
PROGRESS REVIEW 9

Astha Prasad

Team F: ADD_IN

ILR #8

February 25, 2016

Teammates:

 Daniel Berman

Nikhil Baheti,

Ihsane Debbache

Introduction
For Progress Review, the primary software tasks that were tackled were as follows:

- Check the function that compute’s R angles to fix the problem of spurious ‘NaN’ values

- Switch from absolute angles to relative angles

- Implement a collision check function

The NaN issue

 After the previous PR, it was Dan and I noticed that for certain printer states, the R angle was

turning out to be ‘NaN’. This occurrence can be seen in the image below:

It was observed that this occurred only when the X and Y coordinates of two sequential G-Codes

remained the same. The velocity vector is calculated using the equation:

v = (p(1:2)-cp(1:2))./norm(p(1:2)-cp(1:2));

where ‘p’ and ‘cp’ are the XYZ coordinates of the current and the next printer states respectively.

As can be seen, the denominator evaluates to zero in the case mentioned above which resulted

in the ‘NaN’s. This case was handled smoothly by adding an ‘any(isnan(v))’ check on the velocity

vector. If it evaluated to true, the R angle was set to zero.

Absolute to Relative angles

Nikhil firmware currently works on the assumption that it receives relative angles. Hence, an

additional variable called ‘r_relative’ was added to the PrinterState class to store relative angles

along with absolute ones that were being computed earlier. The above was achieved by simply

subtracting the absolute angles of two sequential PrinterStates. The function that writes the

GCode into a .gcode file can be changed to write absolute or relative values as required.

Figure 1 : GCode showing NaN values

Collision Check

The collision check functionality was added to check cases such as those illustrated in the figure

below:

The figure above shows the top view of the print bed. The area in blue shows the part of the print

that the dark grey COTS item rest on. In this particular case, we can see that the nozzle is in

collision with the COTS part itself because of its convexity. This is exhibited by the red portion of

the nozzle. In such a case, the function will alert the user that the COTS part is likely to collide

with the nozzle. As a result, the user might have to redesign the part/the COTS item to suit the

printer’s capabilities.

Our project requirements dictate that we shall be including only one COTS item and that the part

will be cylindrical or rectangular prism shaped. As a result, our standard implementation will not

require this collision check function as our path planning algorithm is robust enough to plan a

collision free tool path for the specified requirements. However, if we decide to scale up our

project scope to include convex COTS items or multiple COTS items, this function will play a vital

role in checking off the feasibility of a designed part.

The collision function was implemented as follows:

1. Obtain the convex hull of the nozzle (simplified by the use of 5 points, 4 to show the

corners of the heat block and one to show the tip of the nozzle protruding from one of

the sides). These vertices were generated for each and every Printer State, using the XYZR

coordinates to translate and rotate the nozzle to mimic its position at every line of GCode.

2. Obtain the projection of the COTS part in the XY plane. In order to move the COTS part to

the coordinate frame of the GCode, the user specified origin and rotation angles were

used.

Figure 2 : Occurrence of Collision

3. For each PrinterState post insertion, the Collision Check function checks if any of the

vertices of the nozzle are inside the projection of the COTS part in the XY plane.

4. If a collision occurs, alert the user.

Note:

This above case was forcibly created to display a scenario where the nozzle and COTS item are

in collision by moving the COTS part into the nozzle’s path. In our current implementation with

decided COTS parts, the collision check function does not return any collision.

Challenges
The biggest challenge for me this week was managing time. It turned out to be an extremely

hectic week with assignments of most subjects aligning with a mid term. The team in general is

waiting on the jamming issue to be fixed so that we can start our testing process.

Teamwork
Remaining goals for Progress Review 9 were distributed as follows:

Figure 3 : Nozzle is in collision with the COTS part Figure 4 : Nozzle is not in collision with the COTS part

Ishane Debbache

Ihsane worked on getting the encoder mounted onto the printer, and attempted to carry out

some test prints. However, the clogging of the barrel was a constant problem. He will work on

managing the heat transfer within the nozzle more efficiently.

Nikhil Baheti

Nikhil worked on the firmware goals. He had help from Dan to find the bug that was causing the

issue with the E1 port. After that, he worked on building the final version of the firmware that

controls all motors.

Dan Berman

Dan and I discussed how to trouble shoot the existing errors in the code and how to implement

collision checking effectively. After some great inputs from him, I proceeded to write the code,

while he focused on mounting his nozzle and testing it.

Future Goals
As we are already generating the GCode that the printer will run, the next steps for the software

team involve adding functionality to the GUI and beginning work on taking it to a web platform.

As the firmware is also achieving completion in the next few weeks, our team’s goal is to focus

our efforts towards reaching a point where we can all test our printer whenever we have time.

As a result, our primary goal for the coming PR is to be able to print around COTS items.

