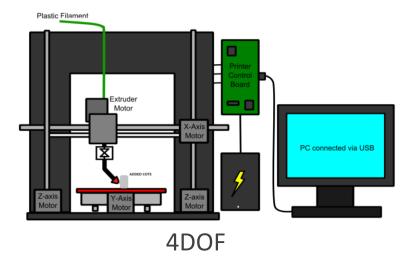

ADD_IN

Prof. David Bourne, Sponsor

Ihsane Debbache, Team Member


Astha Prasad, Team Member

Nikhil Baheti, Team Member

Dan Berman, Team Member

OUTLINE

- Project Description
- Use Case
- System Level Requirements
- Functional Architecture
- Cyber physical Architecture
- Subsystem Descriptions and Status
- Project Management

"ADD_IN proposes to develop a 3D printer that can enclose COTS items, thus rapidly producing strong, useful and low cost parts."

Use Cases

3 Primary Use cases

- 1. Enclose threaded inserts
- 2. Enclose stiffeners
- 3. Enclose PCB/Sensor

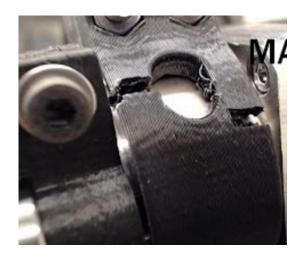
Enclose Threaded Inserts

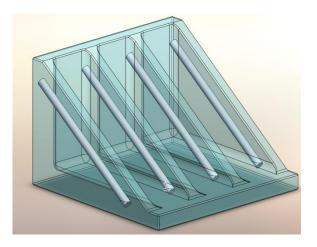
Motivation

3D Printed parts are often sufficiently strong, but fail at the interface with other components

Solution

Enclose threaded inserts to distribute force over larger area and reduce material stress


Enclose Stiffeners


Motivation

3D Print parts often develop cracks and/or delaminate. Part strength is highly directionally dependent

Solution

Enclose wire/rod stiffeners to strength part along loading directions

Integrated Electronics

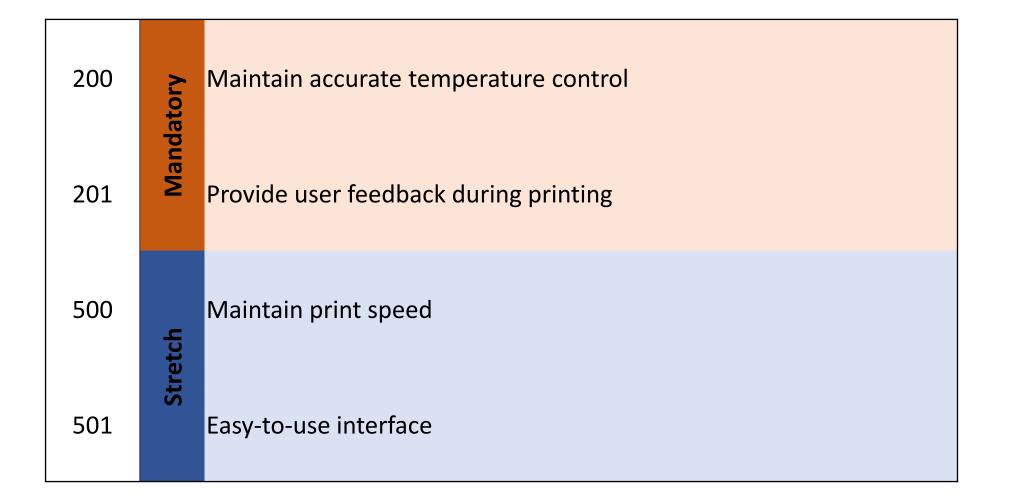
Motivation

- 1. Allow designers to develop smaller, more integrated devices
- 2. Enable in-situ measurement for temperature, strain, acceleration, etc.

Solution

Enable printing surrounding complex shapes such as PCB's and sensor packages

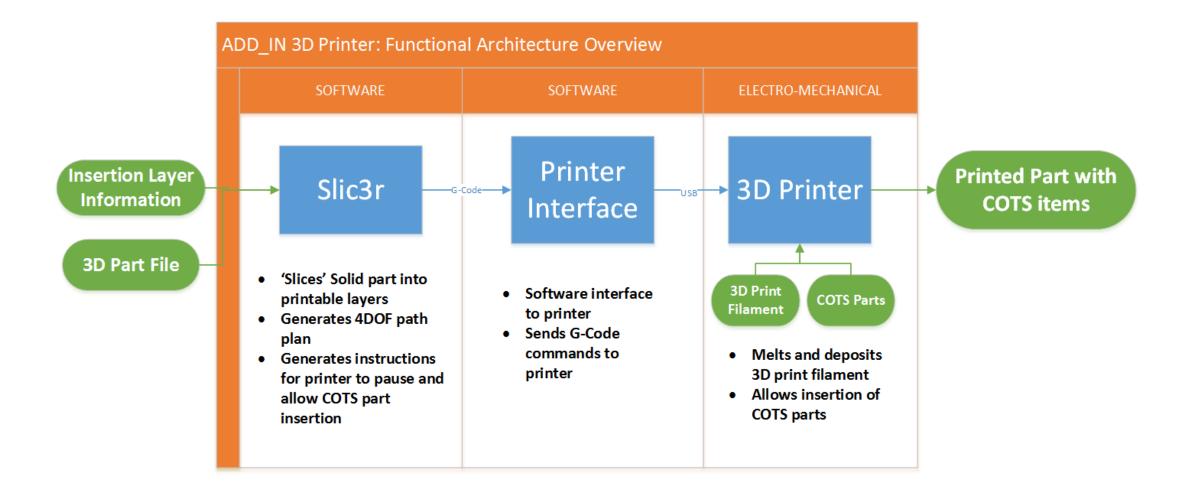
System Level Requirements

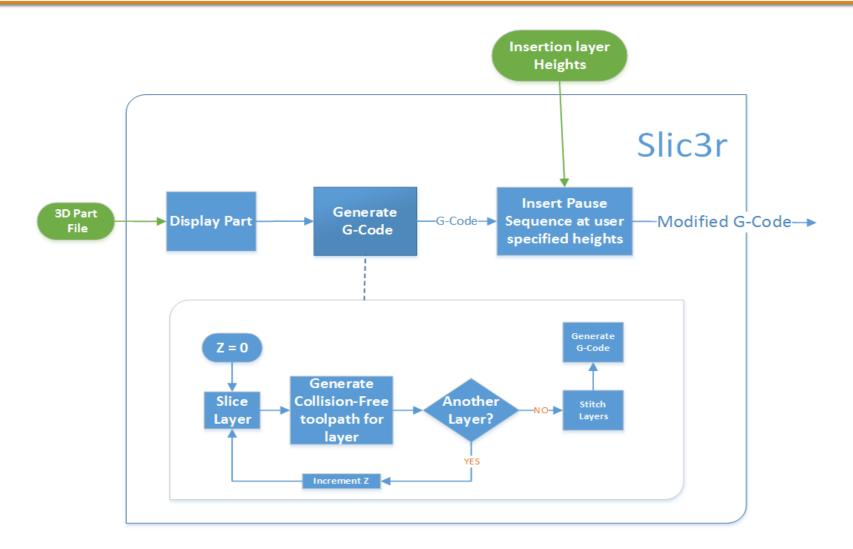

Requirement Types

- 1. Functional (11 Mandatory, 3 Stretch)
- 2. Nonfunctional (2 Mandatory, 2 Stretch)
- 3. Performance (Mandatory, 3 Stretch)

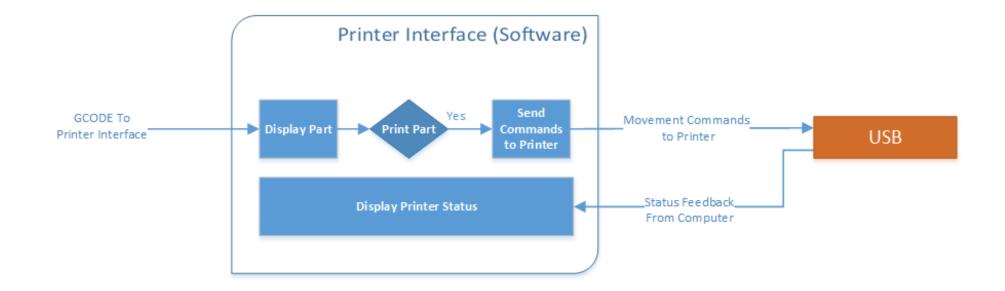
Functional Requirements

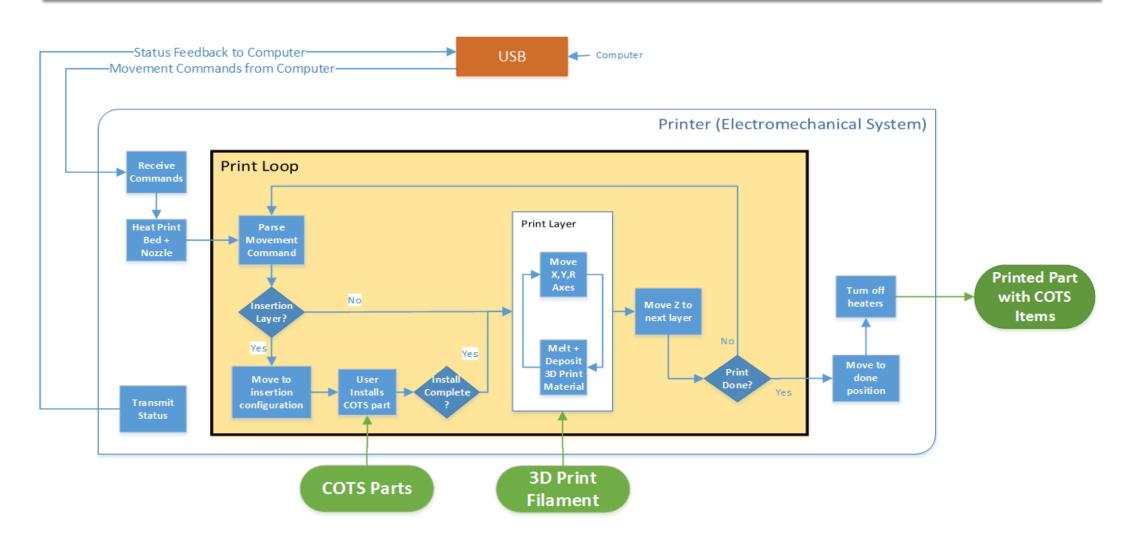
100		Receive standard 3D part files
101		Prompt user for insertion layer
102		Create Collision free path
103		Generate 4DOF G-Code
104	tory	Rotate nozzle using G-Code
105	ida	Avoid Kinks in Filament
106	Mandatory	Print layers of material
107		Print locating features for COTS items
108		Go to safe configuration during insertion
109		Enclose COTS item with print material
110		Avoid Collisions
400	h	Print between parts
401	Stretch	Print close to COTS item
402	St	Automatically Assign insertion layer

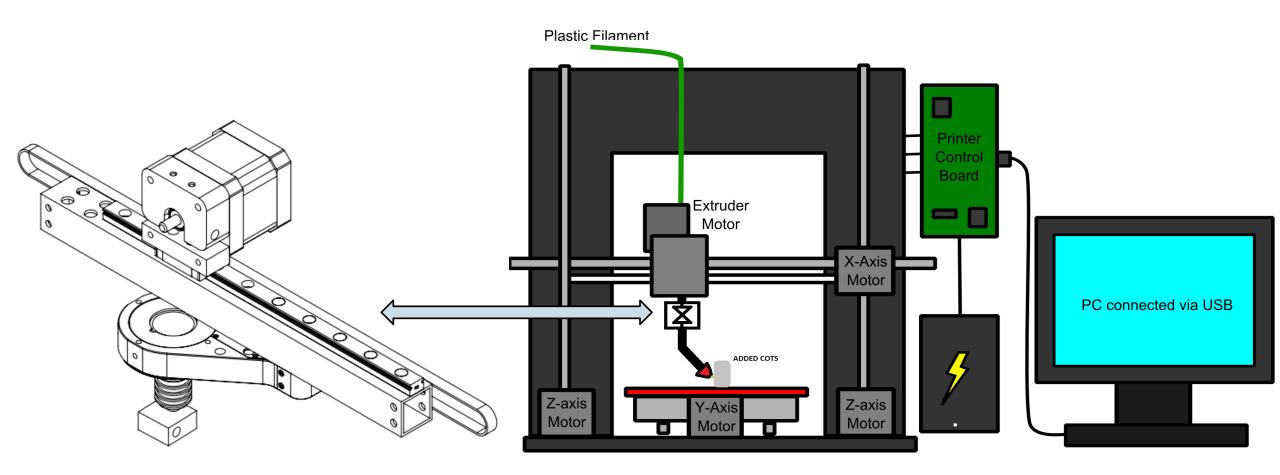

Nonfunctional Requirements

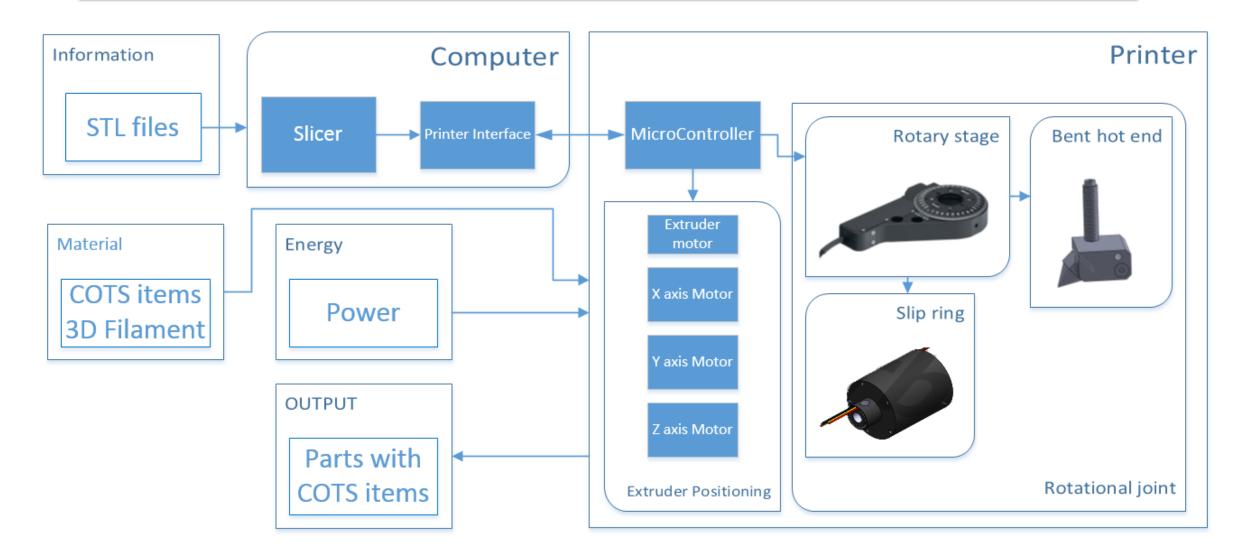

Performance Requirements

300		Incorporate COTS parts of cylindrical and rectangular prism shapes
301	atory	Incorporate COTS parts that are orthogonal to print surface
302	Mandatory	Incorporate COTS parts that have a maximum height of one inch above the print surface
303		Be able to infinitely rotate nozzle
600	tch	Print time (excluding insertion time) not to increase more than 5% compared to Makergear M2
601	Stretch	Print between multiple COTS parts not less than 2 inches apart
602		Position nozzle within 0.1mm of COTS part


Functional Architecture


Functional Architecture: Slicer


Functional Architecture: Printer Interface


Functional Architecture: Electromechanical

Cyberphysical Architecture

Cyberphysical Architecture

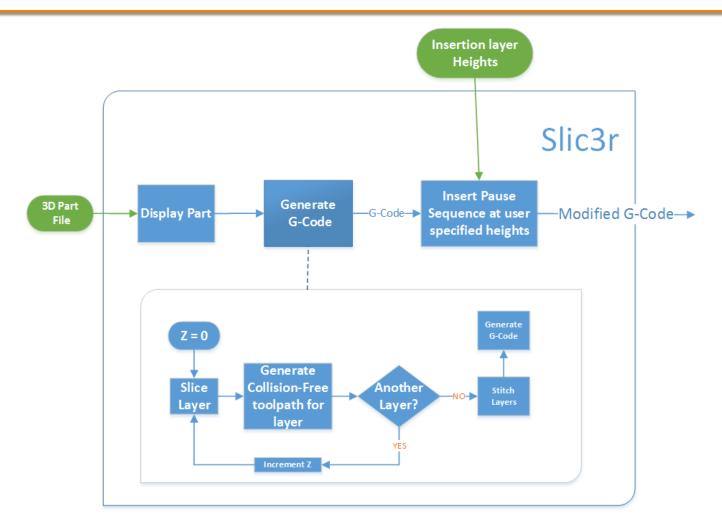
Subsystems (Overview + Current Status)

• Slicer Software

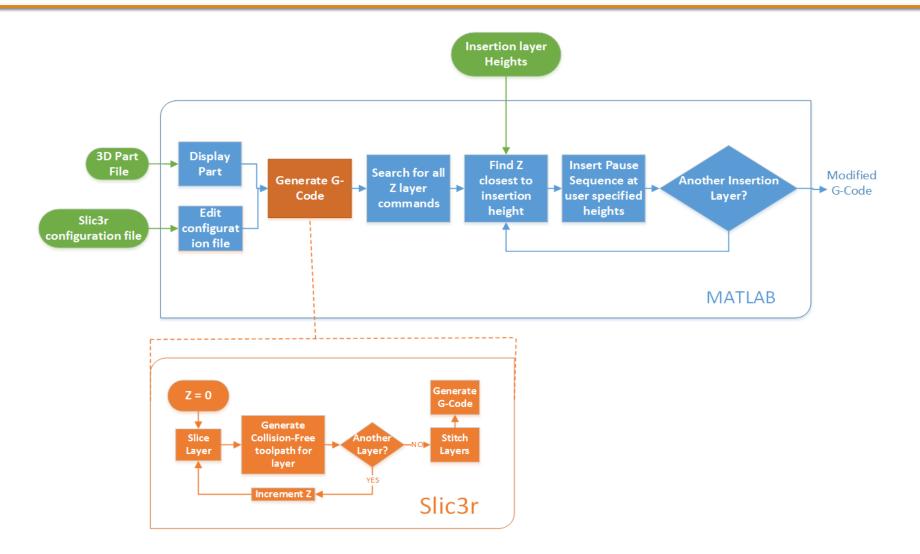
Receive .stl file; Generate G-Code file

RAMBo Controller + Firmware

Receive USB Commands; Command axis + heaters


Rotary Stage + Slip Ring

Infinite nozzle rotation with filament and electrical feed-thru


• Extruder Nozzle

Enclose COTS item in 3D Print material

Slicer Software - Overview

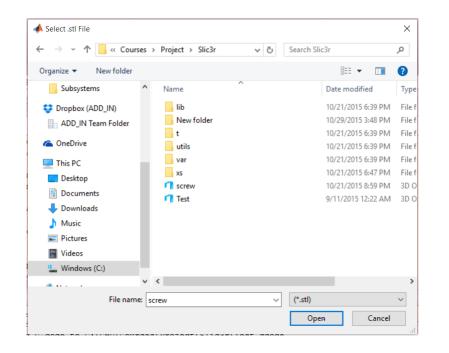
Slicer Software – Current Approach

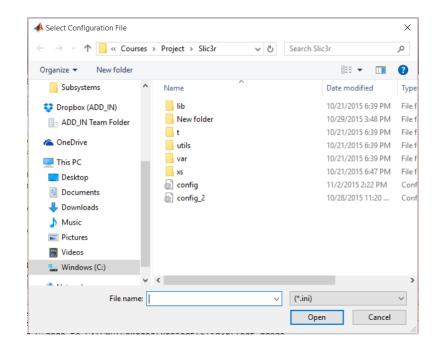
Slicer Software – Current Status

Recent Tasks:

- Invoke Slic3r from MATLAB
- Implement layer selection algorithm in MATLAB

Upcoming Tasks:


- Design + Implement path planning algorithm
- Generate 4DOF G-Code commands
- Port MATLAB scripts into open source Slic3r software (Spring)


Slic3r/MATLAB integration	Layer Selection Algorithm	Design Path Planning Algorithm	4DOF G-Code Generation	Port MATLAB scripts into Slic3r
---------------------------	------------------------------	-----------------------------------	------------------------	------------------------------------

Slicer Software – Current Status

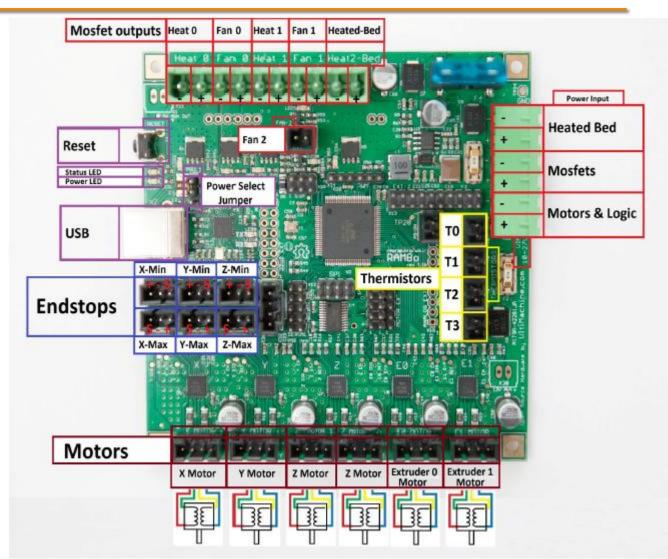
USER INTERFACE (MATLAB)

- Slic3r is invoked and resulting G-Code is modified for insertion configuration
- Slic3r settings are loaded through configuration file

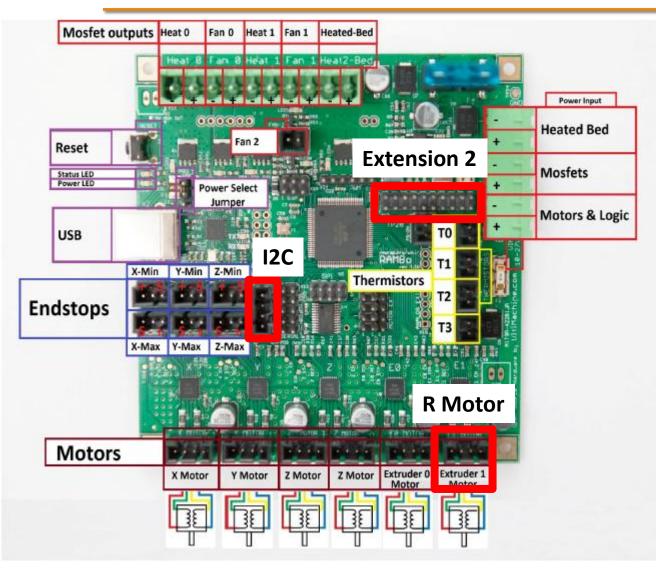
Slicer Software – Current Status

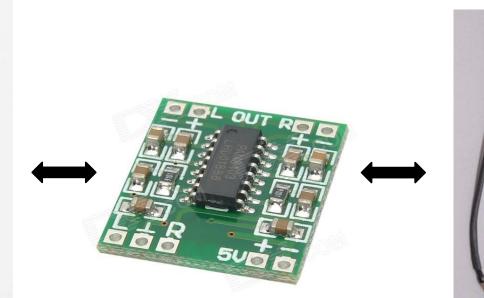
INSERTION LAYER SELECTION

User is prompted for an insertion height


	▲ - □ ×
	Enter Height 1:
2	Height range = 0 to 50.15 mm
	(Press Cancel to proceed without adding insertion layer)
	30
ľ	
c	OK Cancel
l	

PAUSE SEQUENCE


 Pause sequence is inserted before the closest Z command 				
M0	Pause			
G01 X0 Y2	200 Z170Go to Insertion Position			
98623	G1 X64.854 Y82.992 E75.39678			
98624	G1 X63.359 Y84.487 E75.48135			
98625 98626	M106 S211.65			
98627	G01 X0 Y200 Z170			
98628	G1 Z30.150 F7800.000			


RAMBo Controller - Overview

- Hardware
 - ATMega2560
 - 5 Stepper Outputs
 - 2 Heater outputs
 - Analog Thermistor input
 - •I²C Interface
 - User interface with LCD
- Software
 - •Open Source Firmware (Arduino)

RAMBo Controller – Hardware Changes

courtesy Thomas Sanladerer

RAMBo Controller – Firmware Changes

- Control additional stepper motor
- Receive G-codes with 4 degrees of freedom (X-Y-Z-R)
- Modify motor control algorithm to synchronize X-Y-Z-R
- Interface with the thermistor sensing module

RAMBo Controller – Current Status

Recent Tasks:

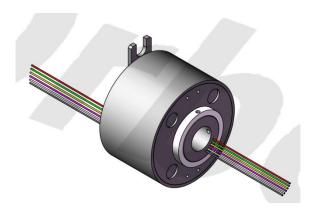
- Control stepper motor using RAMBo => Done in Task 7
- Thermistor sensor module design => Task 12

Upcoming Tasks:

- Modify firmware to for digital nozzle temperature input
- Modify firmware to receive 4DOF G-Code
- Modify firmware to synchronize rotary stage (Spring)

Control stepper with the board	Understand the Merlin Firmware	Write and integrate code for 4 th DOF
--------------------------------	--------------------------------	--

Rotary Stage + Slip Ring - Overview


Rotary stage

- Precise nozzle rotation
- Clear aperture for the filament feed + slip ring

Slip ring

- Transmit Heater power + temperature signal
- Clear aperture for the filament feed
- Enables infinite rotation
- Thermistor output will be converted to digital for noise immunity
 => PCB design of task 12

Rotary Stage + Slip Ring – Current Status

Required specification:

Rotary stage

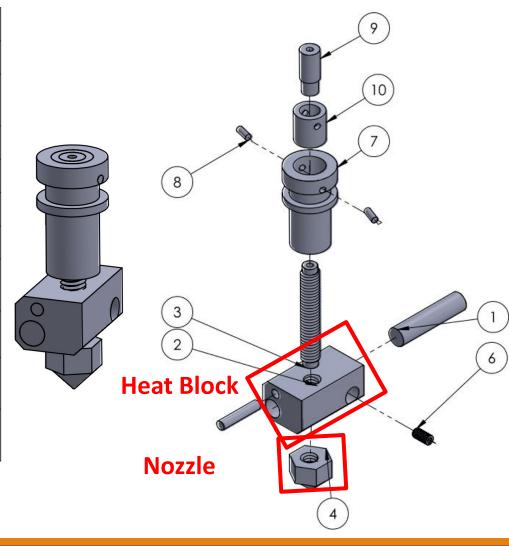
- Speed: $\approx 75^{\circ}/\text{sec}$
- Repeatability: ± 1.2°/R *R is the offset of the nozzle tip w.r.t. rotation axis*
- Stepper actuated control compatible to Rambo board

Slip ring

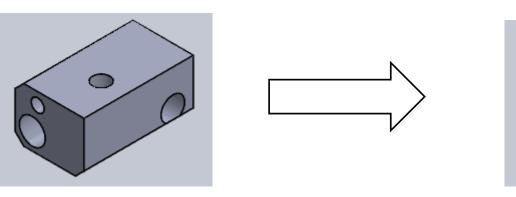
- Hollow with min aperture of 4mm
- 6 lines
- Compact: length < 25 mm
 external diameter < 20 mm

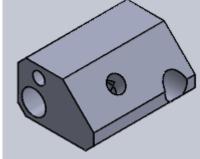
Rotary Stage + Slip Ring – Current Status

Recent Tasks:

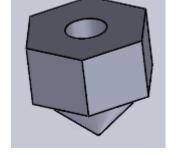

- Determine required rotary stage speed as function of R
- Research rotary stage suppliers

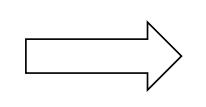
Upcoming Tasks:

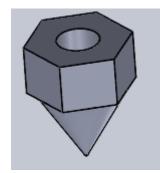

- Select + order rotary stage based on final nozzle dimensions
- Design, manufacture, assemble rotary stage and slip ring mounts
- Modify firmware to synchronize rotary stage (Spring)

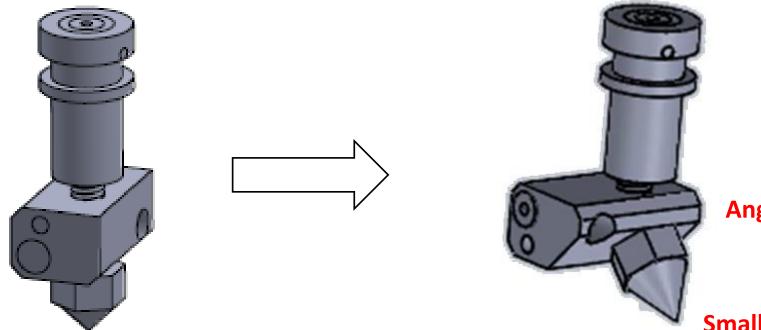

Researc	Required Speed	Select	Design	Purchase	Manufacture	HW + SW
Rotary Sta	es Calculations	Product	mounts		Mounts	Integration

DESCRIPTION	ITEM NO.	QTY.
MakerGear M2 Extruder Assembly	1	1
MakerGear M2 Extruder Assembly	2	1
MakerGear M2 Extruder Assembly	3	1
MakerGear M2 Extruder Assembly	4	1
MakerGear M2 Heater Assembly	5	1
MakerGear M2 Heater Assembly	6	1
MakerGear M2 Groove Mount Assembly	7	1
MakerGear M2 Groove Mount Assembly	8	2
MakerGear M2 Groove Mount Assembly	9	1
MakerGear M2 Groove Mount Assembly	10	1
	MakerGear M2 Extruder Assembly MakerGear M2 Extruder Assembly MakerGear M2 Extruder Assembly MakerGear M2 Extruder Assembly MakerGear M2 Heater Assembly MakerGear M2 Heater Assembly MakerGear M2 Groove Mount Assembly MakerGear M2 Groove Mount Assembly MakerGear M2 Groove Mount Assembly	MakerGear M2 Extruder Assembly1MakerGear M2 Extruder Assembly2MakerGear M2 Extruder Assembly3MakerGear M2 Extruder Assembly4MakerGear M2 Extruder Assembly4MakerGear M2 Heater Assembly5MakerGear M2 Heater Assembly6MakerGear M2 Heater Assembly6MakerGear M2 Groove Mount Assembly7MakerGear M2 Groove Mount Assembly8MakerGear M2 Groove Mount Assembly9MakerGear M2 Groove Mount Assembly10




Heat Block

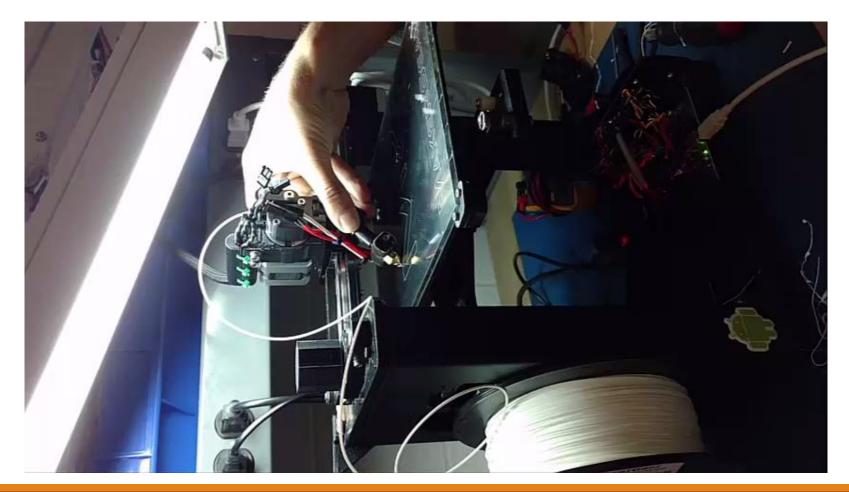




Angled Nozzle Mount

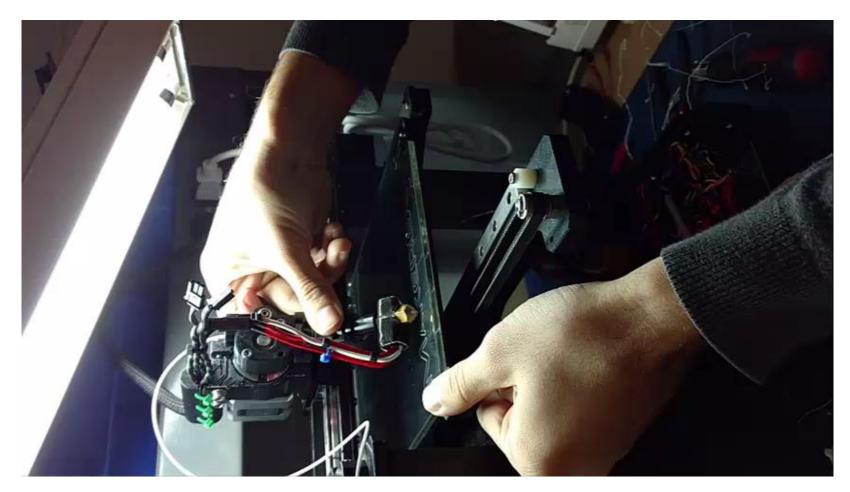
Small diameter nozzle

Original MakerGear Extruder Nozzle


4DOF Custom Nozzle

Extruder Nozzle Requirements

- Avoid filament kinks
- Similar heat transfer properties as original MakerGear Nozzle
- Uniformly extrude 3D print material


Extruder Nozzle – Current Status

Feeding filament through rotating joint

Extruder Nozzle – Current Status

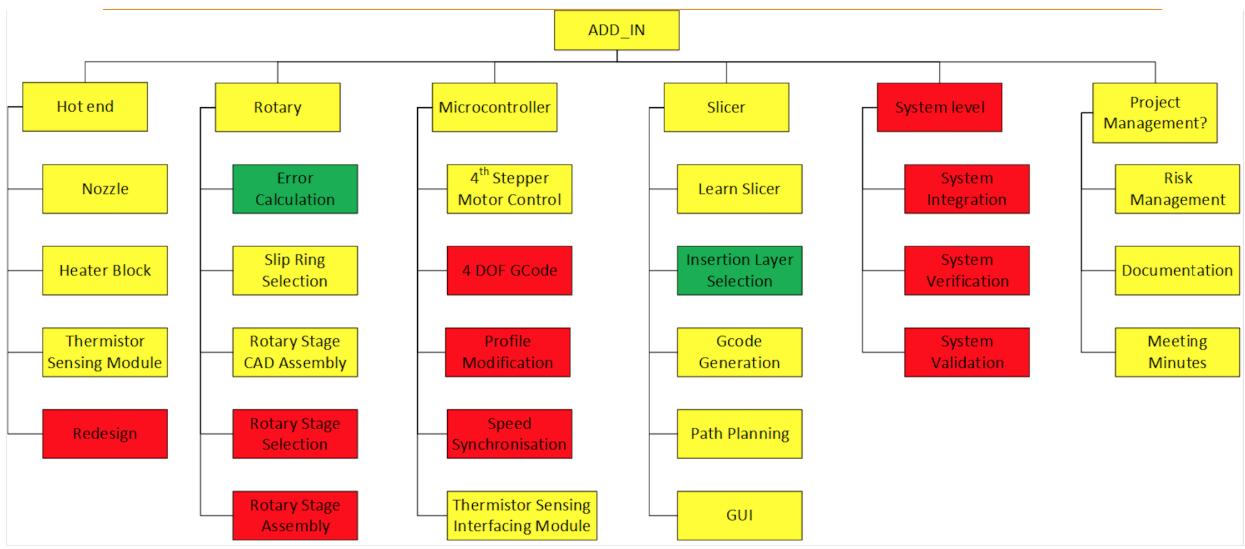
Uniform extrusion with angled nozzle

Extruder Nozzle – Current Status

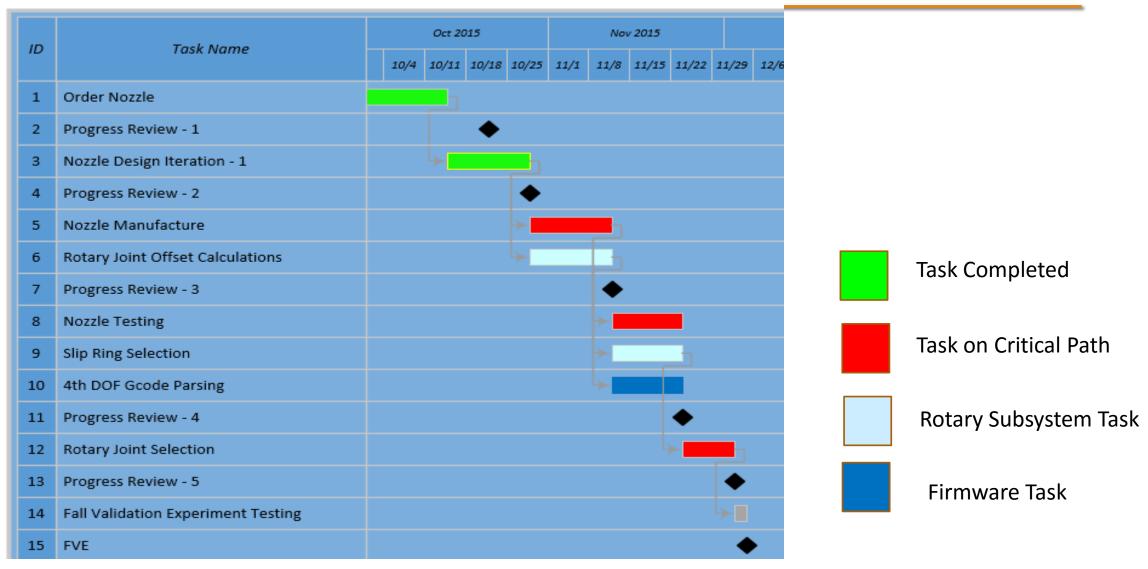
Recent Tasks:

- Nozzle Design Research
- Proof of concept testing
 - Filament feed through rotating nozzle
 - Uniform extrusion from angled nozzle
- First iteration nozzle design

Upcoming Tasks:


- First iteration nozzle manufacture
- Nozzle design iteration

Research nozzle designProof of concept testsDesign first iterationMachine first iterationTest


Project Management

- Work Breakdown Structure
- Schedule
- Test Plans
- Budget
- Risk Management

Work Breakdown Structure

Project Schedule

Project Schedule

Project Schedule

	D Task Name		Oct 2015			Nov 2015				Dec 2015				Jan 2016			Feb 2016		M		Mar				
ID			10/11	10/18 1	0/25	11/1	11/8	11/15	11/22	11/29	12/6	12/13	12/20	12/27	1/3	1/10	1/17	1/24	1/31	2/7	2/14	2/21	2/28	3/6	3,
33	Implement Path Planning in Slic3r																								
34	Implement Layer Selection in Slic3r																					2			
35	35 Study/Explore Slic3r Source Code																_								
36	Fall Break																								
37	Software tuning + testing									-															
38	4DOF G-Code Creation						┢																		
39	Slicer Path Planning Algorithm						P																		
40	MATLAB Part Display						7																		
41	Insertion Layer Selection Algorithm		┢		P																				
42	Get up to Speed on Slicer																								

Task Completed

Task Software

Test Plans

• Fall Validation Experiment

- Requirements Mapping
- Software Verification
- Hardware Verification

•Spring Validation Experiment

- Requirements Mapping
- Software Verification
- Hardware Verification
- System Validation

FVE – Requirements Verification

	FVE	REQUIREMENTS	Test 1: Nozzle Print Capability	Test 2: Insertion Layer Selection
	Functional	Receive standard 3D part files	4	4
	Functional	Prompt user for insertion layer		4
≥	Functional	Generate 4DOF G-Code		4
ato	Functional	Avoid Kinks in Filament	4	
and	Functional	Print layers of material	4	4
ŝ	Functional	Go to safe configuration during insertion		4
	Non - Functional	Maintain accurate temparature control	4	
	Non - Functional	Provide user feedback during printing		4

FVE – Software Verification

Objective: Demonstrate the ability of a slicer program to allow selection of insertion layers and for the 4DOF printer to 'pause' at the selected layers.

Equipment	Sequence	Metric
 Physical: 1. 4DOF Printer with standard print nozzle 2. Laptop computer with slicer and printer controller software 	 Slice part, choosing an insertion layer Send resulting G-Code file to the printer When the printer pauses and enters the insertion configuration, wait 5 minutes, 	 The printer should pause and enter the insertion configuration at the correct height. The printer should resume printing and complete the part without significant
Electronic: <i>1stl</i> file for test part	then resume print using hardware printer controller	defects. Insertion Configuration

FVE – Hardware Verification

Objective: To evaluate the ability of the custom print nozzle to uniformly extrude 3D print material at different nozzle orientations

Equipment	Sequence	Metric
 Physical: 4DOF Printer or equivalent nozzle test fixture 4DOF Custom Nozzle Laptop computer Electronic: Printer controller software G-Code test file which instructs the printer to extrude material 	 If necessary, configure the printer/test fixture with the custom extruder nozzle Power on the system and warm up the print nozzle. Send the test file to the printer After the print, rotate the extruder nozzle angle and reprint the test file 	 1. Visually inspect all prints to ensure uniform extrusion thickness Pass Fail

SVE– Requirements Verification

	SVE	REQUIREMENTS	Part 1: Slicer Capability	Part 2: Printer Capability
	Functional	Receive standard 3D part files	4	
	Functional	Prompt user for insertion layer	4	
	Functional	Create Collision free path	4	
	Functional	Generate 4DOF G-Code	4	
	Functional	Rotate nozzle using G-Code		4
	Functional	Avoid Kinks in Filament		4
	Functional	Print layers of material		4
	Functional	Print locating features for COTS items		4
5	Functional	Go to safe configuration during insertion		4
	Functional	Enclose COTS item with print material		4
	Functional	Avoid Collisions		4
•	Non - Functional	Maintain accurate temparature control		4
	Non - Functional	Provide user feedback during printing	4	
	Non - Functional	Slicing, Insertion Layer Selection, and Path Planning in single software application	4	
	Performance	Incorporate COTS parts of cylindrical and rectangular prism shapes		4
	Performance	Incorporate COTS parts that are orthogonal to print surface		4
	Performance	Incorporate COTS parts that have a maximum height of one inch above print surface		4
	Performance	Print volume of 3x3x3 inches		4
	Performance	Be able to infinitely rotate nozzle		4

SVE–Part 1: Software Verification

Objective: To evaluate the ability of the slicer software to generate four axis G-Code commands with obstacle avoidance and insertion layer selection capability.

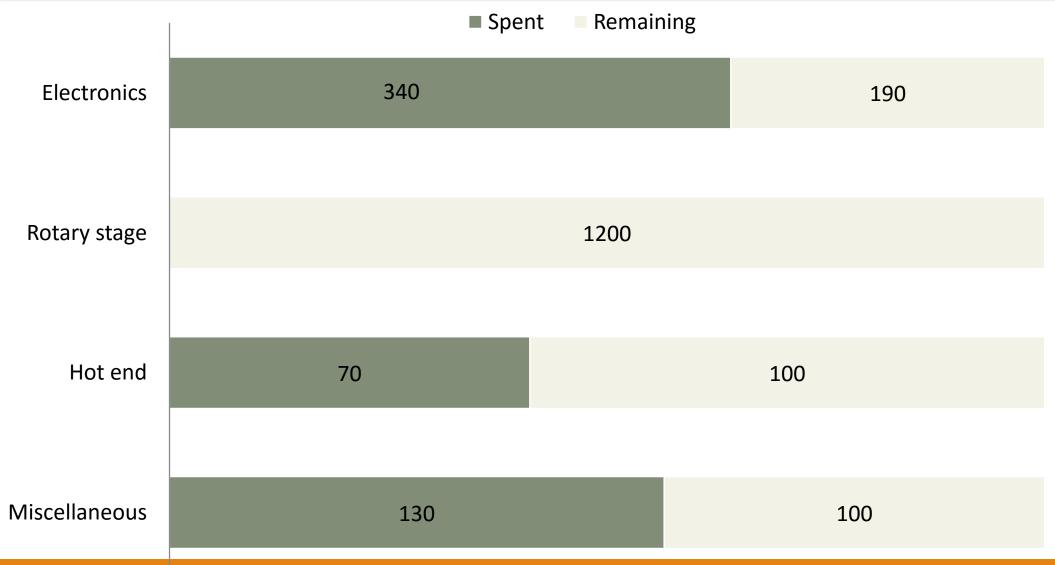
Equipment	Sequence	Metric
 Physical: 1. Laptop computer with slicer software and 4DOF G-Code visualization software 	 Select insertion layer and print configuration Slice the part to generate G- code 	1. The visualized print path shows the rotation axis being positioned to avoid collisions with the COTS item
Electronic: 1. <i>.stl</i> file for test parts: 1. Part with stiffener rod 2. Part with threaded insert 3. Part with sensor/electronics.	3. Visualize resulting G-Code and ensure accuracy	

SVE– Part 2: Hardware Verification

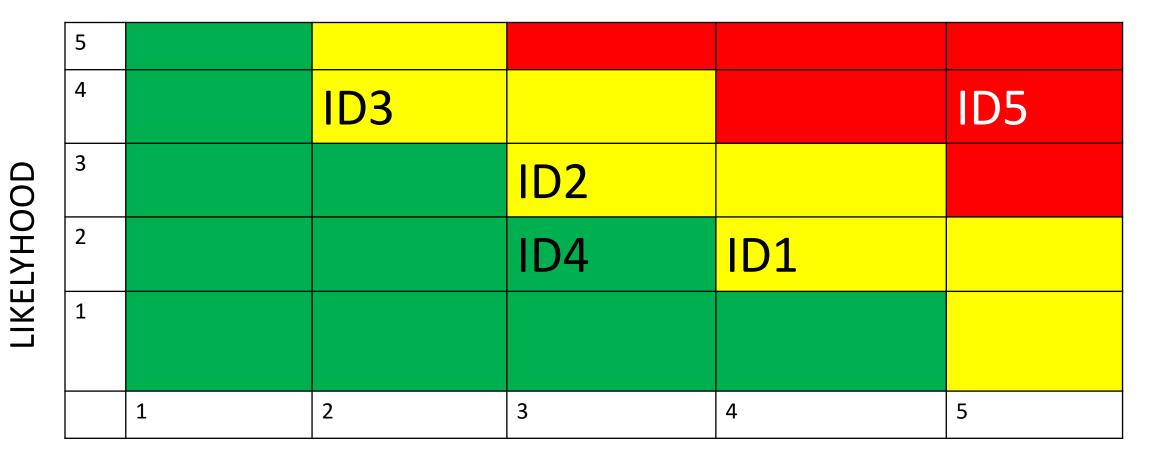
Objective: To evaluate the ability of the printer to correctly execute 4DOF G-code commands.

Equipment	Sequence	Metric
 Physical: 1. Laptop computer with printer interface and slicer software 2. ADD_IN printer with filament 3. COTS Items 	For each of the 3 parts:1. Send G-Code file to printer2. Insert COTS item at appropriate layer	 The printer successfully finishes the prints
Electronic:	3. Resume printing after placement of COTS item	
1. G-code files from part 1		

SVE–Part 3: System Validation


Objective: To validate that the parts printed with ADD_IN have indeed superior qualities than standard parts

Equipment	Sequence	Metric
Physical:1. 3D printed parts2. Test setup for each printed part	Perform adequate testing:1. Pullout strength test for part with screw insert.	 Pullout strength should be more than similar part with glued screw insert
 Bending stiffness tester Pull out strength tester Electronics operation 	2. Bending stiffness test for part with stiffener	2. Stiffness should be more than similar part without stiffener
tester	3. Electronics/sensor functionality check	3. Electronics/sensor works and was not damaged during the print



Category	Details	Cost
Electronics	Backup Rambo Board	\$190
	Slip Ring	\$140
	Spare Parts: Motor – Extruder	\$200
Rotary stage	Rotary Stage	\$1200
Hot end	Materials/parts	\$150
	Heater/Thermistor	\$20
Miscellaneous	Market research: Makerfaire tickets	\$80
	Experimental Filaments/others	\$150
	Total	\$2130

Current budget status

Risk Management

SEVERITY

Risk ID	Risk Title	Risk Owner	Date submit	Date updated					
1 Nozzle not extruding uniformly		Ihsane	10/24/2015	11/2/2015					
Description									
Custo	Custom nozzle design does not extrude filament of uniform shape and thickness while moving								
	Consequences	Risk Type	Risk Level						
	Low print quality	Technical, Schedule	20						
	Risk Reduction Plan	Date	Expected Outcomes	Comments					
1. Test early and often to identify potential sources of extrusion non-uniformity		11/5/2015	Identify and minimize sources of non-uniformity						
 Planned iteratation on nozzle design using lessons learned from nozzle testing and research 		11/12/2015	Produce final nozzle design with similar quality to original MakerGear Nozzle						

Risk ID	Risk Title	Risk Owner	Date submit	Date updated					
2	Rotary Joint Accuracy	Ihsane	10/24/2015	11/2/2015					
	Description								
	The offset of extruder nozzle fr	rom the axis o	f rotation is greater than 20mn	n					
	Consequences		Risk Type	Risk Level					
Achieving	print accuracy requires non-standa rotary stage	Technical, Cost	16						
	Risk Reduction Plan	Expected Outcomes	Comments						
1. Custom designed extruder with small nozzle to minimize offset		1/12/2016	Nozzle offset can be kept below 20 mm						
2. Planned iteration on nozzle design		1/30/2016	Low offset will not cost print quality						

Risk ID	Risk Title	Risk Owner	Date submit	Date updated				
3	Weight of the X movement assembly	Nikhil	10/24/2015	11/2/2015				
	Description							
The increased weight from the rotary stage will decrease the accuracy of the X axis assembly								
Consequences			Risk Type	Risk Level				
	Lower Print Quality	Technical	8					
	Risk Reduction Plan	Date	Expected Outcomes	Comments				
			Determine risk liklihood					
1. Perform	n early testing of weight affects to evaluate		early, provide time for					
	sensitivity to increased weight	10/30/2015	redesign.	Solved				
			With time investment, X-					
			axis can be modified to					
			accommodate increased					
			weight without sacrificing					
2	. Redesign/modify X-axis assembly	11/5/2015	speed					
			Less weight sensitivity but					
2. Reduce printing speeds to reduce acceleration			printer usefulness is					
	forces	11/15/2015	reduced					

Risk ID	Risk Title	Risk Owner	Date submit	Date updated				
4	Path Planning Algorithm	Dan	11/1/15	11/2/15				
	Description							
Р	Preliminary path algorithm has been designed, but their may be unforeseen failure cases							
	Consequences	Risk Type	Risk Level					
	Schedule delay	Technical, Schedule	6					
	Risk Reduction Plan		Expected Outcomes	Comments				
Review algorithm with sponsor/experts		11/4/15	Get feedback and insight on algorithm design					
Perfor	Perform MATLAB Test/simulation Path Planning Algorithm		Early identification of potential pitfalls					

Risk ID	Risk Title	Risk Owner	Date submit	Date updated				
5	Slic3r cannot be modified	Dan	10/28/15	11/2/15				
Description								
	Not possible to port layer selection + 4DOF path planning into Slic3r code							
Consequences			Risk Type	Risk Level				
			Failure to meet					
Incr	eases dependency of project on	MATLAB	requirements	20				
Risk Reduction Plan Date		Expected Outcomes	Comments					
	1. Contact Developer	10/28/15	Documentation and Recommendations	No reply as of 11/2/15. Will try other contact methods				
2. Identify local Perl programming resources 11/15/15		Guidance for current and future Perl programming difficulties	· · · · · · · · · · · · · · · · · · ·					
3. Use different software		Spring	Delay in systems integration	Major overhead required for familiarization with new software				

QUESTIONS?