software processes running on the quadcopter. One to provide low level controls for 

the quadcopter’s motion. This process is run on the N1 flight controller. Another process provides 

the higher level functions, such as AprilTag detection and stabilization under the platform. These 

processes are running on the Odroid XU4. Lastly, the guidance uses sensor fusion on the IMU, 

stereo camera pairs, and the sonars to provide different outputs. This code is run on the Guidance’s 

internal computer. 

The code architecture for the quadcopter is depicted in figure 10. The guidance SDK 

instantiates the Guidance parser node, which takes the serial information from the USB bus and 

publishes topics with the relevant information. DJI’s onboard device SDK instantiates the N1 

parser node, which takes serial information from the N1 Flight controller and publishes appropriate 

topics. The N1 parser node also acts as the middleman to talk to the N1 by providing a set of 

services and action servers. Using these services and actions, the navigation node navigates the 

quad through preplanned motions. The AprilTag node talks to the webcam through an usb_cam 

interface and runs the AprilTag detection algorithm and publishes topics with the pose 

transformation from the tag to the camera. Lastly, all the data published as topics are logged into 

rosbags using the Logger node.  

To fly the quadcopter a series of steps need to be followed, which was implemented in a state 

machine. The state machine defines the actions of the Navigation node. The complete state 

machine is shown in figure 11. As shown, the navigation node first waits till the onboard device, 

Odroid XU4, has been activated. The activation takes place when the onboard device sends an 

activation key to the N1 flight controller, which checks the validity of the key. The quadcopter is 

connected to a remote controller and the RC is connected to Wi-Fi enabled smart phone.  
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Figure 9: Code Flow Cyberphysical Architecture of Quadcopter 
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Figure 10: Code Architecture Quadcopter 

The N1 uses the internet on the phone to validate the key. Once the validation is complete, the 

navigation node moves on to requesting control of the quadcopter from the N1. If the user places 

the quadcopter into anything but ‘F’ mode, the N1 will not provide control to the onboard device. 

Once the Odroid gains control, the quadcopter is requested to take off and hover in position. After 

5 seconds, a destination location is provided. Once the destination is reached, the state machine 

hovers the quadcopter for another 5 seconds. Lastly, the quadcopter lands, and the Odroid 

relinquishes control of the quadcopter and stops execution. During any appropriate point, if there 

were an error, the navigation node goes into an error state. The implemented errors are provided 

in the figure 11. Additionally, if the Ctrl+C signal is detected the navigation node requests the 

quadcopter to land, relinquishes control, and ceases execution.  
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Figure 11: Finite State Machine Quadcopter 

6. Current System Status 

6.1. Fall Semester Targeted requirements 

In the fall semester, we sought to implement subsystems that are core functionalities with high 

dependency for other subsystems. In particular, we sought to create a base validation of our 

conceptual design before we implemented any additional features for our system. As such, we 

decided to prioritize the docking platform with IMU and the motor, quadcopter hovering and 

computer vision as the initial set of subsystems to focus on. The following requirements are all 

that we had addressed this fall. 

• The docking platform shall 

– MF1.1 Be moving until the quadcopter has been docked 

– MF1.2 Withstand the weight of the quadcopter once it has been docked 

• The quadcopter shall 

– MF2.1 Localize itself w.r.t. the docking platform 

– MF2.2 Generate a trajectory from the starting position to the platform  

– MF2.3 Navigate to the platform 

MF1.1 and MF1.2: The docking platform has been fabricated from scratch, it has been made to 

move in the z direction and it has been tested for handling weights up to 5 kilograms.  

MF2.1 and MF2.2: An IMU is fixed on the platform to identify the frequency and amplitude of 

the platform motion, which will be fed to the quadcopter to help it decide when to dock. Computer 

Vision subsystem was implemented to address the localization part of the requirements. 
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MF2.3 The quadcopter was made to hover autonomously and it was made to move from point A 

to point B successfully in simulation, but unfortunately we couldn’t show it in the Fall Validation 

Experiment because of the crash of the quadcopter. 

6.2. Current system/subsystem descriptions/depictions 

6.2.1. Docking Platform 

 
Figure 12: Sub-system components of docking platform  

The docking platform can be divided into three major sub-systems as shown in figure 12. 

 

Figure 13: Overall component layout of Docking Platform 

The mechanical design is a slider crank mechanism and the platform is 

connected to the slider. As the crank rotates the slider moves up and down, 

causing the desired harmonic motion of the platform. A stepper motor is 

coupled with the crank and can create rotation at different speeds. Based on 

our performance requirements, the frequency of up-down motion of the 

platform can vary between 0.15 to 0.3 Hz. This variation is obtained by 

changing the control input to the stepper motor controller, an Arduino Uno. 

The system layout is shown in figure 13. The actual platform is shown in 

figure 14 and the gear train and the stepper motor is shown in figure 15. [1] 

[2] [3] 

Docking 
Platform

Mechanical 
Design

Electrical 
Design

Sensors

Figure 14: Crank 

Slider mechanism of 

Docking Platform 
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The motion of the platform is sensed using an 

Inertial Measurement Unit (IMU) - MPU 6050. The 

waveform obtained from the acceleration values 

(shown in figure 16) is used to find the frequency of 

the platform motion. This information would be 

subsequently provided to the quadcopter to determine 

the right instant to dock. The accelerometer values are 

read in real time through MATLAB and a Fast Fourier 

Transform (FFT) is performed to obtain the dominant 

frequency. The FFT of the waveform shown in figure 

16 is shown in figure 17. The dominant frequency is obtained by subtracting the peak in FFT from 

the maximum range, for example as seen in figure 17 (left plot), dominant frequency is 50 – 49.8 

= 0.2 Hz. 

 
Figure 16: IMU Readings (left) Frequency: 0.2Hz (right) Frequency: 0.27 Hz 

 
Figure 17: FFT response for the waveforms shown in figure above (left) Frequency 0.2 Hz (right) Frequency 

0.27 Hz 

6.2.2. Quadcopter 

The quadcopter system includes the DJI Matrice 100 

with the Guidance, shown in figure 18. [4] [5] The 

Guidance provides the N1 flight controller more stable 

velocities using optical flow. The N1 Flight controller runs 

low level control algorithms, while the single board 

computer (Odroid XU4) runs higher level processes as 

explained in the cyberphysical architecture section. 
Figure 18: DJI M100 with Guidance 

Package 

Figure 15: Gear train and stepper motor of 

docking platform 
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Current status of the code on the quadcopter is depicted in figure 19. Although the Guidance is 

connected the N1 and is being used for flight stabilization via optical methods, the data isn’t being 

logged or implemented using the Guidance SDK on the Odroid XU4. 

Single Board Computer
(Odroid XU4)

N1 Flight 

Controller

Guidance 

Package

Webcam
Apriltag 

Node

Navigation 

Node

Logger 

Node

N1 

Parser 

Node

Guidance 

Parser 

Node

USB

UART

RED – Not Done

GREEN - Completed

 
Figure 19: Code Architecture Quadcopter Status [6] [7] 

Table 1 shows the functional progress on the quadcopter. Although we had planned to the 

move the quadcopter from Point A to point B during the fall validation experiment, due to a crash 

we couldn’t do so. As such, we instead integrated AprilTag detection with the navigation node and 

moved the quadcopter in accordance to the distances provided by the AprilTag node. Basically, 

the AprilTag node would detect an AptrilTag 5 cm away in the x-direction, and the navigation 

node would decrease this error. 
Table 1: Status of Quadcopter 

Complete To-Do 
Stable Hover Point A to B in reality 

Manual Safety Override Localization with respect to Dock 

Logging Data Stabilizing under Dock 

AprilTag Detection 
Rising up to meet the docking platform 

Computer Vision Integrated Point A to B in Simulation 

6.3. Modelling, Analysis and Testing 

6.3.1. Docking Platform 

The docking subsystem is the testing apparatus in our project that emulates the Tether 

Management System’s up and down motion (heave) which is either caused due to the waves on 

the surface or because of the spring like nature of the tether. In either case the motion produced is 

harmonic. To accomplish this project’s mandatory requirement, we will be docking on a moving 

platform with a single harmonic.  

Overall the docking platform consisted of 3 major areas of work –  

 Mechanical 

 Motor 

 Sensors 

The mechanical section consisted of the design, modelling and fabrication of the dock.  Once 

the trade studies between various possible dock designs were done, component selection and final 

design went hand in hand towards the final dock design.  
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To reach to the final dock design various designs for possible docking platforms were 

prototyped. Since it was an integral part in the success of the project, we decided to make 

prototypes for each version instead of rushing into the decision. These prototypes were tested on 

the criteria listed in the table below (table 2) which is a trade study between the 3 prominent design 

solutions that were discussed by the team. 

Table 2: Trade Studies for Docking Platform 

Criteria Weights Geared Crank-Slider Rack-Pinion Ball Screw 

Power Requirements 30 9 7 2 

Ease of Operation 15 9 4 4 

Ease of 

Manufacturability 

20 4 4 8 

Accuracy 15 9 6 8 

Reliability of 

mechanism 

20 7 4 9 

TOTAL 100 7.6 5.2 5.8 

The three designs that were 

considered were   

 Rack and Pinion 

This design included a 

platform connected to a rack 

and a pinion gear attached to a 

direct current motor. (Figure 

20) This was rejected due to its 

complexity, both in design and its control as it reduced the 

reliability of the mechanism. 

 Ball screw 

In this design we attached a ball screw to a cantilevered platform. Even though the design 

handled the load well without many deflections, it was rejected due to the high power required by 

the motor to drive it. It was around this time that we realized that our quadcopter drifted quite a bit 

and that having anything closer to it would be too dangerous. All future designs, therefore, had 

nothing under the platform. 

Figure 20  Rack and Pinion 

Prototype 

Figure 21: Ball Screw Prototype 
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 Geared crank slider -  

This design was rejected initially since it couldn’t take a mixture 

of frequencies or variation in amplitude. However, revisiting our 

mandatory requirements we saw the need of only one frequency at a 

time to fulfil it and a 3D printed prototype was built to test its 

feasibility. The sinusoidal motion was mechanically present because 

of the design and hence the control was easy with just velocity inputs 

being given. 

Between a DC motor, Servo motor, and stepper motor we rejected 

the dc motor because of its complexity in control and the chose the 

stepper motor over servo motor because it had better holding torque. 

Servo motors were more expensive for the same amount of torque 

they provided, and a stepper motor was chosen. 

For the final design, the CAD model was made on SolidWorks, 

considering every manufacturing aspect and parts from McMaster-Carr 

were selected. (Figure 23) While performing the calculations, to keep a 

safety margin the whole mechanical and electrical system was oversized 

by a factor of 2. So instead of 5kg, all calculations were done for 10kg. 

This was done in 3 stages: 

o Testing the motor without any mechanical appendages. 

 This was to get the basic motor control logic 

working right. 

o Testing with the gear train (but no load) 

 This was to ensure that the gear reduction and other tweaks due to an added 

gear train were right. 

o Testing with the entire platform setup. 

 This was to fine tune the motor control to account for slip because of the 

weight of the platform  

To make the project as analogous to the real problem as possible, we chose an accelerometer 

to find the frequency and amplitude of oscillation. While the manufacturing of the actual platform 

was in progress, the 3D printed prototype was used to get the sensor readings right and were 

verified using a stopwatch.  

Once these 3 components were integrated we found out that there was an error of ± 0.1Hz in 

every reading that we got. We also performed a load test on the platform and the platform could 

withstand loads up to 11.40 lbs and broke down at 13.2lbs. Both these numbers were more than 

our quadcopter’s maximum possible weight (7.5 lbs). An important thing to note is that oversizing 

by a factor of 2 worked perfectly for us as the system was design for 22lbs and could withstand 

11.4lbs only, just like we had anticipated. 

Figure 23: CAD model of 

Platform 

Figure 22: Geared Crank Slider 

Prototype 
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6.3.2. Quadcopter 

There were two sections that we focused on during the fall semester: AprilTag Detection and 

Motion. The development was tested using unit tests depicted in figure 24. The final result of the 

development was the AprilTag node publishing how far the tag is in each axis and the quadcopter 

travelling to decrease this error.  

Pose detection of 

AprilTag using Laptop

Robustness to lighting 

variation on Odroid

Hover and manual control 

using Laptop as the onboard 

device and quadcopter flying 

in simulation

Autonomous Hover and 

landing using Laptop as the 

onboard device and 

quadcopter flying in 

simulation

Autonomous motion using 

Laptop as the onboard 

device and quadcopter flying 

in simulation

Hover and manual control 

using Odroid as the onboard 

device and quadcopter flying 

in simulation

Autonomous Hover and 

landing using Odroid as the 

onboard device and 

quadcopter flying in 

simulation

Autonomous motion using 

Odroid as the onboard 

device and quadcopter flying 

in simulation

Hover and manual control 

using Odroid as the onboard 

device and quadcopter flying 

in reality

Autonomous Hover and 

landing using Odroid as the 

onboard device and 

quadcopter flying in reality

Autonomous motion using 

Odroid as the onboard 

device and quadcopter flying 

in reality

Quadcopter move to 

points detected by 

AprilTag node

Pose detection of 

AprilTag using Odroid

Increasing tag detection 

rate on Odroid

Computer Vision Quadcopter Motion

 
Figure 24: Development Procedure for the Quadcopter during Fall 2015 

Quadcopter motion was tested using the set-up detailed in figure 25. When the quadcopter is 

run on the simulation the drone is connected via a USB cable to the laptop running the simulation. 

Whatever commands are provided to N1 are sent to the simulation internally and used to run the 

drone in the simulation. Additionally, the Remote Controller is present for emergency takeover. 

However, the mode is set to ‘F’ when Odroid needs to be in control. The mode needs to be changed 

to ‘A’ when manual override needs to be activated. The code is run by opening a secure shell from 

a laptop. Data from all the topics are logged using rosbags as mentioned above. 
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N1 Flight 
Controller
(Motion)

Single Board 
Computer

M100

UART (OPEN PROOCOL)

Laptop

Wi-Fi/
Wi-Fly

SSH

Overall Test Setup

Remote 
Controller

For EMERGENCY

Webcam
(AprilTag)

 
Figure 25: Test Set-up for Quadcopter Testing 

Analysis was performed on the logged data. For example, the velocity controller on the 

quadcopter needed to be validated before implementing a position controller. To do this, the 

quadcopter was flown using the velocity controller in simulator, and figure 26 depicts the logged 

velocity data. Note, positive Z is pointing down, making the initial negative velocity the liftoff and 

the final positive z-velocity the landing. A sequence of velocity commands in the x and y axes 

were provided with a magnitude of 2 m/s. This graph validated our use of the velocity control 

service exposed by the N1 parser node. 

 
Figure 26: Velocity Test Data from Simulation flight 

A more interesting show of our analysis is provided by the figure 27. This figure is taken when 

the quadcopter was in flight, not in simulation. The graph shows the huge spike in the z-axis 

velocity in the positive direction, which is consistent with a fall. This graph is the result of giving 

a position offset of 1m in both x and y direction. The main take-away from this graph is that 

changing the local navigation action exposed by the N1 parser node is troublesome as there are 

dependencies that aren’t clear. The local navigation action is the actionlib instance that takes the 

quadcopter to a requested destination.  
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Figure 27: Velocity Data from the Crash 

6.4. Performance evaluation against the Fall Validation Experiment (FVE) 

Table 3 highlights the key objectives of the FVE and our performance. As it can be seen we 

were able to achieve most of our goals. The major one which could not demonstrated was the 

navigation of the quadcopter from point A to point B. This was because a day before the FVE the 

quadcopter crashed into the ground and broke a critical part for which we hadn’t planned for a 

spare. The crash is attributed to the insufficient rate of velocity integration to yield position status. 

Since, the position changes were not updated fast enough the error in position accumulated which 

led the N1 flight controller to give a high roll rate which caused the quadcopter to flip and crash 

into the ground. However, autonomous take off, hover, and landing was demonstrated by 

borrowing parts from another team at Field Robotics Center. To compensate for this we integrated 

the CV node with the position control node of the quadcopter and achieved motion of quadcopter 

in simulation by the error distances amount obtained by moving the camera w.r.t. the AprilTag.  

Table 3: Performance against FVE targets 

Requirements Expectations FVE FVE-ENCORE 

MP1.1, MP1.2, 

MP1.3 

Docking platform shall move 

according to the given input frequency 

in Z-direction 

Successful Successful 

MP1.2 Sensor gathers data from the motion 

of the platform and outputs the 

frequency within an accuracy of 0.05 

Hz 

Successful Successful 

MP2.2 Quadcopter shall be able to 

autonomously hover 
Successful Successful 
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6.5. Conclusions 

The key strengths and weakness of our developed sub-systems are listed in table 4. 

Table 4: Strong and weak points of our system 

STRENGTHS WEAKNESSES 
Docking platform is robust Velocity control not stable in Matrice 100 

Motor is powerful Flight controller code is not accessible 

April Tag works suitably even in low lighting Cannot provide state estimation values to flight controller 

IMU is giving accurate readings 
Not able to find suitable place to mount the platform 

Indoor hovering is stable using guidance 

The motor and platform are strong enough to withstand the weight of the quadcopter after it 

has docked. A 100% margin was used while selecting the motor. Currently, it can withstand weight 

of 5 kg at 60V and the maximum take-off weight of the quadcopter is 3.4 kg. Higher torques can 

be achieved at higher voltages. The accuracy of IMU readings is critical to our project because 

these values will be transmitted to the quadcopter and used to determine the suitable moment to 

initiate the docking operation. The April Tag detection is working suitably in low light conditions 

as well as when the resolution is reduced to one-fourth of the original resolution. Also, the tag 

detection rate is 20 Hz in poor lighting conditions. We are able to achieve stable hover of 

quadcopter indoors using the Guidance. However, when we try to give velocity commands for 

position control, it drifts significantly. This is because the default position control in Matrice 100 

is done using GPS coordinates. 

Another weakness is that the flight controller’s code is not accessible to us and we cannot 

provide state estimation values to it. Thus, the only possible option to do position control is to 

provide velocity commands. The loop is closed using information provided from the IMU sensors 

and the Guidance’s cameras. The IMU does not provide accurate position estimates due to high 

noise. The Guidance uses optical flow to calculate velocity. This is effective only if there are 

significant non-repeating features available for tracking.  

To overcome the weaknesses of our quadcopter we first need to set safe limits to yaw, pitch 

and roll commands. Further, we need to confirm that the manual override is functional by testing 

MP2.2 Quadcopter shall move autonomously 

from point A to point B 
Unable to 

demonstrate 

due to lack of 

spare parts 

Unable to 

demonstrate due to 

lack of spare parts 

MP2.1 The camera should detect the 

AprilTag and ascertain the distance to 

be moved within 5% error 

Successful Successful 

MP2.1 The camera should detect the 

AprilTag moving and therefore make 

the quadcopter move by the error 

distance in the simulation to make the 

error zero. 

Not planned 

initially 

Successful 
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it at least ten times.  For CV we need to increase the detection rate further. Implementing Lucas-

Kanade tracking should help us in achieving this. Further, using a camera with higher frame rate 

should also contribute to an increased detection rate. 

7. Project Management 

7.1. Work Breakdown Structure 

 
Figure 28: Work Breakdown Structure  

Our project is broken into four major components: the three subsystems of the Dock, 

Quadcopter, and User Interface along with our overall Project Management aspect. Below those 

are the necessary activities and capabilities that support each component (Figure 28). Red items 
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are not started, yellow are in progress, and green are either completely finished or have a process 

in place to refine and continue without needing significant input or effort to do so.  Many resources 

are shared between capabilities within each subsystem, so progress in one part of the subsystem 

often means progress in another. 

7.2. Schedule 

Our schedule is integrated with our progress review (PR) goals, each subsystem we intend to 

implement or unit we intend to test being a demonstration at the PR (Table 5).   

Table 5: Schedule 

Timeline  Progress Review  Milestone  

Late January  PR 7  Quadcopter motion from Point A to B 

Mid-February  PR 8 Determine position and velocity of platform using CV 

and sensors  

Late February  PR 9 Quadcopter localization with respect to the platform 

Stabilization of Quadcopter under the Platform 

Docking to the platform with the Nicadrone  

Mid-March PR 10 Achieve docking on moving platform  

UI integration 

Early April  PR 11 Testing and refinement 

Mid-April  PR 12 Testing and refinement 

 

 
Figure 29: Timeline 

With our dock functional, our schedule is almost all quadcopter related subsystems being 

implemented and integrated. Taking into consideration our scope being decreased from the dock 

having three different waveforms being summed into its harmonic motion to one, and us no longer 

having graceful undocking as a requirement, we are still one unit test behind schedule. This item, 

A-to-B navigation has been moved to being our first subsystem to be completed for our first PR. 

After that, dock motion estimation is our next big hurdle as it may be simple but may also turn out 

to need different sensors or a new approach. Finally we will begin on navigation and docking 

starting with a stationary platform and then a moving on, concurrent with development of our user 

interface. We are including two PRs – approximately a month and a half – for integration, logistics 

delays, unexpected failure modes, and other slips. While this may at first appear as if it leaves us 

nothing to demonstrate between PR 10 and SVE, we will be restoring de-scoped requirements to 

the project if there are no significant delays. (Figure 29) 
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7.3. Test Plan 

7.3.1. PR Test Plan 
Table 6: PR Test Plan 

PR #  Timeline  Capability Milestones  

PR 7  Late January  Autonomous navigation of quadcopter from point A to B within 5 m radius  

PR 8 Mid-February  Robust estimation of position and velocity of platform using CV and sensors  

PR 9 Late February  System Integration - Quadcopter docks to stationary platform 

User Interface designed and communicates with the quad & platform  

PR 10 Mid-March Achieve docking on moving platform  

UI receives status as requested by the user  

PR 11 Early April  Testing and Refinement  

PR 12 Mid-April  Testing and Refinement 

As mentioned above (Table 5), our schedule and PR test plan are almost identical, as we intend 

to use the PRs as our drumbeat for completion of important units and subsystems, as well as final 

integration. (Table 6) PRs 11 and 12 are currently free, and will be filled by either delayed tests or 

restoration of de-scoped items. 

7.3.2. Spring Validation Experiment 

Location: Newell-Simon Hall, Level B 

Equipment to be used: DJI Matrice100, Guidance, Designed Platform, Power Supply, Laptop 

Capabilities Proved: System determines correct moment to dock, quadcopter docks with platform 

without collision 

Test starting setup: Quadcopter will be on the ground within a five meter distance from the 

platform. (Figure 30) 

 
Figure 30: Test setup starting position 

Platform Subsystem Test Procedure (Fig 30) 

 Turn on the power to platform 

 Enter frequency for platform motion from user interface (UI) within range of 0.15 to 0.3 

Hz) 

 The frequency of platform motion changes to the input frequency 
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 Motion is detected by sensors and graph is plotted showing that the motion is the desired 

frequency waveform (i.e. frequency detected is the frequency entered by the user) 

 
Figure 31: Platform Subsystem Test Flow 

The platform will remain active during testing of the quadcopter and overall system. 

Quadcopter Subsystem and Full System Test Procedure (Figure 32) 

 Place the quadcopter on the ground within 5 m from the platform and turn on the power 

 Initiate docking operation from the user interface and view flight status  

 The quadcopter will take off and search for the platform 

 The quadcopter will locate the platform and travel horizontally to a hover point below the 

platform 

 The quadcopter will hover 1m below the platform (within 0.5 m accuracy in X-Y plane) to 

determine the safe instant to dock 

 The quadcopter will engage its Nicadrone electro-permanent magnet and dock to the 

platform without collision within 10 minutes from initiation  

 The velocity of quadcopter with respect to the platform will be less than 50 cm/s when 

quadcopter is moving up towards the platform 

 Platform motion will stop and UI will display “DOCK SUCCESSFUL” 

 Quadcopter will remain securely attached to the dock with its propulsion turned off for at 

least 30 seconds. 

 Repeat above steps 5 times with different starting positions and different frequencies of 

platform. Docking should be successful 60% of the times.  
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Figure 32: Fall Validation Experiment System Flow 

Note: The User Interface may not be implemented on a smart phone but instead implemented on 

laptop. Since this is not a part of our requirements we have changed it in our SVE testing procedure. 

7.4. Budget 

Table 7: Refined Parts List 

Item Cost Type Funding Source Comment 
DJI Matrice 100 $3,299.00 Capital Sponsor Developer Quadcopter 

DJI Guidance $999.00 Capital Sponsor Sensor suite and collision avoidance for 

quadcopter 

Guidance 

Connector Kit 

$79.00 Consumable Sponsor Connectors for Guidance 

TB48D Battery $199.00 Capital Sponsor Extra Battery 

Spare propellers $150.00 Consumable Sponsor Spare Propellers 

Physical Dock 

Components 

$554.11 Consumable CMU Components used to construct dock 

Quad Electronics $591.55 Consumable CMU Electronics mounted on quadcopter 

Dock Electronics $393.87 Consumable CMU Electronics that were mounted on dock 

Quadcopter Spares $415.00 Consumable CMU Spare Legs for Quadcopter 

Our sponsor contributed $5000 of equipment to our project, and we used that to purchase our 

big ticket items – the quadcopter and the Guidance which comprise the majority of the budget 

(Table 7). Our $4000 from the MRSD program was used to buy many small items which were 

combined into larger subsystem components like the dock structure and the motor control 

architecture.   

Table 8: Budget Summary 

CMU total budget $4,000.00  Sponsor total budget $5,000.00  

Total Executed from CMU $1,954.53  Total Executed from sponsor $4,726.00  

CMU budget remaining $2,045.47  Sponsor budget remaining $274.00  



 MRSD Project – Dock-in-Piece  
December 17, 2015 

 

28 
 

Our sponsor budget is almost completely exhausted, being approximately 95% executed. This 

was almost all done at the very beginning so we could purchase our quadcopter and the necessary 

components for it. Our CMU budget is approximately 50% executed, with few expenditures 

expected next semester, as most of our progress will be in software rather than hardware. (Table 

8) 

7.5. Risk 

Table 9: Risk Summary 

 
Severity 

     

Probability A B C D E 

  Negligible Low Moderate Severe Catastrophic 

5 Nearly Certain 0 0 0 1 0 

4 Likely 0 1 0 5 0 

3 Possible 0 1 2 1 0 

2 Unlikely 0 1 1 1 0 

1 Rare 0 1 0 1 3 

Currently, we are doing very well in our lower and mid-level risks. However, we have many 

high level risks (Table 9), almost all dealing with possible failure modes that would damage the 

quadcopter. See Appendix A for a full listing of our risks. Risk ID 5, 6 7, 19, 23, 24, and 25 involve 

direct physical risks to the quadcopter. Each failure mode is captured as a separate risk, as most of 

them require different methods of being mitigated and prevented. We intend to do a more rigorous 

Failure Mode Effects Criticality Analysis (FMECA) next semester. Our other high level risks are 

logistics and supply chain issues involving delays in shipping and difficulties finding places to test 

where we can place a large, heavy dock and have room to fly the quadcopter. 

8. Conclusions 

8.1. Lessons Learned 

As with many teams, our largest lesson learned is requirement generation and tracking. We 

originally had many requirements that our customer thought would be useful but they didn’t need.  

By reducing our scope to what our customer absolutely needs, we’ve streamlined our process and 

expectations so we can produce a working system.  

Our trade studies also did not have logistics and maintenance as columns.  While this would 

have been difficult in many cases, further research may have helped us realize that our main 

Immediate Action Urgent Action Action Monitor No Action 
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suppliers for vehicle and motor had very long lead times for delivery. In both cases we had to wait 

over a month for key components during which development in non-key areas.   

Communication was a big problem during sprints. Next semester’s schedule permits a more 

structured teaming process so that we don’t lose sight of the full system as we implement 

subsystems. Our documentation was also not kept up to date during these periods, producing 

lengthy catchup periods as we entered large volumes of information into our databases. 

Securing appropriate test facilities was and remains a lesson we are learning. Our quadcopter 

needs a large area to work in that is completely netted off, but it also needs to land on the ground 

during unit testing. We also need a space to put the dock where it is far enough up for the 

quadcopter to maneuver around it, and is secure enough to hold the entire assembly while it’s 

suspended. Our lesson there is that we need to be more proactive in finding test facilities.   

8.2. Key Activities 

The last lesson influences many of our actions when deciding what we need to do with our 

other lessons learned.  We have reserved the final month and a half of development for schedule 

slips, unexpected integration issues, and if there’s still time we’ll implement de-scoped 

subsystems.  We don’t have another semester to push delayed development into, so it’s better to 

end early than end late. 

The final lesson’s actions will help us with the first lesson learned, keeping us from going into 

long and uncontrolled sprints that stop us from having full team meetings in which we track our 

requirements using a rigorous process.  We have a method for accountability, but it was neglected 

in the final month as we attempted to brute force develop the subsystems we’d planned on showing 

for fall.   

We do not expect to have any actions related to the second lesson.  Our purchases and decisions 

have been made and it is highly unlikely we will be altering our planned hardware or software 

method now. 

Again, our month and a half of open time will help us with communication, as we won’t feel 

as if talking to each other keeps us away from our subsystems.  We will also find some way of 

centralizing control, though this may mean that developers are tasked with more non-technical 

work than their peers. 
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10. Appendix A 

 
Table 10: Column IDs for the Risk List Table below 

Column ID Name 
1 Risk 

2 Probability 

3 Severity 

4 Date Identified 

5 Requirement Impacted 

6 Consequence 

7 Mitigation 

8 Risk Type 

9 Action to Take 

 

 
Table 11: Complete List of Risks 

ID 1 2 3 4 5 6 7 8 9 

1 

DJI SDK is an 

unsuitable 

development 

platform 0 0 10/2/2015 

F2.1-4 , 

MP2.1-

3 

Quadcopter 

subsystems not 

complete on 

schedule   Cost  

No 

Action 

2 

Matrice cannot 

support our 

needs 2 B 10/2/2015 

F2.1-4 , 

MP2.1-

3 

Need new 

quadcopter 

Research 

prior to 

purchase Cost  

Monito

r 

3 

Guidance 

sensors 

unsuitable to 

our 

requirements 0 0 10/2/2015 

F2.1-4 , 

MP2.1-

3 

Sensor suite has to 

be made from 

scratch   

Schedul

e/ cost  

No 

Action 

4 

Simulations 

diverge 

significantly 

from reality 2 C 10/2/2015 ALL Schedule delays 

Careful 

simulation 

creation 

Schedul

e  

Monito

r 

5 

Docking 

mechanism fails 

while 

Quadcopter is 

docking or 

docked 4 D 10/2/2015 

F2.1-4 , 

MP2.1-

3 

Damage to 

quadcopter 

Place net 

under 

platform 

Physica

l  

Immed

iate 

Action 

6 

Quadcopter 

collision 

avoidance fails 

in flight 4 D 10/2/2015 

F2.1-4 , 

MP2.1-

3 

Damage to 

quadcopter 

Keep 

Guidance 

On 

Physica

l  

Immed

iate 

Action 

7 

Quadcopter 

attempts to shut 

down engines 

after a false 

positive dock 1 D 10/2/2015 

F2.1-4 , 

MP2.1-

3 

Damage to 

quadcopter 

Place net 

under 

platform 

Physica

l  

Monito

r 
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8 

Delays in 

shipping 4 D 10/2/2015 ALL 

Subsystems lack 

parts to be complete 

Order in 

advance 

Schedul

e  

Immed

iate 

Action 

9 

NSH lab not big 

enough for 

testing 5 D 10/2/2015 ALL 

Delays as we find 

somewhere else 

Find that 

out early 

and 

reserve 

Rangos 

Schedul

e  

Immed

iate 

Action 

10 

Electrical 

failures 3 C 10/2/2015 ALL 

Possible damage to 

subsystems, delays 

in repair 

Wire 

safety / 

fuses 

Schedul

e/ cost  Action 

11 

Platform fails 

mechanical 

requirements 1 B   

F.12, 

MP 1.4 

Delay while dock is 

rebuilt 

Make 

another 

one 

Schedul

e  

No 

Action 

12 

A developer 

becomes 

unavailable 1 E   ALL 

Cannot satisfy key 

requirements   

Schedul

e  

Monito

r 

13 

Navigation 

algorithm more 

difficult than 

planned 3 C 10/19/2015 

F2.1-4 , 

MP2.1-

3 

Quadcopter 

navigation 

subsystem not 

completed on 

schedule 

Keep in 

contact 

with other 

CMU 

developers 

Schedul

e  Action 

14 

Indoor flight 

impossible 1 E 10/22/2015 

F2.1-4 , 

MP2.1-

3 

Cannot satisfy key 

requirements   

Schedul

e  

Monito

r 

15 

SDK Legal 

Issues Continue 

for significant 

time 0 0 10/22/2015 

F2.1-4 , 

MP2.1-

3 

Quadcopter 

subsystems not 

complete on 

schedule 

Get a 

personal 

license 

Schedul

e  

No 

Action 

16 

Motor has 

insufficient 

torque 0 0 10/22/2015 

F1.1-2, 

MP1.1-

4 

Delay while new 

motor is found 

Learn 

more 

about 

motors 

Cost 

/Schedu

le  

No 

Action 

17 

Quadcopter 

Fails to Arrive 

in time for FVE 0 0 10/29/2015 

F2.1-4 , 

MP2.1-

3 

Demo cannot be 

completed 

Lower 

expectatio

ns 

Schedul

e/ 

Progra

mmatic 

No 

Action 

18 

Hover/manual 

control 

dependent on 

netgear wifi 

module 0 0 11/16/2015 

F2.1-4 , 

MP2.1-

3 

Quadcopter testing 

delayed 

Scope 

down into 

laying 

April tags 

in 

descendin

g order to 

mitigate 

drift 

Schedul

e/  

Progra

mmatic 

No 

Action 
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19 

Quadcopter 

Spares Strategy 

Insufficient 3 D 12/13/2015 

F2.1-4 , 

MP2.1-

3 

Quadcopter testing 

delayed 

Failure 

Mode 

Effects 

and 

Criticality 

Analysis 

Schedul

e Action 

20 Motor burns out 1 E 12/13/2015 

F1.1-2, 

MP1.1-

4 

Delay while new 

motor is found 

Overcurre

nt Fuse 

Cost/  

Schedul

e 

Monito

r 

21 

Dock Strikes 

Pantrybot 

Frame 3 B 12/13/2015 

F1.1-2, 

MP1.1-

4 

Delay while dock is 

rebuilt, loss of 

goodwill if we 

damage the 

Pantrybot 

Temporari

ly Remove 

Letters 

from 

Pantrybot 

Cost/  

Schedul

e 

Monito

r 

22 

Arduino Not 

Fast Enough to 

Control Motor 4 B 12/13/2015 MP 1.2 

Dock subsystem 

will require 

redesign 

User 

Datagram 

Protocol 

Edits to 

the Driver 

Setting 

Schedul

e Action 

23 

Quadcopter 

Lands Upside 

Down (operator 

influence) 4 D 12/13/2015 

F2.1-4 , 

MP2.1-

3 

Damage to 

quadcopter 

Soft 

Landing 

Platform 

Cost/ 

Schedul

e 

Immed

iate 

Action 

24 

Guidance Fails 

Midflight 4 D 12/13/2015 

F2.1-4 , 

MP2.1-

3 

Damage to 

quadcopter 

Switch to 

Manual 

Control 

Faster 

Cost/ 

Schedul

e 

Immed

iate 

Action 

25 

Quadcopter 

propulsion does 

not disengage 

after docking 2 D 12/14/2015 

F2.1-4 , 

MP2.1-

3 

Damage to 

quadcopter 

Limit 

switch on 

quadcopter 

Physica

l Action 

 

 


