
0 | P a g e

0 | P a g e

The Robographer:
Progress Review #12

Name: Rohit Dashrathi
Team: G (The Robographers)

Teammates:
Jimit Gandhi
Gauri Gandhi

Rohit Dashrathi
Sida Wang
Tiffany May
ILR No.: # 11

Submission Date: April 13, 2016

1 | P a g e

1. Individual Progress
Responsibilities: Project management

 Mechanical Design and Development

Softwares/tools Used: Google Drive, Google Calendar, Microsoft Excel, Solidworks,

Makerbot Desktop

Task Description:

Following tasks were assigned to me and completed before the progress review 12:

a. Conducting team meeting and deciding goals for PR#11

b. Correcting the face tracking algorithm

c. Implementing the face tracking over all 3 turtlebots

a. Setting the goals for PR#12:

1. Successful localization of the turtlebots

2. Collaborative navigation of turtlebots

3. Face tracking using pan tilt unit

b. Correcting the face tracking algorithm:

This was the time for some change of role for me. I have completed the mechanical work

for our project. Hence, I decided to undertake another area of pain. We were struggling to

get the face tracking using the pan tilt camera units since last 3 progress reviews. Though

Sida and Tiffany were trying to interface the PTZ units with face tracking, they have not

been successful till now. We had a working face tracking code for a single camera which

we demonstrated in the Fall validation experiment. However, this code was configured

only for one particular camera model and had no provision so as to suit the different

camera versions. Tiffany and Sida had made some changes in the same to operate the new

camera units we bought. However, they had made edits in the old working code only

without saving it. As a result, we lost the working code. Now the task was to rectify the

code to achieve face tracking.

I decided to take it up upon myself by approaching the problem from basics. I was not

involved during the program generation for face tracking. For this, I studied the code

thoroughly. I noticed that a lot of hardcoding was done over the previous working code

in the process of new code generation. I removed this hardcoding, re-defined the code

logic and finally managed to retrace the primary version of the code, which Sida and

Tiffany had developed with the help of our advisor Sansaka Nagavelli.

Finally, I noticed that the main function which operates the face tracking was called as

proportionalController (). This function used the input values published by the ROS node

written to operate our Robographer system on the Arduino IDE serial monitor. These

input values were a set of (x, y) co-ordinates of the nose position of the detected person.

These (x, y) co-ordinates were fed to the proportional controller function. This function

then interpolates these input values and converts to 2 angular values. This angle values

were then fed to the pan and tilt motors respectively.

The interpolation equation in the proportional controller function had 2 gain parameters,

gainX and gainY (many thanks to Sasanka). These gains were provisioned so as to

cope up with the different types/makes of cameras. I played with these gains while

connecting to our newly bought camera (Logitech 920c) and finally achieved the desired

2 | P a g e

face tracking motion. Though I have not done much of the electronics/CS work

previously, I enjoyed doing this work and finally achieved success.

c. Checking the face tracking:

Even though the camera moments were smoother than before while performing the face

tracking operation, the movement angle was still a problem. The camera on turtlebot 1

detected the face but the pan motor went in the opposite direction after detection. This

meant that the angle fed to the panning servo was in the opposite direction. However, the

servos can’t be fed a negative angle. Hence, I subtracted the output pan angle from 180

degree and the servos worked fine.

d. Implementing the face tracking:

The pan tilt unit on the Turtlebot 1 was now configured. However, I still needed to

configure the pan tilt units on the turtlebots 2 and 3. Due to the inconsistent mounting of

servo headers, there was a possibility of error in the face tracking angles fed to the servo

motors. Hence, all 3 pan tilt units needed corrections in their output. I made the necessary

connections and got all 3 pan tilt units operated.

2. Challenges

The PR#12 was full of challenges. The completion involved some major challenges as

described below:

1. ‘The algorithm’:

This was the most intriguing challenge. Usually an algorithm is developed from zero

to a correct version. Here I had to trace back to the zero version from an incorrect

algorithm. This took a great amount of time.

2. Instability of the Arduino port on Ubuntu:

Running the Arduino IDE on Ubuntu has a weird problem of serial port instability.

Running Arduino is windows smooth and windows assigns a permanent port to

Arduino microcontroller as per the USB port to which it is connected. However this

does not happen in Ubuntu and the address of Arduino port keeps changing. With

some research I was able to encounter this issue using the following procedure to

assign persistent name to the USB hardware:

a. Extracting the vendor ID and product ID attributes of Arduino device:

This was done using the $lsusb command in Ubuntu terminal as shown by figure 1:

Figure 1: Extracting the vendor ID and product ID of the connected Arduino

(representational figure)

3 | P a g e

b. Extracting the serial number attribute:

This was done using the ‘udevadm’ command in the Ubuntu terminal as shown in the

following figure:

c. Writing the UDEV rule for the connected Arduino:

The UDEV rule configures the Arduino to a permanent symbolic link. The UDEV

rule is nothing but a system administered text document which enables the read/write

privileges to a particular hardware/software. Although being a text file, it cannot be

directly created using the Ubuntu system interface and has to be created through the

Ubuntu terminal. The UDEV rules are located in lib/udev/rules.d/<rule-name> or

etc/udev/rules.d/<rule-name>. They are written as follows:

This opens the text file in ‘nano’ text editor. Any other text editor can also be used by

replacing ‘nano’ in above command by the respective terminal name. The rule is

further written in the opened text file where the key distinct attributes such as the

productID, vendorID and the serial number (obtained as in figure 1 and 2) are put:

This configures the file 10-local.rules as a developer rule (DEV rule) for the Arduino

and directs the Arduino to a permanent port address such as ttyACM0 etc.

3. Teamwork
Since the start of the project, I have taken the responsibility for the completion of the

mechanical work subsystem. With the work done before PR#11, the mechanical subsystem

now stands completed totally for the project. With the work done before PR#12, I also

undertook the work of Arduino programming. Jimit and Gauri once again worked relentlessly

to complete the localization and navigation part. They also did well to fix the repetitive voice

command issue. Even though they had some consistent problems in navigating the bots, they

managed to complete the localization module successfully. Tiffany and Sida worked on

AprilTag tracking using the pan tilt cameras. However, she had a few problems to implement

the same for all the three units. With this PR, we were able to complete most of our subsystem

work this time as well as their integration to an extent. However despite having better

Figure 2: Extracting the serial number of the connected Arduino
(Representational Figure)

Figure 3: Writing UDEV rule in Ubuntu
terminal for Arduino (representational figure)

Figure 4: Writing the DEV rule (representational
figure)

4 | P a g e

preparations, we had problems during the PR#. Hence, our overall presentation for the PR#12

did not go very well.

4. Future Plans
My individual plans for the SVE for the Robographer Project:

1. Complete integration of Arduino with ROS using rosserial:

The system now has an ability of face tracking. However, every time after starting the

system, the face tracking code needs to be burned on the Arduino bootloader. I am now

working to access the Arduino using rosserial feature which will eliminate this issue.

2. The final touch:

The fabrication of the mechanical part of the system is now complete with 3 turtlebots,

fitted with the pan tilt camera units. However, a permanent arrangement for some

important components such as the Arduino Microcontroller, the AprilTags for

localization along with the wiring arrangements still needs to be done. I have planned to

complete this work before the PR#11 and will make sure to present the integrated

Robographer system with an aesthetic look of a finished product. Moreover, I have

planned to conduct the complete integrated system testing in order to ensure safe and

guaranteed demonstration during the SVE and SVE encore.

5. Appendix
Assigning persistent addresses to serial devices:

http://hintshop.ludvig.co.nz/show/persistent-names-usb-serial-devices/

http://ubuntuforums.org/showthread.php?t=168221

http://hintshop.ludvig.co.nz/show/persistent-names-usb-serial-devices/
http://ubuntuforums.org/showthread.php?t=168221

