

Quadcopter Docking on a

Moving Platform

Critical Design Review Report

Team E – Dock-in-Piece

Paul M. Calhoun

Rushat Gupta Chadha

Keerthana Subramanian Manivannan

Aishanou Osha Rait

Bishwamoy Sinha Roy

 MRSD Project – Dock-in-Piece
December 17, 2015

1

 Abstract

Our problem statement is inspired by the challenges faced by FMC Technologies Schilling

Robotics personnel, while docking their Remote Operated Vehicle (ROV) to the Tether

Management System (TMS). The ROV detaches and deploys from the bottom of the TMS when

the system is at depth. The TMS is negatively buoyant and is suspended from a ship. As the ship

heaves on the surface of the water, the TMS heaves up and down with a slight lateral motion. ROV

Operators must dock and latch the ROV to the underside of the moving TMS before resurfacing.

This can be very challenging for even experienced operators. Autonomous docking is the core

problem we aim to solve. Through this project we will demonstrate the autonomous docking of a

quadcopter to the underside of a suspended moving platform. The underwater environment will be

simulated by functioning in a GPS degraded environment. At the end of fall semester we have

completed our docking platform mechanical design and motion. For the quadcopter we have

achieved autonomous hovering, pose estimation using Computer Vision (CV), and integration of

CV and position control of quadcopter in simulation. The details of our design and implementation

are outlined in this report.

 MRSD Project – Dock-in-Piece
December 17, 2015

2

Table of Contents
1. Problem Description ... 4

1.1. Project Motivation .. 4

1.2. Project Goal ... 4

2. Use Case .. 4

3. System level requirements ... 6

3.1. Functional Requirements .. 6

3.1.1. The system shall .. 6

3.1.2. The docking platform shall .. 6

3.1.3. The quadcopter shall... 6

3.2. Non-Functional Requirements .. 6

3.2.1. The system shall .. 6

3.2.2. The quadcopter shall... 6

3.3. Performance Requirements .. 6

3.3.1. Mandatory Requirements ... 6

3.3.2. Desirable Requirements .. 7

4. Functional Architecture .. 7

5. Cyber-physical Architecture .. 8

5.1. Docking Platform... 8

5.2. Quadcopter (DJI Matrice 100) ... 10

6. Current System Status... 13

6.1. Fall Semester Targeted requirements .. 13

6.2. Current system/subsystem descriptions/depictions .. 14

6.2.1. Docking Platform ... 14

6.2.2. Quadcopter ... 15

6.3. Modelling, Analysis and Testing .. 16

6.3.1. Docking Platform ... 16

6.3.2. Quadcopter ... 19

6.4. Performance evaluation against the Fall Validation Experiment (FVE) 21

6.5. Conclusions ... 22

7. Project Management .. 23

 MRSD Project – Dock-in-Piece
December 17, 2015

3

7.1. Work Breakdown Structure .. 23

7.2. Schedule .. 24

7.3. Test Plan .. 25

7.3.1. PR Test Plan ... 25

7.3.2. Spring Validation Experiment ... 25

7.4. Budget ... 27

7.5. Risk .. 28

8. Conclusions ... 28

8.1. Lessons Learned .. 28

8.2. Key Activities ... 29

9. References .. 29

10. Appendix A .. 31

 MRSD Project – Dock-in-Piece
December 17, 2015

4

1. Problem Description

1.1. Project Motivation

Our problem statement is inspired by the challenges faced by FMC Technologies Schilling

Robotics personnel, while docking their Remote Operated Vehicle (ROV) to the Tether

Management System (TMS). The ROV detaches and deploys from the bottom of the TMS when

the system is at depth. The TMS is negatively buoyant and is suspended from a ship. As the ship

heaves on the surface of the water, the TMS heaves up and down with a slight lateral motion. ROV

Operators must dock and latch the ROV to the underside of the moving TMS before resurfacing.

This can be very challenging for even experienced operators. Collisions frequently damage the

ROV and TMS. The tether is sometimes squeezed between the ROV and the TMS, which degrades

the communication and power supply between the TMS and the ROV. At times, the tether breaks

and the ROV falls to the bottom of the seabed, resulting in the need for another ROV to be deployed

to bring it back.

1.2. Project Goal

Through this project we will demonstrate the autonomous docking of a quadcopter to the

underside of a suspended moving platform. This model will approximate the subsea system of

ROV and TMS, complete with determining the safe conditions to dock and providing mechanical

latching system that minimizes the forces between the quadcopter and the platform. The project

focuses on an aerial counterpart as water testing and water-proofing an electric system provides

challenges that the sponsor isn’t interested in. The underwater environment is simulated by

functioning in a GPS degraded environment.

2. Use Case

A developer at Schilling Robotics visits a trade fair and sees a retrofit kit that adds a minimal

payload and the capability of autonomous docking to a platform moving in a single axis. Having

several customers of his unmanned undersea vehicle branch who want a method of navigating to

a tether management system with their underwater remotely operated vehicle, he purchases the

retrofit. He reasons that it will be fun and possibly get him a pay point on his next performance

cycle if he can demonstrate its usefulness to his supervisor. He purchases the retrofit and declines

to fill out a customer survey asking him what further features he wants to see in the next version,

since this one has all the features he wants already.

He receives the kit and spends a weekend setting up a dock as shown in figure 1. The addition

of the software changes to his Phantom 2 takes a few minutes and the hardware install is almost

as swift. It’s a windy day and the tree he’d tied his platform to was swaying quite a bit, and after

his initial disappointment at the app telling him it was impossible to dock in those conditions,

repeatedly mashing the ‘dock’ button finally proved effective and the drone successfully attaches

itself to the dock without running into the tree. It even weaves around his bird feeder and succeeds

in avoiding a starling that appeared intent on driving the drone out of the air. He is pleased that the

retrofit is light and not very cumbersome.

 MRSD Project – Dock-in-Piece
December 17, 2015

5

Figure 1: Quadcopter and Platform in adverse environment

The developer secures funding from his supervisor and contacts the student team who launched

the retrofit into a full product. Though hesitant at first, they engage an attorney and draw up a

limited use contract for the TDP of the docking kit. The developer is happy, his boss less so when

he sees what kind of royalties the developer had agreed to, and the developer realizes he’s going

to have to work very hard for that pay point. He gets going and succeeds in adapting the code for

his customers’ ROV and TMS. On its first test, the ROV collides with an undersea vent. However,

the entire test is invalidated when they discover an octopus had attached itself to the ROV camera

and that a warning had been displayed by the adapted software, but not where the ROV operator

is used to viewing warnings and cautions.

Finally, launch day arrives and the customer is pleased at the results. The ROV docks without

needing the use of a heave-compensated winch. The ROV smoothly detaches from the TMS, goes

about its mission, and returns to be hauled up on the TMS without incident (figure 2). The customer

is also very happy with the user interface, which is a single toggle button, removing the need for

lengthy training and decreasing the costs of using the ROV, since the operators don’t have to be

as skilled at docking any more. The developer gets a bonus from his supervisor, an angry letter

from the sailors’ union, and a bill from the UAV kit developers after an independent audit.

Figure 2: Successful Retrieval

Future deployments of ROV systems aboard ships include the changes and a program to make

sure the necessary changes is implemented on legacy ROV carriers as they are brought in for

routine maintenance. Costs across the fleet decrease and AO increases significantly.

 MRSD Project – Dock-in-Piece
December 17, 2015

6

3. System level requirements

3.1. Functional Requirements

3.1.1. The system shall

F1. Have two major components: a quadcopter and a moving docking platform

F2. Detect and communicate when docking and undocking is not possible

3.1.2. The docking platform shall

F1.1 Be moving until the quadcopter has been docked

F1.2 Withstand the weight of the quadcopter once it has been docked

3.1.3. The quadcopter shall

F2.1 Localize itself w.r.t. the platform

F2.2 Plan a path to the docking platform

F2.2 Generate a trajectory from the starting position to the platform

F2.3 Navigate to the platform

F2.4 Dock/undock to/from the platform without any collision

3.2. Non-Functional Requirements

3.2.1. The system shall

NF1. Function in a GPS degraded environment

NF2. Be easy to operate, maintain, and repair

NF3. Provide a user interface with DOCK and UNDOCK options and provide status

NF4. Cost less than $3,000 to own over its life cycle

3.2.2. The quadcopter shall

NF2.1 Have a payload capacity of > 500g

3.3. Performance Requirements

3.3.1. Mandatory Requirements

The docking platform will

MP1.1. Have 1 degree of freedom along Z-direction

MP1.2. Oscillate in harmonic motion with dominant frequency < 0.3Hz

MP1.3. Have oscillations’ span ±200mm

MP1.4. Have a locking mechanism which supports weight of 5kg

The quadcopter will

MP2.1. Localize w.r.t. platform within 50mm accuracy

MP2.2. Navigate to the platform within 10 minutes

MP2.3. Dock to the platform autonomously and without colliding within 10 minutes

 MRSD Project – Dock-in-Piece
December 17, 2015

7

3.3.2. Desirable Requirements

The docking platform will

DP1.1. Have 3 degrees of freedom along X, Y and Z-direction

DP1.2. Have random movements in 3D space

The quadcopter will

DP2.1. Localize w.r.t. platform within 30mm accuracy

DP2.2. Navigate to the platform within 5 minutes

Changes in requirements since the preliminary design review

F2.4 Dock/undock to/from the platform without any collision

NF3. Provide a user interface with DOCK and UNDOCK options and provide status

The requirement for undocking has been removed and more focus has been set on the docking

process. This was done because we are making the project as analogous to the undersea problem

that the Schilling personnel as possible. They are more interested in the autonomous docking

process.

MP2.1. Localize w.r.t. platform within 50mm accuracy

Initially, we had planned for the quadcopter to dock to the platform with +/- 5cm accuracy, but

during testing, the quadcopter faced significant drift indoors. Thus, we changed the requirements

to +/- 50 cm accuracy. The docking mechanism has also been changed accordingly.

F2.2 Plan a path to the docking platform

 F2.2 Generate a trajectory from the starting position to the platform

The previous requirement suggests that the quadcopter plans the shortest path to destination in

an obstacle filled space. But what we plan to do is to have the quadcopter move from the starting

point to the point that is right underneath the platform and then dock to the platform at the right

moment.

4. Functional Architecture

 MRSD Project – Dock-in-Piece
December 17, 2015

8

5. Cyber-physical Architecture

5.1. Docking Platform

Figure 4: Cyber-physical Architecture for Docking Platform

The architecture, shown in Figure 4, is divided into three abstractions for the docking platform.

The software abstraction encompasses the algorithms used to create the up-down harmonic motion

of the platform at a user-defined frequency within a fixed range. The algorithm is shown in figure

6. It also processes the sensor readings from the IMU to determine the frequency of platform

motion as outlined in figure 5. The electronic abstraction shows the different electrical equipment

and electronic devices and their connections to run the algorithms from the software abstraction.

It comprises of an IMU, two Arduino Unos, and stepper motor and driver for creating and sensing

the platform motion. There are two different power supply voltages. The motor driver requires 24

V to 92 V DC and the Arduino and sensors need 5V DC. The information gathered from the sensors

will be sent to the quadcopter SBC using a Wi-Fi module which comprises the communication

block. The lines from the software abstraction show which processor runs the processes. There are

two separate Arduinos: (1) for the motor speed control and (2) for processing sensor data. Lastly,

the mechanical abstraction holds the mechanisms that allow the software algorithms to manifest

into the physical realm. The stepper motor rotates the crank of the crank-slider mechanism which

causes the slider and hence the platform to move up and down. The gear train is used to obtain

high torques. For the locking mechanism a metal sheet would be placed on the bottom of the

platform to which the quadcopter can attach using an electro-permanent magnet.

 MRSD Project – Dock-in-Piece
December 17, 2015

9

Start

Read IMU Data
Store 5000

readings
Do FFT

Find Frequency

corresponding

to peak in FFT

Output the

calculated

frequency

End

Figure 5: Flowchart for frequency calculation using IMU readings

Figure 6: Flowchart for Stepper motor control

 MRSD Project – Dock-in-Piece
December 17, 2015

10

5.2. Quadcopter (DJI Matrice 100)

Similar to the docking platform’s sub-division, the cyberphysical architecture of the

quadcopter is divided into three subsystems: Software, Electronics, and Mechanical. The

architecture shows the flow of data and energy, in addition to which electronic components harbor

which software process. First, figure 7 shows the energy flow in the quadcopter. As shown, there

are 4 different types of power flowing in the quadcopter. The main power is supplied by the

quadcopter’s battery (22.2V). This power is pulled down to 5V using a Batter Eliminator Circuit

(BEC) to power the Nicadrone and the Odroid. The Odroid in turn provides power via USB to the

webcam and the Wi-Fi module. Lastly, the Guidance sensors are powered internally by the

Guidance package.

QUADCOPTER

Electronics

Processor

ESC

Odroid XU4

N1 Flight

Controller

4 ESCs

Communication

Module Antenna

Software

Flight Controller

Controls

SBC Processes

Trajectory Generation

Communication

Sensor

(Guidance SDK)

Vision

April Tag Detection

Dock Detection and

Tracking

Mechanical

Sensors

Motors

4 Motors

Guidance mount

Docking

Locking Mechanism

Nicadrone

Sensors

Guidance

IMU
5 Stereo

Cameras

10

Sonars

Webcam

USB

22.2v

5v

iNTERNAL

LEGEND (Connections)

PDU

Power Source

LiPo 4500mAh

Battery

Eliminator

Circuit

Software

Electronics

Mechanical

LEGEND (Blocks)

Figure 7: Energy Flow Cyberphysical Architecture of Quadcopter

Second, figure 8 provides the data flow within the quadcopter. The guidance internally

communicates with the IMU, stereo cameras, and sonars and fuses them to provide information

over USB to the Odroid. The Guidance also communicates, internally, with the N1 flight control,

making the flight more stable in a GPS degraded environment. Since images aren’t transferred to

the N1, the communication is done through UART. On the other hand, the communication with

the Odroid occurs over USB to gain more bandwidth. The Webcam communicates its images via

USB to the Odroid, which is used for AprilTag detection. The Odroid communicates with the user

via the wireless module, using a USB link to the module. Lastly, the motors are controlled via

ESCs, which are controlled by the N1 flight controller.

 MRSD Project – Dock-in-Piece
December 17, 2015

11

QUADCOPTER

Electronics

Processor

ESC

Odroid XU4

N1 Flight

Controller

4 ESCs

Communication

Module Antenna

Software

Flight Controller

Controls

SBC Processes

Trajectory Generation

Communication

Sensor

(Guidance SDK)

Vision

April Tag Detection

Dock Detection and

Tracking

Mechanical

Sensors

Motors

4 Motors

Guidance mount

Docking

Locking Mechanism

Nicadrone

USB

Internal

Internal

Sensors

Guidance

IMU
5 Stereo

Cameras

10

Sonars

Webcam
USB

Internal

PDU

Power Source

LiPo 4500mAh

Battery

Eliminator

Circuit

UART

Software

Electronics

Mechanical

LEGEND (Blocks)

Figure 8: Data Flow Cyberphysical Architecture of Quadcopter

Last, figure 9 shows the electronic components the harbors each of the two software processes.

There are two software processes running on the quadcopter. One to provide low level controls for

the quadcopter’s motion. This process is run on the N1 flight controller. Another process provides

the higher level functions, such as AprilTag detection and stabilization under the platform. These

processes are running on the Odroid XU4. Lastly, the guidance uses sensor fusion on the IMU,

stereo camera pairs, and the sonars to provide different outputs. This code is run on the Guidance’s

internal computer.

The code architecture for the quadcopter is depicted in figure 10. The guidance SDK

instantiates the Guidance parser node, which takes the serial information from the USB bus and

publishes topics with the relevant information. DJI’s onboard device SDK instantiates the N1

parser node, which takes serial information from the N1 Flight controller and publishes appropriate

topics. The N1 parser node also acts as the middleman to talk to the N1 by providing a set of

services and action servers. Using these services and actions, the navigation node navigates the

quad through preplanned motions. The AprilTag node talks to the webcam through an usb_cam

interface and runs the AprilTag detection algorithm and publishes topics with the pose

transformation from the tag to the camera. Lastly, all the data published as topics are logged into

rosbags using the Logger node.

To fly the quadcopter a series of steps need to be followed, which was implemented in a state

machine. The state machine defines the actions of the Navigation node. The complete state

machine is shown in figure 11. As shown, the navigation node first waits till the onboard device,

Odroid XU4, has been activated. The activation takes place when the onboard device sends an

activation key to the N1 flight controller, which checks the validity of the key. The quadcopter is

connected to a remote controller and the RC is connected to Wi-Fi enabled smart phone.

 MRSD Project – Dock-in-Piece
December 17, 2015

12

QUADCOPTER

Electronics

Processor

ESC

Odroid XU4

N1 Flight

Controller

4 ESCs

Communication

Module Antenna

Software

Flight Controller

Controls

SBC Processes

Trajectory Generation

Communication

Sensor

(Guidance)

Vision

April Tag Detection

Dock Detection and

Tracking

Mechanical

Sensors

Motors

4 Motors

Guidance mount

Docking

Locking Mechanism

Nicadrone

Sensors

Guidance

IMU
5 Stereo

Cameras

10

Sonars

Webcam

PDU

Power Source

LiPo 4500mAh

Battery

Eliminator

Circuit

Software

Electronics

Mechanical

LEGEND (Blocks)

Figure 9: Code Flow Cyberphysical Architecture of Quadcopter

Single Board Computer
(Odroid XU4)

N1 Flight

Controller

Guidance

Package

Webcam
Apriltag

Node

Navigation

Node

Logger

Node

N1

Parser

Node

Guidance

Parser

Node

USB

UART

USB

Figure 10: Code Architecture Quadcopter

The N1 uses the internet on the phone to validate the key. Once the validation is complete, the

navigation node moves on to requesting control of the quadcopter from the N1. If the user places

the quadcopter into anything but ‘F’ mode, the N1 will not provide control to the onboard device.

Once the Odroid gains control, the quadcopter is requested to take off and hover in position. After

5 seconds, a destination location is provided. Once the destination is reached, the state machine

hovers the quadcopter for another 5 seconds. Lastly, the quadcopter lands, and the Odroid

relinquishes control of the quadcopter and stops execution. During any appropriate point, if there

were an error, the navigation node goes into an error state. The implemented errors are provided

in the figure 11. Additionally, if the Ctrl+C signal is detected the navigation node requests the

quadcopter to land, relinquishes control, and ceases execution.

 MRSD Project – Dock-in-Piece
December 17, 2015

13

Gain

access to

the M100

Activation

Take off

Wait for

takeoff

Move

Land

Wait for

move

Release

Contol
quitCtrl+C

Landed

Unexpectedly

Lost access

Lost activation

Unexpected

circumstances

Hover1

Hover2

Figure 11: Finite State Machine Quadcopter

6. Current System Status

6.1. Fall Semester Targeted requirements

In the fall semester, we sought to implement subsystems that are core functionalities with high

dependency for other subsystems. In particular, we sought to create a base validation of our

conceptual design before we implemented any additional features for our system. As such, we

decided to prioritize the docking platform with IMU and the motor, quadcopter hovering and

computer vision as the initial set of subsystems to focus on. The following requirements are all

that we had addressed this fall.

• The docking platform shall

– MF1.1 Be moving until the quadcopter has been docked

– MF1.2 Withstand the weight of the quadcopter once it has been docked

• The quadcopter shall

– MF2.1 Localize itself w.r.t. the docking platform

– MF2.2 Generate a trajectory from the starting position to the platform

– MF2.3 Navigate to the platform

MF1.1 and MF1.2: The docking platform has been fabricated from scratch, it has been made to

move in the z direction and it has been tested for handling weights up to 5 kilograms.

MF2.1 and MF2.2: An IMU is fixed on the platform to identify the frequency and amplitude of

the platform motion, which will be fed to the quadcopter to help it decide when to dock. Computer

Vision subsystem was implemented to address the localization part of the requirements.

 MRSD Project – Dock-in-Piece
December 17, 2015

14

MF2.3 The quadcopter was made to hover autonomously and it was made to move from point A

to point B successfully in simulation, but unfortunately we couldn’t show it in the Fall Validation

Experiment because of the crash of the quadcopter.

6.2. Current system/subsystem descriptions/depictions

6.2.1. Docking Platform

Figure 12: Sub-system components of docking platform

The docking platform can be divided into three major sub-systems as shown in figure 12.

Figure 13: Overall component layout of Docking Platform

The mechanical design is a slider crank mechanism and the platform is

connected to the slider. As the crank rotates the slider moves up and down,

causing the desired harmonic motion of the platform. A stepper motor is

coupled with the crank and can create rotation at different speeds. Based on

our performance requirements, the frequency of up-down motion of the

platform can vary between 0.15 to 0.3 Hz. This variation is obtained by

changing the control input to the stepper motor controller, an Arduino Uno.

The system layout is shown in figure 13. The actual platform is shown in

figure 14 and the gear train and the stepper motor is shown in figure 15. [1]

[2] [3]

Docking
Platform

Mechanical
Design

Electrical
Design

Sensors

Figure 14: Crank

Slider mechanism of

Docking Platform

 MRSD Project – Dock-in-Piece
December 17, 2015

15

The motion of the platform is sensed using an

Inertial Measurement Unit (IMU) - MPU 6050. The

waveform obtained from the acceleration values

(shown in figure 16) is used to find the frequency of

the platform motion. This information would be

subsequently provided to the quadcopter to determine

the right instant to dock. The accelerometer values are

read in real time through MATLAB and a Fast Fourier

Transform (FFT) is performed to obtain the dominant

frequency. The FFT of the waveform shown in figure

16 is shown in figure 17. The dominant frequency is obtained by subtracting the peak in FFT from

the maximum range, for example as seen in figure 17 (left plot), dominant frequency is 50 – 49.8

= 0.2 Hz.

Figure 16: IMU Readings (left) Frequency: 0.2Hz (right) Frequency: 0.27 Hz

Figure 17: FFT response for the waveforms shown in figure above (left) Frequency 0.2 Hz (right) Frequency

0.27 Hz

6.2.2. Quadcopter

The quadcopter system includes the DJI Matrice 100

with the Guidance, shown in figure 18. [4] [5] The

Guidance provides the N1 flight controller more stable

velocities using optical flow. The N1 Flight controller runs

low level control algorithms, while the single board

computer (Odroid XU4) runs higher level processes as

explained in the cyberphysical architecture section.
Figure 18: DJI M100 with Guidance

Package

Figure 15: Gear train and stepper motor of

docking platform

 MRSD Project – Dock-in-Piece
December 17, 2015

16

Current status of the code on the quadcopter is depicted in figure 19. Although the Guidance is

connected the N1 and is being used for flight stabilization via optical methods, the data isn’t being

logged or implemented using the Guidance SDK on the Odroid XU4.

Single Board Computer
(Odroid XU4)

N1 Flight

Controller

Guidance

Package

Webcam
Apriltag

Node

Navigation

Node

Logger

Node

N1

Parser

Node

Guidance

Parser

Node

USB

UART

RED – Not Done

GREEN - Completed

Figure 19: Code Architecture Quadcopter Status [6] [7]

Table 1 shows the functional progress on the quadcopter. Although we had planned to the

move the quadcopter from Point A to point B during the fall validation experiment, due to a crash

we couldn’t do so. As such, we instead integrated AprilTag detection with the navigation node and

moved the quadcopter in accordance to the distances provided by the AprilTag node. Basically,

the AprilTag node would detect an AptrilTag 5 cm away in the x-direction, and the navigation

node would decrease this error.
Table 1: Status of Quadcopter

Complete To-Do
Stable Hover Point A to B in reality

Manual Safety Override Localization with respect to Dock

Logging Data Stabilizing under Dock

AprilTag Detection
Rising up to meet the docking platform

Computer Vision Integrated Point A to B in Simulation

6.3. Modelling, Analysis and Testing

6.3.1. Docking Platform

The docking subsystem is the testing apparatus in our project that emulates the Tether

Management System’s up and down motion (heave) which is either caused due to the waves on

the surface or because of the spring like nature of the tether. In either case the motion produced is

harmonic. To accomplish this project’s mandatory requirement, we will be docking on a moving

platform with a single harmonic.

Overall the docking platform consisted of 3 major areas of work –

 Mechanical

 Motor

 Sensors

The mechanical section consisted of the design, modelling and fabrication of the dock. Once

the trade studies between various possible dock designs were done, component selection and final

design went hand in hand towards the final dock design.

 MRSD Project – Dock-in-Piece
December 17, 2015

17

To reach to the final dock design various designs for possible docking platforms were

prototyped. Since it was an integral part in the success of the project, we decided to make

prototypes for each version instead of rushing into the decision. These prototypes were tested on

the criteria listed in the table below (table 2) which is a trade study between the 3 prominent design

solutions that were discussed by the team.

Table 2: Trade Studies for Docking Platform

Criteria Weights Geared Crank-Slider Rack-Pinion Ball Screw

Power Requirements 30 9 7 2

Ease of Operation 15 9 4 4

Ease of

Manufacturability

20 4 4 8

Accuracy 15 9 6 8

Reliability of

mechanism

20 7 4 9

TOTAL 100 7.6 5.2 5.8

The three designs that were

considered were

 Rack and Pinion

This design included a

platform connected to a rack

and a pinion gear attached to a

direct current motor. (Figure

20) This was rejected due to its

complexity, both in design and its control as it reduced the

reliability of the mechanism.

 Ball screw

In this design we attached a ball screw to a cantilevered platform. Even though the design

handled the load well without many deflections, it was rejected due to the high power required by

the motor to drive it. It was around this time that we realized that our quadcopter drifted quite a bit

and that having anything closer to it would be too dangerous. All future designs, therefore, had

nothing under the platform.

Figure 20 Rack and Pinion

Prototype

Figure 21: Ball Screw Prototype

 MRSD Project – Dock-in-Piece
December 17, 2015

18

 Geared crank slider -

This design was rejected initially since it couldn’t take a mixture

of frequencies or variation in amplitude. However, revisiting our

mandatory requirements we saw the need of only one frequency at a

time to fulfil it and a 3D printed prototype was built to test its

feasibility. The sinusoidal motion was mechanically present because

of the design and hence the control was easy with just velocity inputs

being given.

Between a DC motor, Servo motor, and stepper motor we rejected

the dc motor because of its complexity in control and the chose the

stepper motor over servo motor because it had better holding torque.

Servo motors were more expensive for the same amount of torque

they provided, and a stepper motor was chosen.

For the final design, the CAD model was made on SolidWorks,

considering every manufacturing aspect and parts from McMaster-Carr

were selected. (Figure 23) While performing the calculations, to keep a

safety margin the whole mechanical and electrical system was oversized

by a factor of 2. So instead of 5kg, all calculations were done for 10kg.

This was done in 3 stages:

o Testing the motor without any mechanical appendages.

 This was to get the basic motor control logic

working right.

o Testing with the gear train (but no load)

 This was to ensure that the gear reduction and other tweaks due to an added

gear train were right.

o Testing with the entire platform setup.

 This was to fine tune the motor control to account for slip because of the

weight of the platform

To make the project as analogous to the real problem as possible, we chose an accelerometer

to find the frequency and amplitude of oscillation. While the manufacturing of the actual platform

was in progress, the 3D printed prototype was used to get the sensor readings right and were

verified using a stopwatch.

Once these 3 components were integrated we found out that there was an error of ± 0.1Hz in

every reading that we got. We also performed a load test on the platform and the platform could

withstand loads up to 11.40 lbs and broke down at 13.2lbs. Both these numbers were more than

our quadcopter’s maximum possible weight (7.5 lbs). An important thing to note is that oversizing

by a factor of 2 worked perfectly for us as the system was design for 22lbs and could withstand

11.4lbs only, just like we had anticipated.

Figure 23: CAD model of

Platform

Figure 22: Geared Crank Slider

Prototype

 MRSD Project – Dock-in-Piece
December 17, 2015

19

6.3.2. Quadcopter

There were two sections that we focused on during the fall semester: AprilTag Detection and

Motion. The development was tested using unit tests depicted in figure 24. The final result of the

development was the AprilTag node publishing how far the tag is in each axis and the quadcopter

travelling to decrease this error.

Pose detection of

AprilTag using Laptop

Robustness to lighting

variation on Odroid

Hover and manual control

using Laptop as the onboard

device and quadcopter flying

in simulation

Autonomous Hover and

landing using Laptop as the

onboard device and

quadcopter flying in

simulation

Autonomous motion using

Laptop as the onboard

device and quadcopter flying

in simulation

Hover and manual control

using Odroid as the onboard

device and quadcopter flying

in simulation

Autonomous Hover and

landing using Odroid as the

onboard device and

quadcopter flying in

simulation

Autonomous motion using

Odroid as the onboard

device and quadcopter flying

in simulation

Hover and manual control

using Odroid as the onboard

device and quadcopter flying

in reality

Autonomous Hover and

landing using Odroid as the

onboard device and

quadcopter flying in reality

Autonomous motion using

Odroid as the onboard

device and quadcopter flying

in reality

Quadcopter move to

points detected by

AprilTag node

Pose detection of

AprilTag using Odroid

Increasing tag detection

rate on Odroid

Computer Vision Quadcopter Motion

Figure 24: Development Procedure for the Quadcopter during Fall 2015

Quadcopter motion was tested using the set-up detailed in figure 25. When the quadcopter is

run on the simulation the drone is connected via a USB cable to the laptop running the simulation.

Whatever commands are provided to N1 are sent to the simulation internally and used to run the

drone in the simulation. Additionally, the Remote Controller is present for emergency takeover.

However, the mode is set to ‘F’ when Odroid needs to be in control. The mode needs to be changed

to ‘A’ when manual override needs to be activated. The code is run by opening a secure shell from

a laptop. Data from all the topics are logged using rosbags as mentioned above.

 MRSD Project – Dock-in-Piece
December 17, 2015

20

N1 Flight
Controller
(Motion)

Single Board
Computer

M100

UART (OPEN PROOCOL)

Laptop

Wi-Fi/
Wi-Fly

SSH

Overall Test Setup

Remote
Controller

For EMERGENCY

Webcam
(AprilTag)

Figure 25: Test Set-up for Quadcopter Testing

Analysis was performed on the logged data. For example, the velocity controller on the

quadcopter needed to be validated before implementing a position controller. To do this, the

quadcopter was flown using the velocity controller in simulator, and figure 26 depicts the logged

velocity data. Note, positive Z is pointing down, making the initial negative velocity the liftoff and

the final positive z-velocity the landing. A sequence of velocity commands in the x and y axes

were provided with a magnitude of 2 m/s. This graph validated our use of the velocity control

service exposed by the N1 parser node.

Figure 26: Velocity Test Data from Simulation flight

A more interesting show of our analysis is provided by the figure 27. This figure is taken when

the quadcopter was in flight, not in simulation. The graph shows the huge spike in the z-axis

velocity in the positive direction, which is consistent with a fall. This graph is the result of giving

a position offset of 1m in both x and y direction. The main take-away from this graph is that

changing the local navigation action exposed by the N1 parser node is troublesome as there are

dependencies that aren’t clear. The local navigation action is the actionlib instance that takes the

quadcopter to a requested destination.

 MRSD Project – Dock-in-Piece
December 17, 2015

21

Figure 27: Velocity Data from the Crash

6.4. Performance evaluation against the Fall Validation Experiment (FVE)

Table 3 highlights the key objectives of the FVE and our performance. As it can be seen we

were able to achieve most of our goals. The major one which could not demonstrated was the

navigation of the quadcopter from point A to point B. This was because a day before the FVE the

quadcopter crashed into the ground and broke a critical part for which we hadn’t planned for a

spare. The crash is attributed to the insufficient rate of velocity integration to yield position status.

Since, the position changes were not updated fast enough the error in position accumulated which

led the N1 flight controller to give a high roll rate which caused the quadcopter to flip and crash

into the ground. However, autonomous take off, hover, and landing was demonstrated by

borrowing parts from another team at Field Robotics Center. To compensate for this we integrated

the CV node with the position control node of the quadcopter and achieved motion of quadcopter

in simulation by the error distances amount obtained by moving the camera w.r.t. the AprilTag.

Table 3: Performance against FVE targets

Requirements Expectations FVE FVE-ENCORE

MP1.1, MP1.2,

MP1.3

Docking platform shall move

according to the given input frequency

in Z-direction

Successful Successful

MP1.2 Sensor gathers data from the motion

of the platform and outputs the

frequency within an accuracy of 0.05

Hz

Successful Successful

MP2.2 Quadcopter shall be able to

autonomously hover
Successful Successful

 MRSD Project – Dock-in-Piece
December 17, 2015

22

6.5. Conclusions

The key strengths and weakness of our developed sub-systems are listed in table 4.

Table 4: Strong and weak points of our system

STRENGTHS WEAKNESSES
Docking platform is robust Velocity control not stable in Matrice 100

Motor is powerful Flight controller code is not accessible

April Tag works suitably even in low lighting Cannot provide state estimation values to flight controller

IMU is giving accurate readings
Not able to find suitable place to mount the platform

Indoor hovering is stable using guidance

The motor and platform are strong enough to withstand the weight of the quadcopter after it

has docked. A 100% margin was used while selecting the motor. Currently, it can withstand weight

of 5 kg at 60V and the maximum take-off weight of the quadcopter is 3.4 kg. Higher torques can

be achieved at higher voltages. The accuracy of IMU readings is critical to our project because

these values will be transmitted to the quadcopter and used to determine the suitable moment to

initiate the docking operation. The April Tag detection is working suitably in low light conditions

as well as when the resolution is reduced to one-fourth of the original resolution. Also, the tag

detection rate is 20 Hz in poor lighting conditions. We are able to achieve stable hover of

quadcopter indoors using the Guidance. However, when we try to give velocity commands for

position control, it drifts significantly. This is because the default position control in Matrice 100

is done using GPS coordinates.

Another weakness is that the flight controller’s code is not accessible to us and we cannot

provide state estimation values to it. Thus, the only possible option to do position control is to

provide velocity commands. The loop is closed using information provided from the IMU sensors

and the Guidance’s cameras. The IMU does not provide accurate position estimates due to high

noise. The Guidance uses optical flow to calculate velocity. This is effective only if there are

significant non-repeating features available for tracking.

To overcome the weaknesses of our quadcopter we first need to set safe limits to yaw, pitch

and roll commands. Further, we need to confirm that the manual override is functional by testing

MP2.2 Quadcopter shall move autonomously

from point A to point B
Unable to

demonstrate

due to lack of

spare parts

Unable to

demonstrate due to

lack of spare parts

MP2.1 The camera should detect the

AprilTag and ascertain the distance to

be moved within 5% error

Successful Successful

MP2.1 The camera should detect the

AprilTag moving and therefore make

the quadcopter move by the error

distance in the simulation to make the

error zero.

Not planned

initially

Successful

 MRSD Project – Dock-in-Piece
December 17, 2015

23

it at least ten times. For CV we need to increase the detection rate further. Implementing Lucas-

Kanade tracking should help us in achieving this. Further, using a camera with higher frame rate

should also contribute to an increased detection rate.

7. Project Management

7.1. Work Breakdown Structure

Figure 28: Work Breakdown Structure

Our project is broken into four major components: the three subsystems of the Dock,

Quadcopter, and User Interface along with our overall Project Management aspect. Below those

are the necessary activities and capabilities that support each component (Figure 28). Red items

 MRSD Project – Dock-in-Piece
December 17, 2015

24

are not started, yellow are in progress, and green are either completely finished or have a process

in place to refine and continue without needing significant input or effort to do so. Many resources

are shared between capabilities within each subsystem, so progress in one part of the subsystem

often means progress in another.

7.2. Schedule

Our schedule is integrated with our progress review (PR) goals, each subsystem we intend to

implement or unit we intend to test being a demonstration at the PR (Table 5).

Table 5: Schedule

Timeline Progress Review Milestone

Late January PR 7 Quadcopter motion from Point A to B

Mid-February PR 8 Determine position and velocity of platform using CV

and sensors

Late February PR 9 Quadcopter localization with respect to the platform

Stabilization of Quadcopter under the Platform

Docking to the platform with the Nicadrone

Mid-March PR 10 Achieve docking on moving platform

UI integration

Early April PR 11 Testing and refinement

Mid-April PR 12 Testing and refinement

Figure 29: Timeline

With our dock functional, our schedule is almost all quadcopter related subsystems being

implemented and integrated. Taking into consideration our scope being decreased from the dock

having three different waveforms being summed into its harmonic motion to one, and us no longer

having graceful undocking as a requirement, we are still one unit test behind schedule. This item,

A-to-B navigation has been moved to being our first subsystem to be completed for our first PR.

After that, dock motion estimation is our next big hurdle as it may be simple but may also turn out

to need different sensors or a new approach. Finally we will begin on navigation and docking

starting with a stationary platform and then a moving on, concurrent with development of our user

interface. We are including two PRs – approximately a month and a half – for integration, logistics

delays, unexpected failure modes, and other slips. While this may at first appear as if it leaves us

nothing to demonstrate between PR 10 and SVE, we will be restoring de-scoped requirements to

the project if there are no significant delays. (Figure 29)

 MRSD Project – Dock-in-Piece
December 17, 2015

25

7.3. Test Plan

7.3.1. PR Test Plan
Table 6: PR Test Plan

PR # Timeline Capability Milestones

PR 7 Late January Autonomous navigation of quadcopter from point A to B within 5 m radius

PR 8 Mid-February Robust estimation of position and velocity of platform using CV and sensors

PR 9 Late February System Integration - Quadcopter docks to stationary platform

User Interface designed and communicates with the quad & platform

PR 10 Mid-March Achieve docking on moving platform

UI receives status as requested by the user

PR 11 Early April Testing and Refinement

PR 12 Mid-April Testing and Refinement

As mentioned above (Table 5), our schedule and PR test plan are almost identical, as we intend

to use the PRs as our drumbeat for completion of important units and subsystems, as well as final

integration. (Table 6) PRs 11 and 12 are currently free, and will be filled by either delayed tests or

restoration of de-scoped items.

7.3.2. Spring Validation Experiment

Location: Newell-Simon Hall, Level B

Equipment to be used: DJI Matrice100, Guidance, Designed Platform, Power Supply, Laptop

Capabilities Proved: System determines correct moment to dock, quadcopter docks with platform

without collision

Test starting setup: Quadcopter will be on the ground within a five meter distance from the

platform. (Figure 30)

Figure 30: Test setup starting position

Platform Subsystem Test Procedure (Fig 30)

 Turn on the power to platform

 Enter frequency for platform motion from user interface (UI) within range of 0.15 to 0.3

Hz)

 The frequency of platform motion changes to the input frequency

 MRSD Project – Dock-in-Piece
December 17, 2015

26

 Motion is detected by sensors and graph is plotted showing that the motion is the desired

frequency waveform (i.e. frequency detected is the frequency entered by the user)

Figure 31: Platform Subsystem Test Flow

The platform will remain active during testing of the quadcopter and overall system.

Quadcopter Subsystem and Full System Test Procedure (Figure 32)

 Place the quadcopter on the ground within 5 m from the platform and turn on the power

 Initiate docking operation from the user interface and view flight status

 The quadcopter will take off and search for the platform

 The quadcopter will locate the platform and travel horizontally to a hover point below the

platform

 The quadcopter will hover 1m below the platform (within 0.5 m accuracy in X-Y plane) to

determine the safe instant to dock

 The quadcopter will engage its Nicadrone electro-permanent magnet and dock to the

platform without collision within 10 minutes from initiation

 The velocity of quadcopter with respect to the platform will be less than 50 cm/s when

quadcopter is moving up towards the platform

 Platform motion will stop and UI will display “DOCK SUCCESSFUL”

 Quadcopter will remain securely attached to the dock with its propulsion turned off for at

least 30 seconds.

 Repeat above steps 5 times with different starting positions and different frequencies of

platform. Docking should be successful 60% of the times.

 MRSD Project – Dock-in-Piece
December 17, 2015

27

Figure 32: Fall Validation Experiment System Flow

Note: The User Interface may not be implemented on a smart phone but instead implemented on

laptop. Since this is not a part of our requirements we have changed it in our SVE testing procedure.

7.4. Budget

Table 7: Refined Parts List

Item Cost Type Funding Source Comment
DJI Matrice 100 $3,299.00 Capital Sponsor Developer Quadcopter

DJI Guidance $999.00 Capital Sponsor Sensor suite and collision avoidance for

quadcopter

Guidance

Connector Kit

$79.00 Consumable Sponsor Connectors for Guidance

TB48D Battery $199.00 Capital Sponsor Extra Battery

Spare propellers $150.00 Consumable Sponsor Spare Propellers

Physical Dock

Components

$554.11 Consumable CMU Components used to construct dock

Quad Electronics $591.55 Consumable CMU Electronics mounted on quadcopter

Dock Electronics $393.87 Consumable CMU Electronics that were mounted on dock

Quadcopter Spares $415.00 Consumable CMU Spare Legs for Quadcopter

Our sponsor contributed $5000 of equipment to our project, and we used that to purchase our

big ticket items – the quadcopter and the Guidance which comprise the majority of the budget

(Table 7). Our $4000 from the MRSD program was used to buy many small items which were

combined into larger subsystem components like the dock structure and the motor control

architecture.

Table 8: Budget Summary

CMU total budget $4,000.00 Sponsor total budget $5,000.00

Total Executed from CMU $1,954.53 Total Executed from sponsor $4,726.00

CMU budget remaining $2,045.47 Sponsor budget remaining $274.00

 MRSD Project – Dock-in-Piece
December 17, 2015

28

Our sponsor budget is almost completely exhausted, being approximately 95% executed. This

was almost all done at the very beginning so we could purchase our quadcopter and the necessary

components for it. Our CMU budget is approximately 50% executed, with few expenditures

expected next semester, as most of our progress will be in software rather than hardware. (Table

8)

7.5. Risk

Table 9: Risk Summary

Severity

Probability A B C D E

 Negligible Low Moderate Severe Catastrophic

5 Nearly Certain 0 0 0 1 0

4 Likely 0 1 0 5 0

3 Possible 0 1 2 1 0

2 Unlikely 0 1 1 1 0

1 Rare 0 1 0 1 3

Currently, we are doing very well in our lower and mid-level risks. However, we have many

high level risks (Table 9), almost all dealing with possible failure modes that would damage the

quadcopter. See Appendix A for a full listing of our risks. Risk ID 5, 6 7, 19, 23, 24, and 25 involve

direct physical risks to the quadcopter. Each failure mode is captured as a separate risk, as most of

them require different methods of being mitigated and prevented. We intend to do a more rigorous

Failure Mode Effects Criticality Analysis (FMECA) next semester. Our other high level risks are

logistics and supply chain issues involving delays in shipping and difficulties finding places to test

where we can place a large, heavy dock and have room to fly the quadcopter.

8. Conclusions

8.1. Lessons Learned

As with many teams, our largest lesson learned is requirement generation and tracking. We

originally had many requirements that our customer thought would be useful but they didn’t need.

By reducing our scope to what our customer absolutely needs, we’ve streamlined our process and

expectations so we can produce a working system.

Our trade studies also did not have logistics and maintenance as columns. While this would

have been difficult in many cases, further research may have helped us realize that our main

Immediate Action Urgent Action Action Monitor No Action

 MRSD Project – Dock-in-Piece
December 17, 2015

29

suppliers for vehicle and motor had very long lead times for delivery. In both cases we had to wait

over a month for key components during which development in non-key areas.

Communication was a big problem during sprints. Next semester’s schedule permits a more

structured teaming process so that we don’t lose sight of the full system as we implement

subsystems. Our documentation was also not kept up to date during these periods, producing

lengthy catchup periods as we entered large volumes of information into our databases.

Securing appropriate test facilities was and remains a lesson we are learning. Our quadcopter

needs a large area to work in that is completely netted off, but it also needs to land on the ground

during unit testing. We also need a space to put the dock where it is far enough up for the

quadcopter to maneuver around it, and is secure enough to hold the entire assembly while it’s

suspended. Our lesson there is that we need to be more proactive in finding test facilities.

8.2. Key Activities

The last lesson influences many of our actions when deciding what we need to do with our

other lessons learned. We have reserved the final month and a half of development for schedule

slips, unexpected integration issues, and if there’s still time we’ll implement de-scoped

subsystems. We don’t have another semester to push delayed development into, so it’s better to

end early than end late.

The final lesson’s actions will help us with the first lesson learned, keeping us from going into

long and uncontrolled sprints that stop us from having full team meetings in which we track our

requirements using a rigorous process. We have a method for accountability, but it was neglected

in the final month as we attempted to brute force develop the subsystems we’d planned on showing

for fall.

We do not expect to have any actions related to the second lesson. Our purchases and decisions

have been made and it is highly unlikely we will be altering our planned hardware or software

method now.

Again, our month and a half of open time will help us with communication, as we won’t feel

as if talking to each other keeps us away from our subsystems. We will also find some way of

centralizing control, though this may mean that developers are tasked with more non-technical

work than their peers.

9. References

[1] Stepper motor: http://www.lamtechnologies.com/Product.aspx?lng=EN&idp=M1343051

[2] Stepper motor driver: http://www.lamtechnologies.com/Product.aspx?lng=EN&idp=LS1078

[3] IMU: http://playground.arduino.cc/Main/MPU-6050

[4] DJI Matrice 100: https://developer.dji.com/matrice-100/

[5] DJI Guidance: https://developer.dji.com/guidance/

[6] On-Board SDK: https://developer.dji.com/onboard-sdk/features/

[7] Guidance SDK: https://developer.dji.com/guidance-sdk/

http://www.lamtechnologies.com/Product.aspx?lng=EN&idp=M1343051
http://www.lamtechnologies.com/Product.aspx?lng=EN&idp=LS1078
https://developer.dji.com/matrice-100/
https://developer.dji.com/guidance/
https://developer.dji.com/onboard-sdk/features/
https://developer.dji.com/guidance-sdk/

 MRSD Project – Dock-in-Piece
December 17, 2015

30

 MRSD Project – Dock-in-Piece
December 17, 2015

31

10. Appendix A

Table 10: Column IDs for the Risk List Table below

Column ID Name
1 Risk

2 Probability

3 Severity

4 Date Identified

5 Requirement Impacted

6 Consequence

7 Mitigation

8 Risk Type

9 Action to Take

Table 11: Complete List of Risks

ID 1 2 3 4 5 6 7 8 9

1

DJI SDK is an

unsuitable

development

platform 0 0 10/2/2015

F2.1-4 ,

MP2.1-

3

Quadcopter

subsystems not

complete on

schedule Cost

No

Action

2

Matrice cannot

support our

needs 2 B 10/2/2015

F2.1-4 ,

MP2.1-

3

Need new

quadcopter

Research

prior to

purchase Cost

Monito

r

3

Guidance

sensors

unsuitable to

our

requirements 0 0 10/2/2015

F2.1-4 ,

MP2.1-

3

Sensor suite has to

be made from

scratch

Schedul

e/ cost

No

Action

4

Simulations

diverge

significantly

from reality 2 C 10/2/2015 ALL Schedule delays

Careful

simulation

creation

Schedul

e

Monito

r

5

Docking

mechanism fails

while

Quadcopter is

docking or

docked 4 D 10/2/2015

F2.1-4 ,

MP2.1-

3

Damage to

quadcopter

Place net

under

platform

Physica

l

Immed

iate

Action

6

Quadcopter

collision

avoidance fails

in flight 4 D 10/2/2015

F2.1-4 ,

MP2.1-

3

Damage to

quadcopter

Keep

Guidance

On

Physica

l

Immed

iate

Action

7

Quadcopter

attempts to shut

down engines

after a false

positive dock 1 D 10/2/2015

F2.1-4 ,

MP2.1-

3

Damage to

quadcopter

Place net

under

platform

Physica

l

Monito

r

 MRSD Project – Dock-in-Piece
December 17, 2015

32

8

Delays in

shipping 4 D 10/2/2015 ALL

Subsystems lack

parts to be complete

Order in

advance

Schedul

e

Immed

iate

Action

9

NSH lab not big

enough for

testing 5 D 10/2/2015 ALL

Delays as we find

somewhere else

Find that

out early

and

reserve

Rangos

Schedul

e

Immed

iate

Action

10

Electrical

failures 3 C 10/2/2015 ALL

Possible damage to

subsystems, delays

in repair

Wire

safety /

fuses

Schedul

e/ cost Action

11

Platform fails

mechanical

requirements 1 B

F.12,

MP 1.4

Delay while dock is

rebuilt

Make

another

one

Schedul

e

No

Action

12

A developer

becomes

unavailable 1 E ALL

Cannot satisfy key

requirements

Schedul

e

Monito

r

13

Navigation

algorithm more

difficult than

planned 3 C 10/19/2015

F2.1-4 ,

MP2.1-

3

Quadcopter

navigation

subsystem not

completed on

schedule

Keep in

contact

with other

CMU

developers

Schedul

e Action

14

Indoor flight

impossible 1 E 10/22/2015

F2.1-4 ,

MP2.1-

3

Cannot satisfy key

requirements

Schedul

e

Monito

r

15

SDK Legal

Issues Continue

for significant

time 0 0 10/22/2015

F2.1-4 ,

MP2.1-

3

Quadcopter

subsystems not

complete on

schedule

Get a

personal

license

Schedul

e

No

Action

16

Motor has

insufficient

torque 0 0 10/22/2015

F1.1-2,

MP1.1-

4

Delay while new

motor is found

Learn

more

about

motors

Cost

/Schedu

le

No

Action

17

Quadcopter

Fails to Arrive

in time for FVE 0 0 10/29/2015

F2.1-4 ,

MP2.1-

3

Demo cannot be

completed

Lower

expectatio

ns

Schedul

e/

Progra

mmatic

No

Action

18

Hover/manual

control

dependent on

netgear wifi

module 0 0 11/16/2015

F2.1-4 ,

MP2.1-

3

Quadcopter testing

delayed

Scope

down into

laying

April tags

in

descendin

g order to

mitigate

drift

Schedul

e/

Progra

mmatic

No

Action

 MRSD Project – Dock-in-Piece
December 17, 2015

33

19

Quadcopter

Spares Strategy

Insufficient 3 D 12/13/2015

F2.1-4 ,

MP2.1-

3

Quadcopter testing

delayed

Failure

Mode

Effects

and

Criticality

Analysis

Schedul

e Action

20 Motor burns out 1 E 12/13/2015

F1.1-2,

MP1.1-

4

Delay while new

motor is found

Overcurre

nt Fuse

Cost/

Schedul

e

Monito

r

21

Dock Strikes

Pantrybot

Frame 3 B 12/13/2015

F1.1-2,

MP1.1-

4

Delay while dock is

rebuilt, loss of

goodwill if we

damage the

Pantrybot

Temporari

ly Remove

Letters

from

Pantrybot

Cost/

Schedul

e

Monito

r

22

Arduino Not

Fast Enough to

Control Motor 4 B 12/13/2015 MP 1.2

Dock subsystem

will require

redesign

User

Datagram

Protocol

Edits to

the Driver

Setting

Schedul

e Action

23

Quadcopter

Lands Upside

Down (operator

influence) 4 D 12/13/2015

F2.1-4 ,

MP2.1-

3

Damage to

quadcopter

Soft

Landing

Platform

Cost/

Schedul

e

Immed

iate

Action

24

Guidance Fails

Midflight 4 D 12/13/2015

F2.1-4 ,

MP2.1-

3

Damage to

quadcopter

Switch to

Manual

Control

Faster

Cost/

Schedul

e

Immed

iate

Action

25

Quadcopter

propulsion does

not disengage

after docking 2 D 12/14/2015

F2.1-4 ,

MP2.1-

3

Damage to

quadcopter

Limit

switch on

quadcopter

Physica

l Action

