ILRO4

11/13/15

Dan Berman
Astha Prasad
lhsane Debbache
Nikhil Baheti



Individual Progress

Since the last ILR presentation | have focused on formulating our path planning algorithm and
implementing a proof of concept simulation of it. Early in the week of November 2", Astha and
I met and created an overall concept for the path planning algorithm. The basic steps for the
algorithm are as follows:

1. Orient the printer nozzle to be normal (or at some specified angle) to the velocity
trajectory of the nozzle at all times (this yields two possible solutions for nozzle
orientation).

2. Always orient the nozzle to be pointing towards the nearest COTS item (this selects
between the two solutions in (1)).

In this design the path planning algorithm simplifies each COTS item to a ‘keep out’ zone
centered at a specific point location and with a specified height. The assumption is made that
the G-Code file for the printed part is designed to accurately represent the exterior profile of
the COTS item, and thus no other information is needed about the COTS item’s external
geometry. Not relying on additional geometry information implies that the part designer
avoided creating a design which violate the geometry constraints of the printer (i.e. parts are
too close together, or have concave profiles that the nozzle can not access), since these
potential collisions will not be detected by the path planning algorithm.

The path planning algorithm was implemented in MATLAB and is applied to a given G-Code file.
The inputs to the algorithm are a G-Code file produced by Slic3r which encodes the XYZ
locations the print nozzle must move to, and a list of COTS item locations and heights. Using
this information, the algorithm computes the necessary angle of the rotation axis for each G-
Code movement command, and produces a modified G-Code file. It was discovered that Slic3r
only produces straight line commands (GO0 and GO1) which greatly simplifies the
implementation algorithm because rotation along an arc doesn’t need to be considered.

The actual implementation of the algorithm is as follows:
For each GOO or GO1 (straight line movement) command.:
1. Compute the vector (11) in the XY plane from the current position to the center point
of each COTS item (C;) which is at or below the current Z position
n; = ¢ —p1
2. Determine the COTS item which is nearest to the current position.
1 = min; ([I7; 1)
3. Compute the vector for the current movement command

m = ¢; —p,, where,
D, is the desired (x,y) position of the extruder at the end of the movement command



4. Determine which side of the print path the COTS item is on
side = det([m,n]) [1]

where for
side > 0: COTS item is to the left of m

side = 0: COTS item is onm
side < 0: COTS item is to the right of m

5. Compute the velocity of the nozzle in the coordinates of the print bed

o PP
AR

6. Compute the angle between the velocity vector and the x-axis
a= atanZ(vy, vx), where v, v, are the x,y components of v

7. Based on which side of 7 the COTS item is, rotate the nozzle to be normal to the
velocity vector and pointing towards the COTS item.

] T
side>0:r=a+ —

2

side = 0: Invalid — Collision will occur
T
side<0: r= a—i

To evaluate the algorithm MATLAB scripts were written both to implement the algorithm and
to plot the resulting G-Code file. A simple part (cylindrical tube) was designed and sliced. The
algorithm was then applied on the resulting G-Code file with a COTS item positioned in the
center of the cylinder and the result was visualized as shown in Figure 1 and Figure 2.



150

0
130

1

60

1

50
45
40
35
30
25
20
15
10
170

11

100

00

90

80

50

Figure 1: Plot of modified G-Code including R-axis commands. A COTS item (represented by the green line) was specified to be at

the center of the cylinder.

‘ §>‘§V‘ _gvl _Qvl &“vl _gv‘ _gv‘ .gvl .Sv‘ ,gvl ‘gvl _gvl ~

Figure 2: Close up of G-Code path. otice the nozzle is always oriented normal to the path and towards the COTS item.



In addition to my primary work on the path planning algorithm, | also assisted Nikhil and Ihsane
by machining our first nozzle design. Neither Nikhil nor lhsane have shop experience, and since
Ihsane has not yet completed the shop class | worked with Chuck Whittaker to get access to the
RI shop, permission to use the lathe/mill, and machined the nozzle.

Challenges

The primary challenge was deriving the mathematical formulas to implement the path planning
algorithm. Although conceptually the algorithm is simple, my initial implementation relied
heavily on inverse trigonometric functions which due to range limitations would provide
incorrect results when the extruder nozzle was in certain Cartesian quadrants relative to the
COTS item. To solve this issue, I vectorized the equations, used equation [1] to determine which
side of the path the COTS item was on, instead of my original approach which relied on
computing the angle between the COTS item and nozzle trajectory.

Plotting the G-Code files also presented a challenge, since they typically contain 10* — 10
movement commands which requires excessive memory usage to plot. To alleviate this, I
modified the plotting algorithm to compute the distance between each movement command, and
only generate a point on the plot when the distance of successive movement commands is greater
than a defined threshold. Using a threshold of 0.1 mm reduced the number of plotted points from
~10° to ~10°, producing much more manageable plots which still accurately portrayed the part.

Teamwork

Nikhil Baheti: Nikhil completed the nozzle design and produced a drawing which I used
to machine the heat block (primary component in our custom nozzle). After the nozzle
was machined, he worked with Thsane to assemble and test it. In addition, Nikhil created
a flowchart to help himself get up to speed on the layout of the 3D printer’s firmware and
then modified it to accept an additional G-Code command to control an additional stepper
motor. Nikhil also completed the board layout and gerber file generation for our PCB.

Ihsane Debbache: Worked with Nikhil testing our custom nozzle and identifying changes
to be made for the next design iteration. He did extensive research to select our slip ring
and rotary stage, ultimately coming to the realization that we could meet our
specifications for the rotation joint using a hollow-shaft stepper motor rather than a
geared rotary stage. The hollow shaft stepper motor is much smaller than comparable
rotary stages and (surprisingly), a similar price. In addition, Ihsane handled all purchasing
for the team, including procurement of parts for our PCB design.

Astha Prasad: Worked with me on the conceptual development of the path planning
algorithm, and refined the insertion layer selection algorithm to plot the input .s#/ file and
display the insertion layer as a plane. She also took over from Nikhil as our project
manager, taking responsibility for organizing our team meetings and ensuring we are
meeting all deadlines and requirements.



Future Plans

The implementation of the path planning algorithm helped to verify our conceptual design, but

there are numerous details that still need to be resolved before it can generate printable 4-axis G-

Code. The two primary issues are as follows.

1. Direction of R-axis rotation:
Currently, the algorithm analyzes each movement command individually and
computes the rotation angle of the R joint in absolute coordinates. Because of this,
the algorithm currently does not specify which direction the joint needs to rotate
to reach each new angle, which could lead to a collision with the COTS item. To
solve this, an additional step needs to be added to the path planning algorithm to
determine which rotation direction maintains the nozzle orientation to always be
pointing towards the COTS item.
2. Collision during long moves:

Currently, the R axis angle is only calculated based on the distance to the nearest
COTS item at the beginning of the movement command. In the case where a long
movement command bringing the nozzle from far away up close to the COTS
item, or a movement command passes near one COTS item and continues to a
more distant location, there exists a possibility for the nozzle to collide during the
movement. To remedy this, the path planning algorithm needs to be extended to
compute the distance to the nearest COTS item at multiple locations along each
movement command.

In addition to the the primary issues, there also exists numerous opportunities to improve the
path planning algorithm to be more efficient (it currently takes ~45 seconds to parse ~30,000
movement commands) and more robust (it occasionally produces logical errors such as

appending the r axis movement command into the comment section of a G-Code command).



