

# Team G:Robographers 14 Dec 2015

**Critical Design Review** 

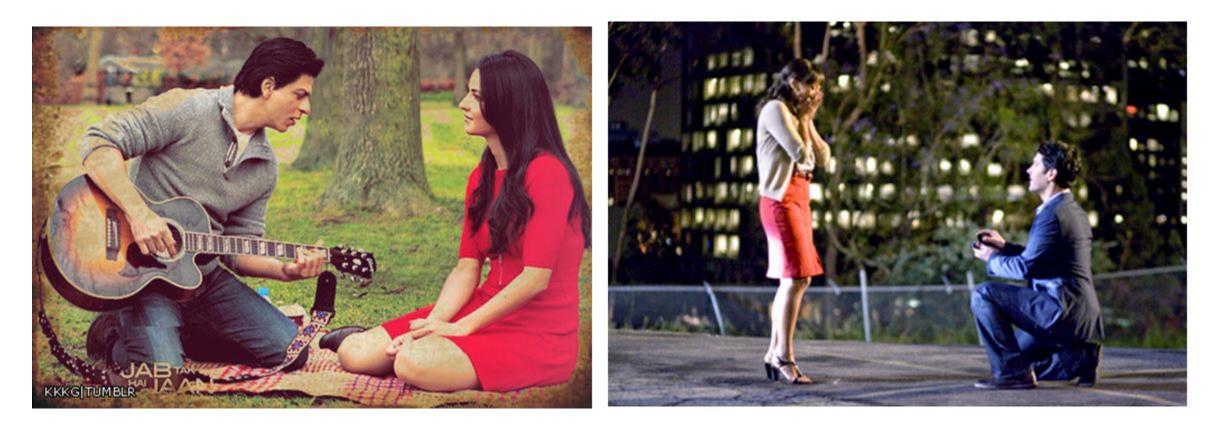
Project Name: The Robographer

Sponsored By: Dr. Katia Sycara

Team Members: Gauri Gandhi Sida Wang Tiffany May Jimit Gandhi Rohit Dashrathi



# Description


- Preliminary effort aimed at developing autonomous photography assistants
- In addition to clicking photos, they recognize and capture human expressions accurately.
- Project principle: facial expression recognition and accurate head pose tracking using a swarm of robots.
- Attempt to improve the robustness and efficiency of collaborative strategies over individual planning strategies.



Rohit liked a girl, they went on a date, His photography went bad, alike his fate!



How to click good Pic with her, one fine day he thought! Éureka! He cheered, and made a robot!



To impress her more, he sung a Bollywood song, Let's get married! She cheered, 'I can't wait any long'



They hired a photographer, flirtatious he was, He tried on Tiffany, she kicked his , You know what.





What to do now? Rohit asked Jimit, the best man, Don't worry dear, he said, I know the backup plan!





Wedding was on and guest started coming faster, Photos were clicked, with smiles and laughter!



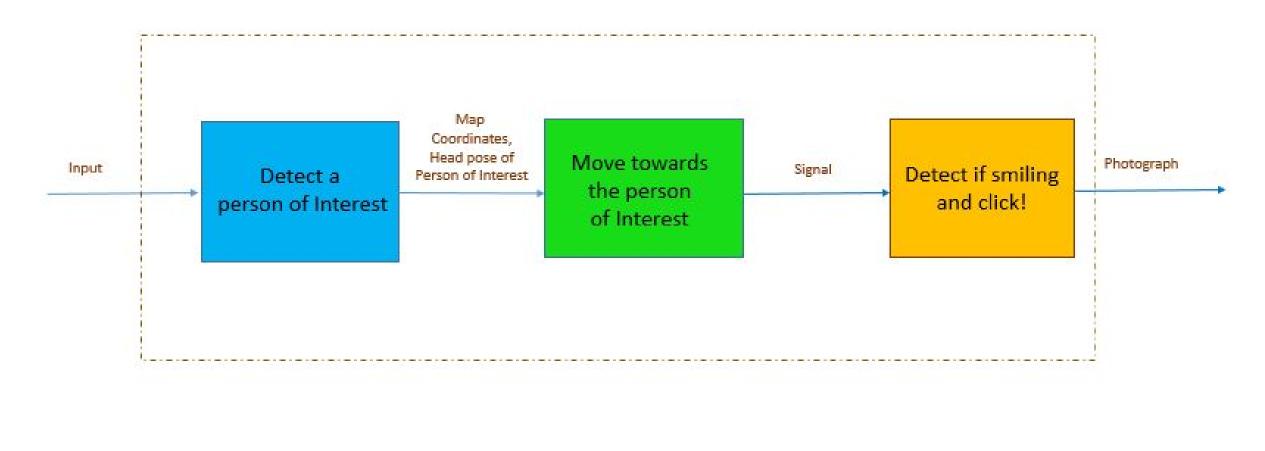


Gauri & Sida were stunned,, To see the best man conquer Thus ends dear friends, tale of the Robographer!

# Requirements

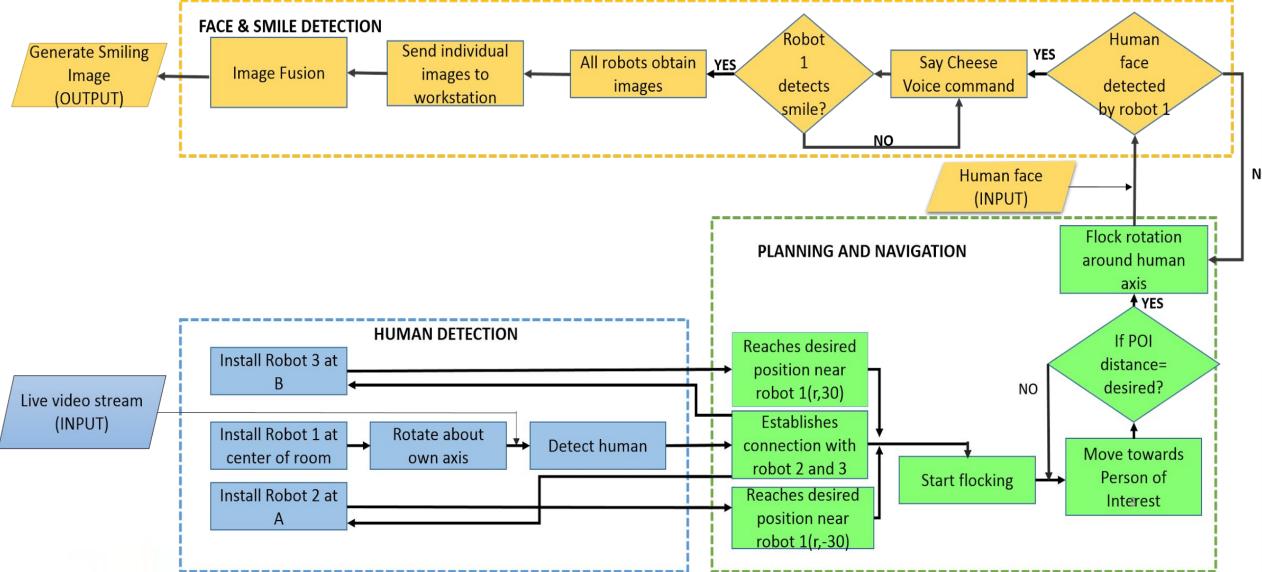
Human detection :

• Detect human (Min. 70% success)

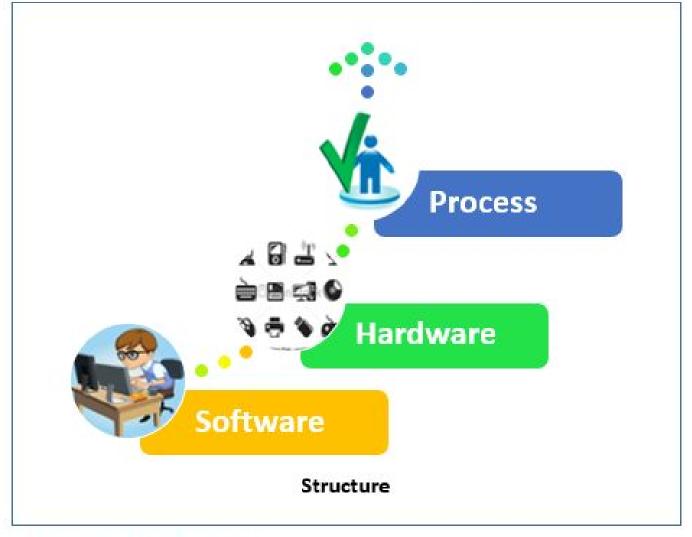

Planning-Navigation :

- Drive Autonomously to target at 15-20cm/s
- Navigate to the desired 1 meter position and stop

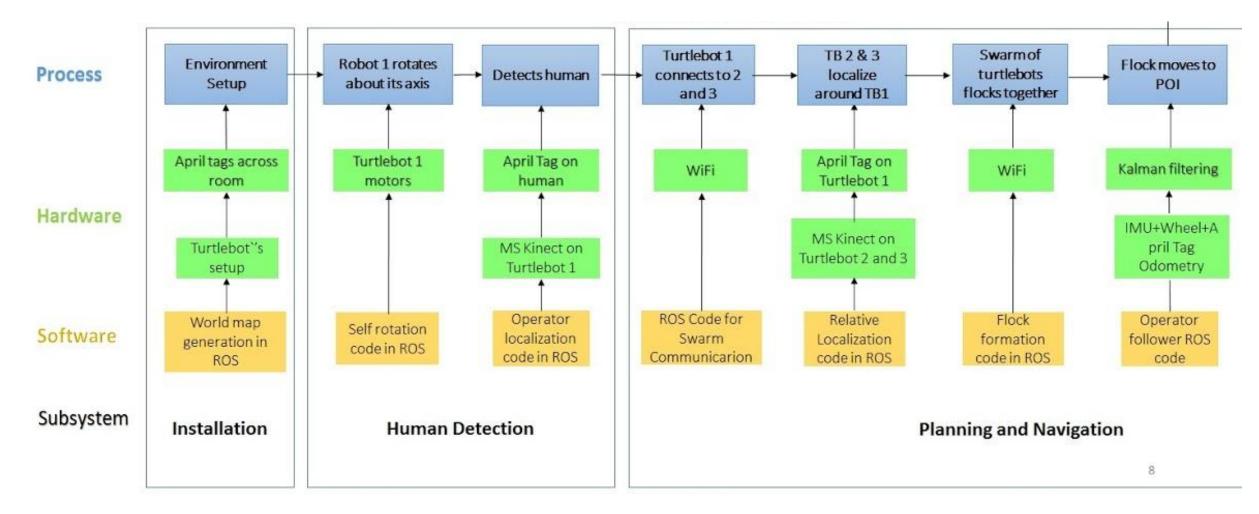
Face & smile detection:


- Detect Faces in 2s
- Recognize Smiling Expression At 0.4s
- Detects face of person within 3.5 Ft to 6 Ft height
- Click photo

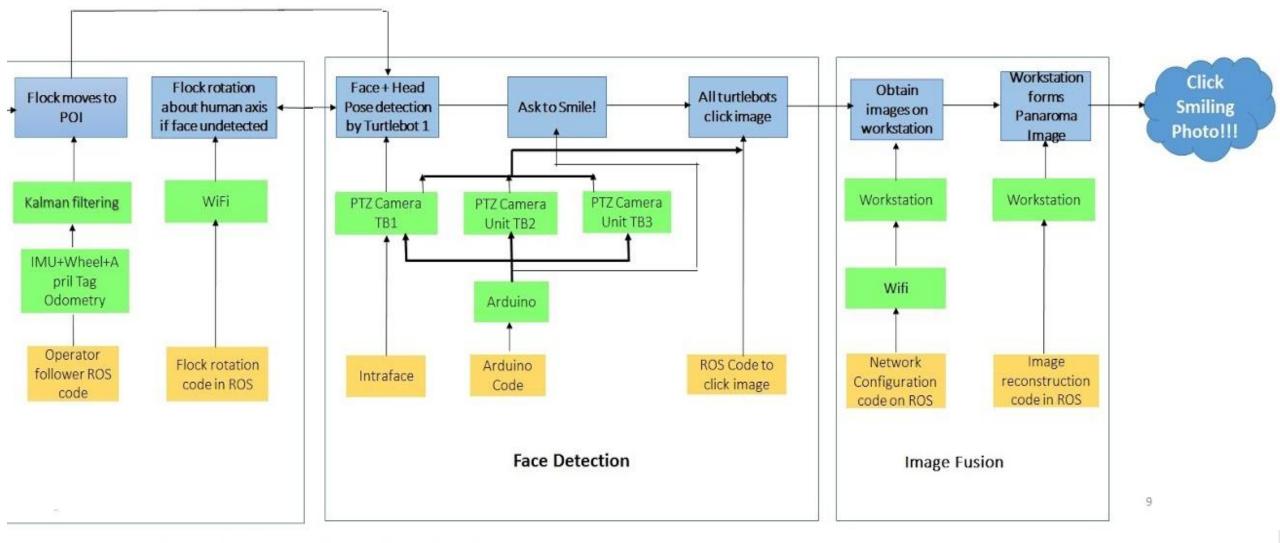
# **Functional Architecture**







#### **Functional Architecture**




# **Cyber Physical Architecture**



### **Cyber Physical Architecture**



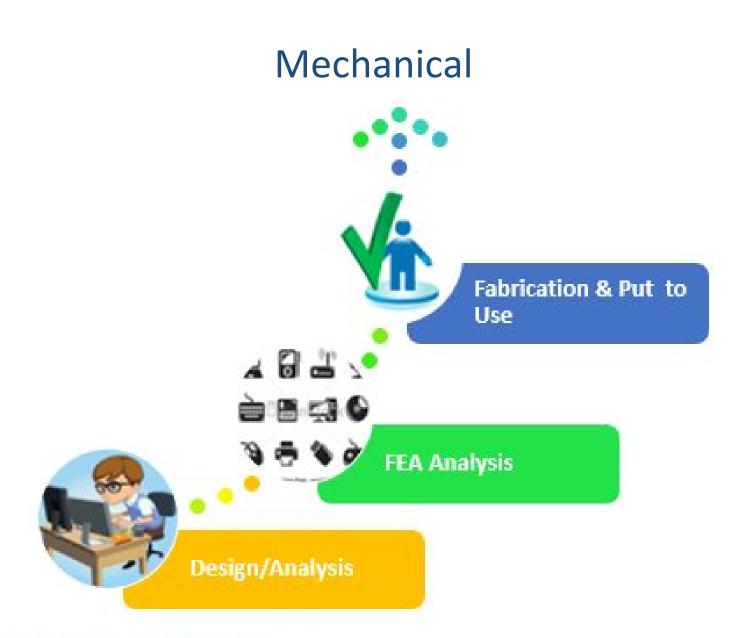
#### **Cyber Physical Architecture**



# **Current Status**

# Current System Status (Targeted Requirements)

Human detection :


- Detect human (Min. 70% success) 🗸
- Design pan tilt unit which tracks the human face 🗸 **Planning-Navigation**:
- Drive Autonomously to target at 15-20 cm/s
  Navigate to the desired 1 meter position and stop

Face & smile detection:

- Detect Faces in 2s 📢
- Recognize Smiling Expression At 0.4s 🗸
- Detects face of person within 3.5 Ft to 6 Ft height 💎
- **Click photo**





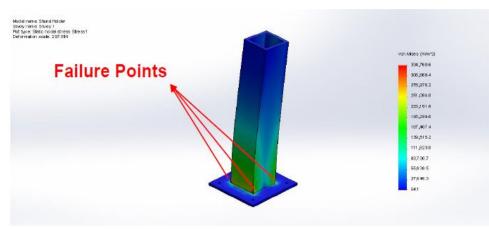
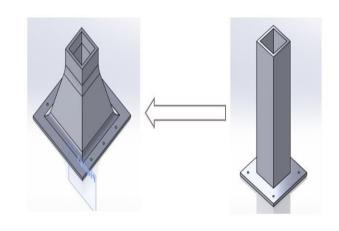
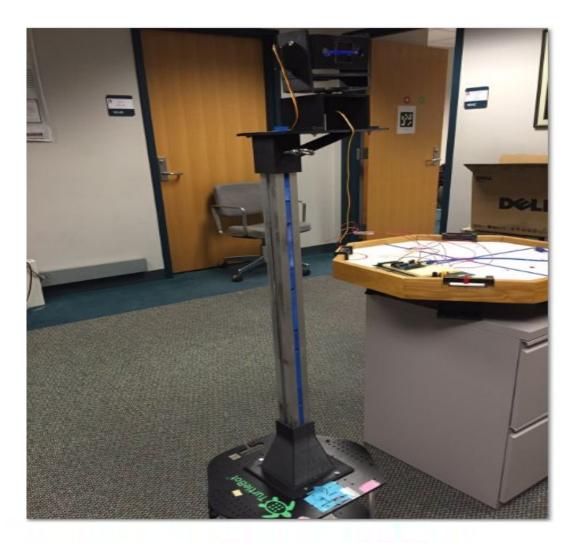


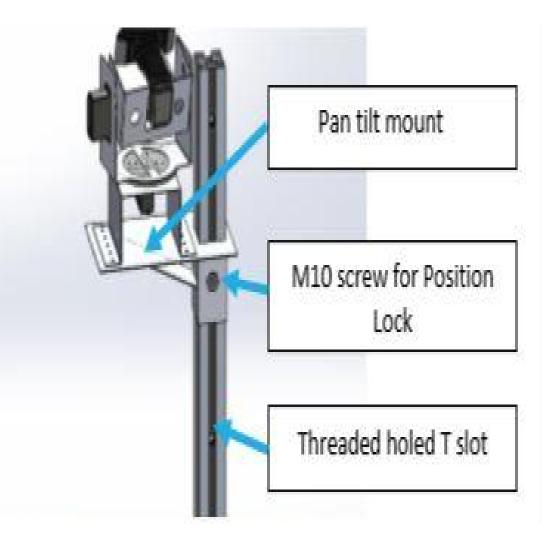
#### Initial design

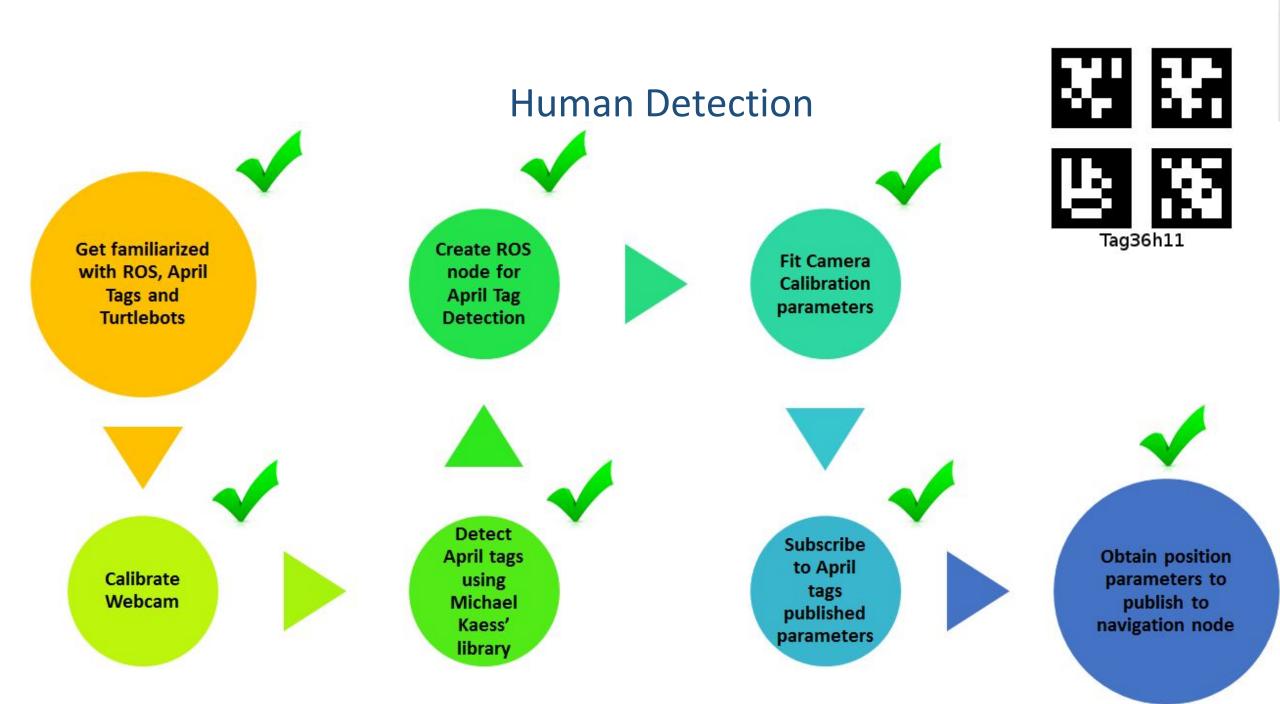


# Mechanical

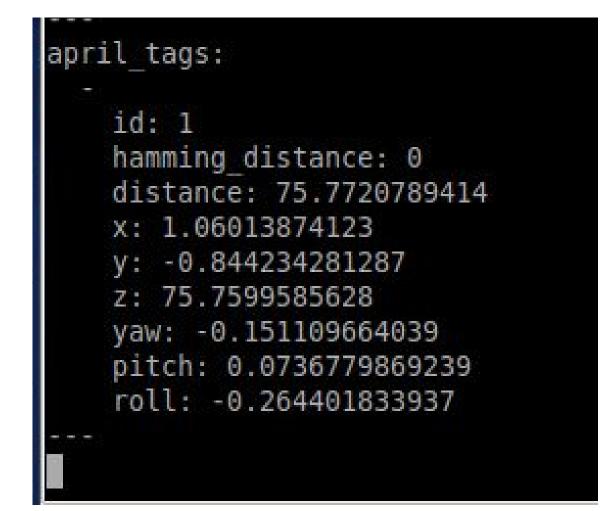
#### Analysis



Figure 4: FEA Simulation stress analysis for Force condition1: F=mass(Al Rod) \* g

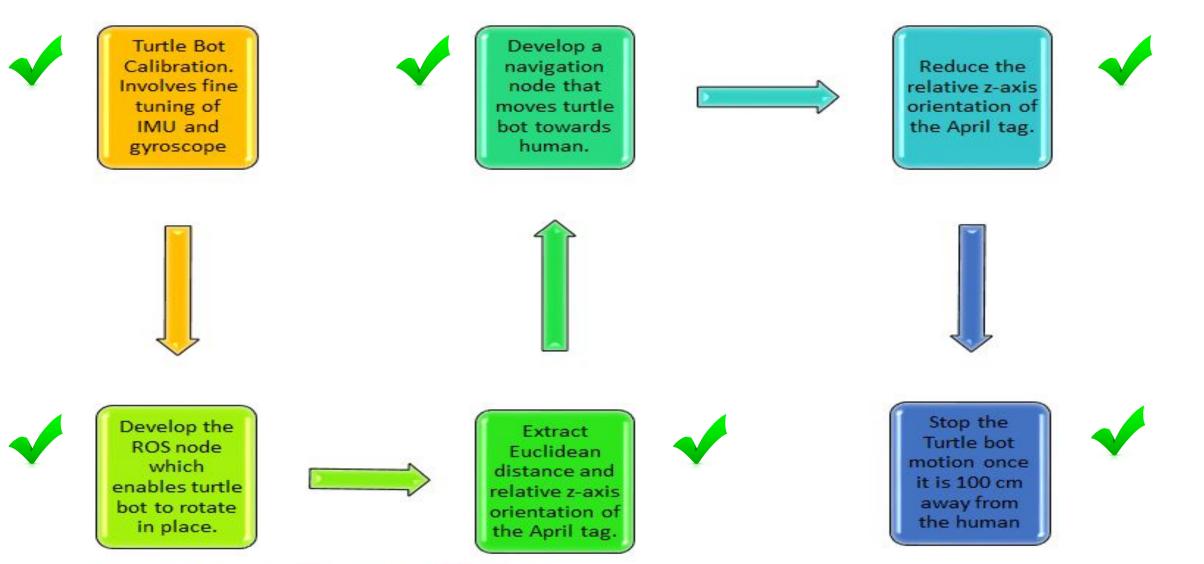

#### Design Change




# Mechanical





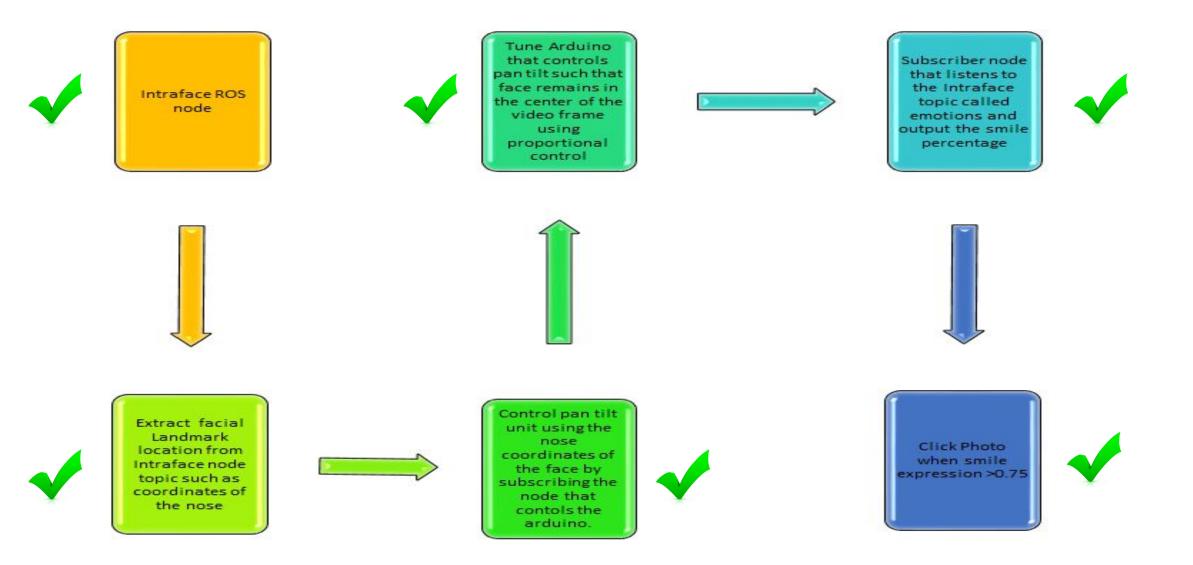



### **Human Detection**



Values obtained from the published /april\_tags topic after detection

# **Planning-Navigation**




# **Planning-Navigation**



Turtlebot detects april tag, navigates and stops at a distance of 100cm from the detected human

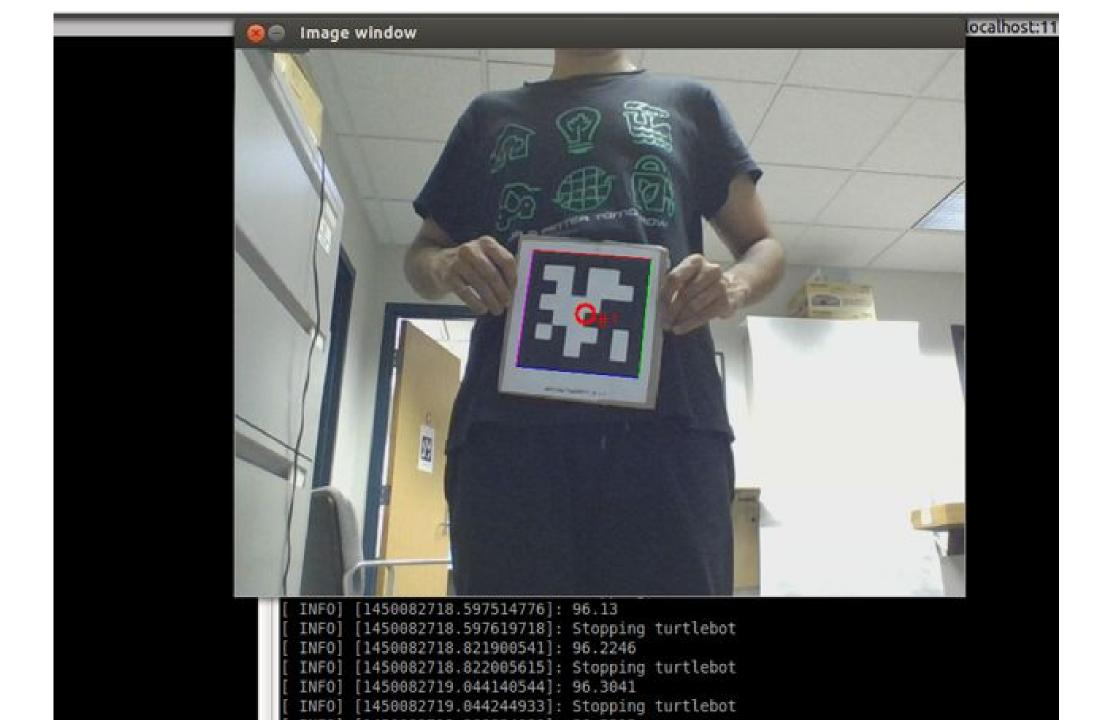
#### Face & Smile Detection



# FVE & FVE encore evaluation

#### **Subsystem 1: Human Detection & Navigation**

#### **Requirements fulfilled**


- Detect human in the vicinity
- Approach the human once detected
- Move with a speed of 15 cm/sec
- Stop at 1 meter away from the human

#### Testing Criteria for Human detection and navigation subsystem:

Does the robot rotate in place?

Does the robot stop rotating in place instantly if Apriltag is detected for atleast 70 percent of the times?

- Does the robot move toward the April tag?
- Does the robot stop at 1 meter away from the Human?
  - How much does the final distance deviate from 1m? <u>10 percent</u>



# **FVE & FVE encore evaluation**

#### **Subsystem 2: Face & Smile Expression Detection**

#### **Requirements checked**

- Detect Face
- Pan tilt unit tracks the face using head pose estimate from Intraface
- Accurate smile expression detection

#### **Testing criteria for face detection and expression detection**

- Does Intraface detect face at least 80 percent of the time
- Does the pan tilt unit adjust itself such that face is in center of the frame?
- Do we get expression output everytime?
- Time taken to do the above task <u>Well Within the promised 2 seconds.</u>



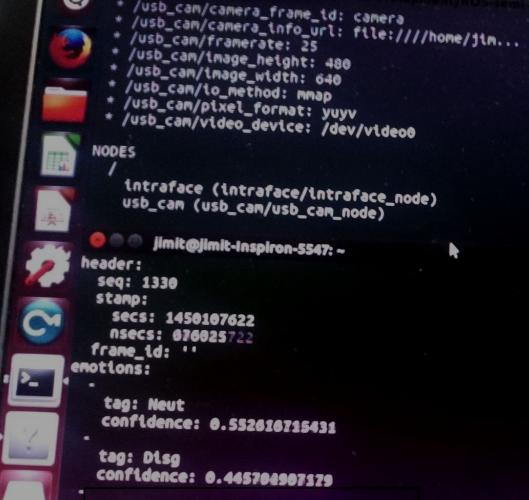
- \* /usb\_cam/ptxel\_format: yuyv
- \* /usb\_cam/video\_device: /dev/video0

#### NODES

.

intraface (intraface/intraface\_node)
usb\_cam (usb\_cam/usb\_cam\_node)

imit@jimit-Inspiron-5547: ~
header:
seq: 1123
stanp:
secs: 1450107613
nsecs: 717116079
frame\_td: ''
emotions:


tag: Neut confidence: 1.11406590793e-10

tag: Disg confidence: 0.009124177546249

tag: Happ confidence: 0.9844588888875

tag: Sadn confidence: 0.0154160391539

tag: Surp confidence: 1.66626359368e-06 HAPPINESS: 0.9844 (probability)



#### tag: Happ confidence: 8.67310587474e-08

tag: Sadn confidence: 0.00267834549215

tag: Surp confidence: 6.13779233999e-09 Happiness is close to zero

- - /usb\_cam/image\_width: 640
  - \* /usb\_cam/io\_method: mmap
  - \* /usb\_cam/pixel\_format: yuyv
  - \* /usb\_cam/video\_device: /dev/video0

#### NODES

intraface (intraface/intraface\_node) usb\_cam (usb\_cam/usb\_cam\_node)

8 6 6 jimit@jimit-Inspiron-5547:~

y: [263, 256, 251, 250, 252, 251, 247, 246, 248, 255, 275, 287, 298, 310, 320, 3 22, 323, 322, 319, 282, 279, 278, 280, 282, 283, 278, 275, 275, 277, 280, 280, 3 45, 340, 336, 338, 336, 339, 343, 350, 354, 356, 355, 351, 345, 345, 345, 345, 3 47, 346]

x: [259, 267, 279, 292, 305, 345, 357, 370, 381, 391, 327, 328, 329, 330, 313, 3 21, 331, 340, 348, 274, 283, 292, 301, 292, 283, 351, 360, 369, 377, 369, 360, 2 98, 308, 318, 331, 341, 352, 362, 353, 342, 330, 318, 307, 310, 330, 343, 343, 3 30, 317]

y: [263, 256, 251, 250, 252, 251, 247, 246, 248, 255, 275, 287, 298, 310, 320, 3 22, 323, 322, 319, 282, 279, 278, 280, 283, 283, 278, 275, 275, 278, 280, 280, 3 46, 340, 330, 338, 330, 339, 343, 350, 354, 356, 355, 351, 345, 345, 345, 345, 3 47, 346]

x: [259, 267, 279, 292, 305, 344, 357, 370, 382, 392, 327, 328, 329, 330, 312, 3 ---21, 331, 340, 348, 274, 283, 292, 301, 292, 283, 351, 360, 369, 377, 369, 360, 2 98, 307, 318, 330, 341, 351, 362, 353, 342, 330, 318, 307, 316, 330, 342, 343, 3 y: [264, 256, 251, 250, 252, 251, 247, 246, 249, 257, 275, 287, 298, 310, 320, 3 22, 323, 322, 319, 282, 279, 279, 280, 283, 283, 278, 276, 276, 278, 280, 280, 3 46, 341, 337, 338, 337, 340, 344, 350, 354, 356, 355, 351, 345, 345, 345, 345, 3 47, 346]

FACIAL LANDMARKS (Green colored points in image above

# System Testing (Performance Matrix)

| Human Detection & Navigation Subsystem: Net Success Percentage=90% |                                     |                                               |                                                                            |                                                  |                                        |                                                            |                                   |                         |  |  |
|--------------------------------------------------------------------|-------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------|------------------------------------------------------------|-----------------------------------|-------------------------|--|--|
| Run No.                                                            | Launched:1<br>Does Not<br>Launch: 0 | Starts<br>Rotation: 1<br>Does not<br>start: 0 | Detects first tag:1<br>Detects 2nd April<br>Tag: 0.5<br>Detects nothing: 0 | Starts<br>navigation<br>towards tag<br>at 15cm/s | Tracks<br>human in<br>field of<br>view | Stops at :<br>1m : 1<br>0.89-0.99 m:0.5<br>Does not stop:0 | Tracks<br>human after<br>stopping | Total (>4.9<br>success) |  |  |
| 1                                                                  | 1                                   | 1                                             | 1                                                                          | 1                                                | 1                                      | 0.5                                                        | 1                                 | 6.5                     |  |  |
| 2                                                                  | 1                                   | 1                                             | 1                                                                          | 1                                                | 1                                      | 0.5                                                        | 1                                 | 6.5                     |  |  |
| 3                                                                  | 1                                   | 1                                             | 1                                                                          | 1                                                | 1                                      | 0                                                          | 1                                 | 6                       |  |  |
| 4                                                                  | 1                                   | 1                                             | 1                                                                          | 1                                                | 1                                      | 0.5                                                        | 1                                 | 6.5                     |  |  |
| 5                                                                  | 1                                   | 1                                             | 1                                                                          | 1                                                | 1                                      | 0.5                                                        | 1                                 | 6.5                     |  |  |
| 6                                                                  | 1                                   | 1                                             | 0.5                                                                        | 1                                                | 1                                      | 0.5                                                        | 1                                 | 6.5                     |  |  |
| 7                                                                  | 1                                   | 1                                             | 1                                                                          | 1                                                | 1                                      | 0                                                          | 1                                 | 6                       |  |  |
| 8                                                                  | 1                                   | 1                                             | 1                                                                          | 1                                                | 1                                      | 0.5                                                        | 1                                 | 6.5                     |  |  |
| 9                                                                  | 1                                   | 1                                             | 1                                                                          | 1                                                | 1                                      | 0                                                          | 1                                 | 6                       |  |  |
| 10                                                                 | 1                                   | 1                                             | 1                                                                          | 1                                                | 1                                      | 0.5                                                        | 1                                 | 6.5                     |  |  |

# System Testing (Performance Matrix)

| Face & Smile Detection Subsystem: Net Success Percentage=88% |                                     |                                                                               |                                                        |                                                                      |                                                                        |                      |  |  |  |  |  |
|--------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|----------------------|--|--|--|--|--|
| Run No.                                                      | Launched:1<br>Does Not<br>Launch: 0 | Detects Faces in 2s: 1<br>Detects Faces in > 2s:<br>0.5<br>Does not detect: 0 | Tracks faces in<br>pan direction:1<br>Does not track:0 | Tracks faces in<br>tilt direction(3.5-<br>6ft):1<br>Does not track:0 | Detects Smile in<br>0.4s: 1<br>in > 0.4s: 0.5<br>Does not detect:<br>0 | Total (>3.5 success) |  |  |  |  |  |
| 1                                                            | 1                                   | 1                                                                             | 1                                                      | 1                                                                    | 1                                                                      | 5                    |  |  |  |  |  |
| 2                                                            | 1                                   | 1                                                                             | 0                                                      | 0                                                                    | 1                                                                      | 3                    |  |  |  |  |  |
| 3                                                            | 1                                   | 1                                                                             | 1                                                      | 1                                                                    | 1                                                                      | 5                    |  |  |  |  |  |
| 4                                                            | 1                                   | 1                                                                             | 1                                                      | 1                                                                    | 1                                                                      | 5                    |  |  |  |  |  |
| 5                                                            | 1                                   | 1                                                                             | 0                                                      | 1                                                                    | 1                                                                      | 4                    |  |  |  |  |  |
| 6                                                            | 1                                   | 1                                                                             | 1                                                      | 0                                                                    | 1                                                                      | 4                    |  |  |  |  |  |
| 7                                                            | 1                                   | 1                                                                             | 1                                                      | 1                                                                    | 1                                                                      | 5                    |  |  |  |  |  |
| 8                                                            | 1                                   | 1                                                                             | 1                                                      | 0                                                                    | 1                                                                      | 4                    |  |  |  |  |  |
| 9                                                            | 1                                   | 1                                                                             | 1                                                      | 1                                                                    | 1                                                                      | 5                    |  |  |  |  |  |
| 10                                                           | 1                                   | 1                                                                             | 0                                                      | 1                                                                    | 1                                                                      | 4                    |  |  |  |  |  |

### Strengths

Intraface is robust. Works well with webcam

April Tag detection subsystem is quite accurate and provides acceptable results with small errors.

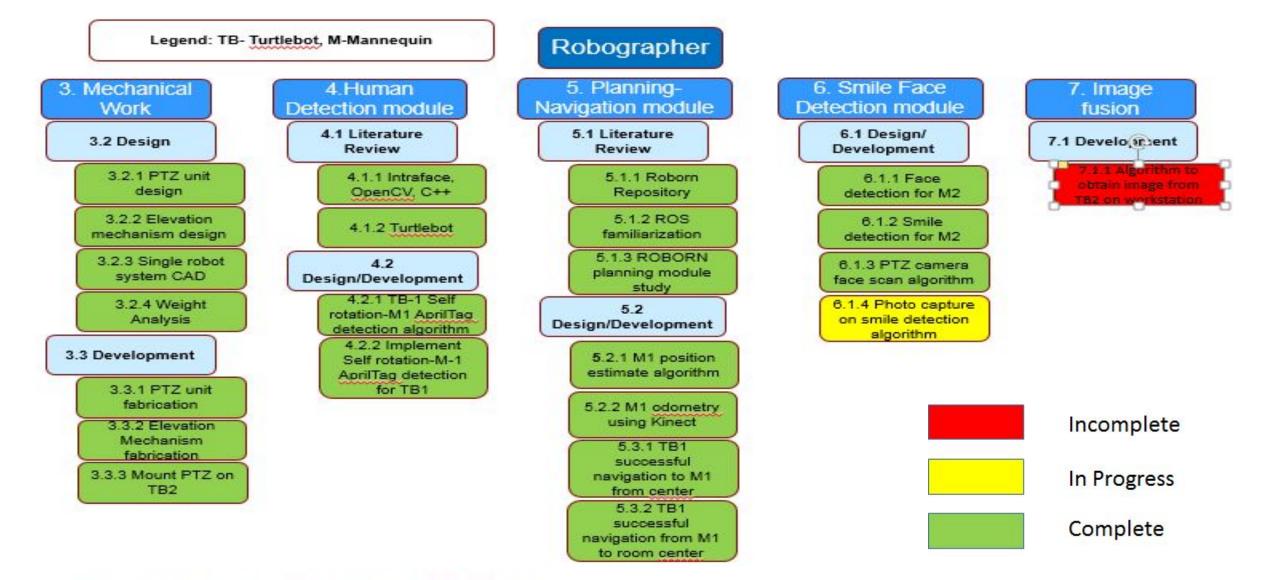
Well equipped sponsor lab. 10 Turtlebots available at dispense with a plush office space. Also we had great support from the lab.

Turtlebot moves with steady speed and performs accurate turns. Also easy to calibrate and control

Project has been analyzed well in detail in terms of subsystems. Offers flexibility without changing requirements

#### Weakness

Less control over Intraface.


Lighting conditions can seriously affect the performance of the system

Turtlebot netbooks are excruciatingly slow. Need to replace them.

Could not complete integration because Turtlebot and Intraface work on different versions of ROS.

**Project Management** 

### Work Breakdown Structure



# Project Schedule (FALL)

| ID                | Name                                                                         | Responsibility | Start     | Finish    | % Completion |
|-------------------|------------------------------------------------------------------------------|----------------|-----------|-----------|--------------|
| 2                 | Mechanical Work                                                              |                |           |           |              |
| 2.1               | Elevation Mechanism CAD design                                               | Rohit          | 07-Nov-15 | 08-Nov-15 | 100          |
| 2.2               | Elevation Mechanism fabrication                                              | Rohit          | 08-Nov-15 | 10-Nov-15 | 100          |
| 2.3               | PTZ + Elevation assembly on TB2                                              | Rohit          | 11-Nov-15 | 11-Nov-15 | 100          |
| З                 | Human detection                                                              |                |           |           |              |
| 3.1               | Turtlebot 1 self rotation-Mannequin 1 AprilTag<br>detction algorithm in ROS  | Gauri, Jimit   | 09-Nov-15 | 15-Nov-15 | 100          |
| 4                 | Planning and Navigation                                                      |                |           | 2         |              |
| 4.1               | Mannequin 1 position estimation algorithm                                    | Gauri, Jimit   | 17-Nov-15 | 25-Nov-15 | 100          |
| 4.2               | Mannequin 1 odometry using Webcam                                            | Gauri, Jimit   | 25-Nov-15 | 28-Nov-15 | 100          |
| 4.3               | Apriltag detection algorithm                                                 | Gauri, Jimit   | 28-Nov-15 | 30-Nov-15 | 100          |
| 4.4               | Turtlebot 1 successful navigation to Mannequin<br>1 (Accurate 5 Ft distance) | Gauri, Jimit   | 30-Nov-15 | 01-Dec-15 | 100          |
| 5                 | Smile face detection                                                         |                | 5;        | to        |              |
| 5.1               | Face detection using webcam & IntraFace/MATLAB for Mannequin 2               | Tiffany, Sida  | 07-Nov-15 | 10-Nov-15 | 100          |
| 5. <mark>2</mark> | Smile Expression detection using IntraFace and Webcam for Mannequin 2        | Tiffany, Sida  | 11-Nov-15 | 18-Nov-15 | 100          |
| 5.3               | PTZ camera face scan algorithm in Arduino and<br>Intraface                   | Tiffany, Sida  | 19-Nov-15 | 25-Nov-15 | 100          |

# Project Schedule (FALL)

| 6   | Image fusion                                        |               |           |           |     |
|-----|-----------------------------------------------------|---------------|-----------|-----------|-----|
| 6.1 | Photo capture on smile detection algorithm in ROS   | Tiffany, Sida | 25-Nov-15 | 01-Nov-15 | 50  |
| 6.2 | Algorithm to obtain image from TB2 on workstation   | Jimit         | 03-Nov-15 | 10-Nov-15 | 0   |
| 7   | Integration                                         |               |           |           |     |
| 7.1 | Integrate Human detection & Planning-<br>navigation | Gauri, Jimit  | 23-Nov-15 | 01-Dec-15 | 100 |
| 7.2 | PTZ unit mounting on TB1 & testing                  | Rohit         | 12-Nov-15 | 20-Nov-15 | 100 |
| 7.3 | PTZ camera + Face detection algorithm               | Sida, Tiffany | 26-Nov-15 | 01-Dec-15 | 100 |

## **Test Plan**

# PR Task

- #7 Single Robot System: Full Integration
- #8 3 Robot Flock Formation
- #9 SWARM navigation & Accuracy improvement
- #10 Accurate SWARM self-arrangement around human (-30,0 30) deg
- #11 Integration & testing of SWARM system
- #12 Validate requirements and Troubleshooting

**Description-** Autonomous human detection by 3 robot SWARM, detect the face & expression, click a photograph if he/she is smiling.

**Set-up**- Three turtle bot with pan tilt camera units. One person standing in environment.

#### **Procedure-**

- 1. A lead turtle bot rotates in its place, detects April tag mounted on the human.
- 2. Sends human location to other Turtle bots
- 3. SWARM navigates to desired position (1 meter from Human)
- 4. SWARM arranges itself around human at every (-30, 0, 30)
- 4. The lead Turtle bot tracks the head pose.
- 5. Collectively finds the expression reading of the human
- 6. One turtle bot with highest smile reading will click the photo
- 7. Photo is sent to the remote laptop workstation.

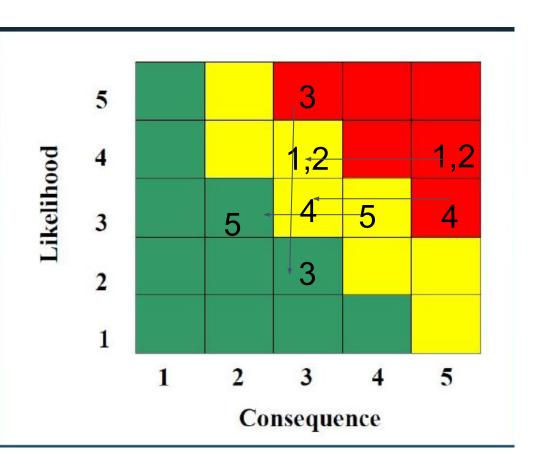
## SVE

#### **Success Scenario-**

- 1. Successful SWARM navigation (70 % success)
- 2. SWARM self arrangement at (-30,0,30) deg around human (80 % success)
- 3. Collective smile expression detection (80 % success)
- 5. Click photo from best angle (more facial expression coverage) (80 % success)

#### System Requirements to fulfill in Spring validation experiment-

- 1. Recognizing expressions collaboratively
- 2. Plan path
- 3. Communicate within themselves
- 4. Move autonomously from one location to another
- 5. Avoid obstacles
- 6. Click photos from best possible angles


### **Budget Status**

| S.No. | Sub-system | Item               | Obtained from         | MRSD Budget used |
|-------|------------|--------------------|-----------------------|------------------|
| 1     | Navigation | Turtlebots         | Advanced Agents Lab   | 0                |
| 2     | Mechanical | Aluminium Rods     | FRC                   | 0                |
| 3     | Mechanical | Pan-tilt mounts    | 3D-printer (MRSD Lab) | 0                |
| 4     | Mechanical | Servo motors       | MRSD Lab Inventory    | 0                |
| 5     | Detection  | USB Camera         | Own                   | 0                |
| 6     | Detection  | Intraface software | Human Sensing Lab     | 0                |
| 7     | Detection  | April Tags         | Advanced Agents Lab   | 0                |
| 8     | Detection  | Arduino            | MRSD Lab Inventory    | 0                |

Total Budget Used = 0 USD Total Budget Left = 4000 USD

## **Overall Risk Management**

| Risk ID | Risk Name               | Mitigation Strategy                                                                                                                                                       |
|---------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | detection in            | Make height adjustment<br>design robust with Base<br>Support                                                                                                              |
| 2       | Intraface crash         | Get a more stable<br>version of Intraface for<br>the system                                                                                                               |
| 3       |                         | Request sponsors & new<br>set of batteries                                                                                                                                |
| 4       | Single robot<br>failure | <ul> <li>a. Make the swarm<br/>robust to work<br/>without the non-<br/>operative robot.</li> <li>b. Ask sponsor &amp; get<br/>custody of 2 extra<br/>turtlebot</li> </ul> |
| 5       | Extra Payload           | Improve design                                                                                                                                                            |



## Lessons learnt

| 1 | Try to see the future. Find out the risks  |
|---|--------------------------------------------|
| 2 | Do not expect magic from day 1             |
| 3 | Keep everyone on same page                 |
| 4 | Gel well to work well                      |
| 5 | Communicate                                |
| 6 | Do not reinvent the wheel                  |
| 7 | Take small steps to achieve required goals |







## **Key Spring Activities**

Short-Term Goals

Integration of all Subsystems developed in Fall

Define and implement parameters for accurate and aesthetic photo clicking

Long-Term Goals

Swarm coordination and communication

Navigation and path planning by multiple robot

Image processing of video such that input to Intraface is desired human face

Different face reorganization & Multi-face recognition

## The Robographer (Video)

https://drive.google.com/open?id=0BwGrZni8EBAmXzVPNGdsMnUxVjQ

Thank you!