

Progress Review 8

Nikhil Baheti

Team F: ADD_IN

Teammates: Ihsane Debbache, Dan Berman and Astha Prasad

ILR07

January 28
th

, 2016

1 Individual Progress

This fortnight, I had to work on completing the firmware for the 3D printer. T he control

of the r-axis stepper motor through micro stepping, similar to other axes was one of the major

tasks. This includes solving the hardware problem on the E1 port. I also had to modify the other

G-codes where the r-axis variables are altered to ensure that the system is consistent across all

axes.

1.1 Hardware working of E1 port

To solve the problem of E1 port, I first tried microstepping on other ports. After having learnt

how this works I tried to do the same with the E1 port. However, it did not work. Then I tried

changing the pins of y-axis to control port E1. However, this did not work too. To eliminate any

dependence on the firmware, the microcontroller was programmed with the original firmware

and then the y-axis control pins were used to control the E1 port. Failing to drive the port the

problem was narrowed to the hardware. Hence, the boards have been changed and we are

currently using the spare board that we bought the previous fall semester.

1.2 Firmware working of E1 port

After changing the board the E1 port did not respond to the modified firmware and thus the

following steppers were used to debug the problem:

 Control the E1 port using the original firmware. This did work which concludes that

there is no hardware problem

 Use R-axis variables to control Y-axis port. This did work which concludes that the

variables that are defined are performing the required operations.

 Comment the y-axis pins since there is a dual definition of pins (r-axis and y-axis)

controlling the same ports. This produced compilation errors as there are a lot of

places where these variables are used in the code and there is no time efficient way of

eliminating these variables.

 Use the compilation errors to check if any initializations in r-axis have not been

performed when compared to the y-axis. This did help point out a couple of changes

but there weren’t causing the problem. This was reconfirmed by removing similar

initializations for y-axis and checking if the y-port can still be controlled.

 The only logical reason that I can think of is that the uninitialized E1 variables are

resetting the port and deactivating it. However, this part of the code is not traceable.

 So, I set ADD_IN variable to 0 to make sure any changes in the firmware are

removed. Doing this still did not activate the E1 port. So I used the winmerge tool to

check the differences between the original Marlin firmware and the modified

firmware. This resulted in the firmware controlling the E1 port without ADD_IN

features.

 This narrows down the variables to the ones that were changed in this process.

 Now the approach is to check where each of these variables change and try to find the

solution to the problem.

Figure 1 shows the flowchart of the approach used for debugging.

Figure 1: Flowchart of the debugging process

1.3 Modifying different G-codes

Various G-codes use the x, y and z axis variables to update and use them. Like G92 is used to

set reference points. I had modified these codes to work for r-axis. However, the E1 port not

working has forced the development to previous versions as it is easier to narrow down the

changes. Thus this development must be done again but it will be quicker using the winmerge

tool.

2 Challenges

The challenges faced during the term of this progress review which are quite consistent with

the previous problems and are explained as follows:

1. Arduino IDE: The Arduino IDE for tracing variable declaration, references

and initiations is not user-friendly. Thus, I had a hard time tracing variables

across files.

2. Debugging: The firmware could not include break points to monitor the variable

which resulted in a lot of time waiting to write the code even for a small change in

the code. Also, I had to use print statements echoed to the serial terminal to debug

sections of the code. The essential part of the code exists in the timer interrupts

where the stepper motor is controlled. This is called every few milliseconds and

thus printing in this interrupt is not useful as it overloads the buffer on the serial

communication port causing large outputs which do not make sense. The current

approach to tackle this problem is using a static variable that ensures prints only

every few seconds.

3 Teamwork

 Astha: She worked on making a GUI in MATLAB that can import slicer setting and

visualize the various steps of the process. This will help us accelerate the testing

phase as the GUI can be used by anyone not familiar with slicer.

 Dan: He also worked on the GUI in MATLAB that can import slicer setting and

visualize the various steps of the process. Apart from this he was responsible for

machining the new nozzle designs and he also designed one of the new models.

 Ihsane: He was responsible for testing the machined nozzles. He also had designed a

nozzle and the hollow tube that passes between the stepper motor, slip ring and the

heat block.

 Team collaboration: There was no major component of team collaboration as most

of the work was divided, but we did meet regularly to check progress. We also met to

try and integrate the subsystems but since the subsystems had issues associated with

them we could not integrate the system.

4 Plan

For the next progress review, I plan to work on the firmware and modify the code for

the printer to use all G-codes and solve the bug in the firmware that is restricting

the control of the E1 port .

