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1 Abstract 

 This report summarizes the progress made by Team Daedalus on the Carnegie Mellon 

University, Masters of Science in Robotic Systems Development project “Auto-Park for Social 

Robots” during the fall 2015 semester.  The team has identified key functional and non-

functional requirements of the project and has also defined relevant performance metrics.  The 

system-level architectures representing the various subsystems and their interactions are depicted 

in the report.  Detailed subsystem descriptions and their testing results are documented.  The 

formulated project management plans with respect to work-breakdown, schedules, test plans, and 

budget are also discussed.  The team has also identified key risks associated with the project and 

their mitigation strategies.  Having gained valuable experience from testing, the team has 

identified the key lessons learned from this semester.  This information has helped in planning 

for the completion of this project in the spring semester. 
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3 Project Description 

3.1 Keywords 

 Optimal Spot – The optimal spot is the parking spot with the shortest route between that 

spot and the exit.  The optimal spot must also be unoccupied. 

 Optimal Route – Also called Optimal Path.  This is the route is from the vehicle’s current 

position to the optimal spot or to the exit, depending on the vehicle’s status.  It is optimal 

because it takes the least amount of time to traverse. 

 Vehicle – Also called Mobile Platform or Robot.  This serves as the test platform to 

implement and showcase the collaborative and autonomous aspects of the project, such as 

path planning, navigation, communication, and obstacle detection. 

 Vehicle Status – The vehicle can be in the following states: 

o Free – The user has not yet told the vehicle to park.  The vehicle is waiting for a 

command. 

o Parking – The vehicle has been told to park by the user.  The vehicle is heading 

towards the optimal spot but has not reached it yet. 

o Parked – The vehicle is stationary within the parking spot. 

o Returning – The vehicle has been told to return by the user.  The vehicle is 

heading towards the parking lot exit but has not reached it yet. 

o Returned – The vehicle is at a complete stop at the parking lot exit and is waiting 

for the user. 

 Parking Lot – The parking lot is a single-level testing area with a known entrance, exit, 

and known parking spots.  The lot will be proportional to the size of the vehicle. 

3.2 Description 

 The imminent arrival of driverless cars has led to an increased focus on the development 

of an ecosystem that supports them.  This project, “Auto-Park for Social Robots”, aims at 

developing an autonomous system for collaboratively parking driverless cars.  As envisioned by 

the team and the sponsor, United Technologies Research Center (UTRC), the project would 

allow a user with a driverless car to park their vehicle by simply pressing “Park” on their 

Android app. 

 The motivation for the project stems from key factors affecting the current parking 

system, such as poor parking safety standards, parking industry growth potential, and a 

competitive advantage of developing such a system.  According to reports by Fayard and Stark, 

around 20% of all automobile accidents occur inside parking lots.  About 90% of the people 

involved in these accidents are injured.  The parking industry is worth $25-$30 billion and has 

potential to invest in upgrades [1] [2].  It regularly bleeds money to accident insurance claims, as 

well as public transportation due to people that take the bus rather than find a spot in a congested 

lot.  The precious time wasted while searching for a parking spot, translated into lost revenue, is 

also a motivation behind the project. 

 This project consists of a scaled-down version of a car (mobile platform) that would be 

able to receive a “Park” command from the user’s Android app, localize itself in a parking lot, 

collaborate with other cars to identify the best possible parking spot, navigate to the spot, and 

avoid any obstacles in the process.  The vehicle would relay its status to the user’s app at specific 



times.  Upon receiving the “Return” command, the vehicle would then exit the parking spot and 

navigate to the parking lot exit.  The project’s main focus is on establishing a robust system for 

effective collaboration between vehicles. 

4 Use Case 

 Benjamin is a retired Armed Forces veteran.  He has been driving in Pittsburgh, his home 

city, for many years now.  The only thing that has made him think twice before taking his car out 

is the nightmare of parking.  Recently, Benjamin was diagnosed with prostate cancer.  Ben is 

receiving treatment at UPMC, 10 miles away from his home.  The parking lot at the hospital is 

always extremely congested (Figure 1: Crowded Parking Lot) and it sometimes takes him longer 

to find a parking space than to drive from his home.  He has to leave an hour and a half before 

his appointment and is frequently late. 

 

Figure 1: Crowded Parking Lot 

 After his appointment last week, Ben was backing out of a parking spot when a reckless 

driver sped into his bumper at 30 mph.  He spent the next few weeks handling insurance claims 

and getting repairs done.  After the accident, Benjamin started taking the Port Authority bus to 

the hospital, even though he had to transfer buses several times to reach the hospital.  Benjamin 

missed driving, but the scare from the accident had made him give it up altogether. 

 Five years have passed.  It is 2020 and Benjamin has purchased an autonomous car 

equipped with CMU-UTRC Auto-Park System.  His new car now takes him to the hospital for 

his weekly appointments – efficiently, safely, and without any hassle. 

 When Benjamin’s car stops at the entrance of the hospital, he exits his car and presses 

“Park” on his smartphone app (Figure 2).  The app sends the command to his driverless car and 

the status of Benjamin’s car updates on his phone (Figure 3).  Benjamin enters the hospital and 

his car autonomously enters the queue at the entrance of the parking lot. 



 

Figure 2: Virtual Valet App, Opening Screen 

 

Figure 3: Virtual Valet App with “Park” Button 

Pressed 

 As the vehicle enters the parking lot, it localizes itself and identifies nearby cars (Figure 

4).  His vehicle then connects to the network of cars already inside the parking lot (Figure 5). 

 

Figure 4: Vehicle Localizes Itself Within Parking Lot 

 

Figure 5: Vehicle Initiates Collaborative 

Communication with Parked Vehicles 

 Benjamin’s car receives an occupancy map from the network of vehicles that allows it to 

identify the location of a free parking spot that is closest to the exit (Figure 6).  His car 

autonomously plans a route to the spot and begins to follow the path (Figure 7). 



 

Figure 6: Optimal Parking Spot is Identified 

 

Figure 7: Shortest Route to Optimal Spot is Planned 

 While en route to the spot, another car receives a “Return” command and notifies nearby 

cars that it will be exiting its spot (Figure 8).  Benjamin’s car stops to give right of way to the 

exiting vehicle (Figure 9). 

 

Figure 8: Benjamin’s Vehicle Stops as Another 

Vehicle Receives “Return” Command 

 

Figure 9: Benjamin’s Vehicle Gives Right of Way to 

Exiting Vehicle 

 Benjamin’s car waits for the exiting vehicle to be at a safe distance, and then continues 

on the original route.  It then parks in the designated spot (Figure 10), notifies him that it has 

parked, and waits to receive the next command (Figure 11). 



 

Figure 10: Vehicles Continue on Path 

 

Figure 11: Benjamin’s Vehicle Waits for Return 

Command 

 Benjamin is tired at the end of his appointment and wants to get home as quickly as 

possible.  He hits the “Return” button on his app and walks towards the hospital exit (Figure 12).  

 His car receives the command and alerts nearby cars that it is about to exit the spot.  

Benjamin’s app shows that his car is returning to him and displays the estimated time it will take 

to reach the exit (Figure 13). 

 

Figure 12: App Shows Parked Status 

 

Figure 13: App Shows Returning Status and ETA 

 Ben’s car plans and follows the shortest route to the exit, where it waits for Ben (Figure 

14). 



 

Figure 14: Vehicle Plans Shortest Path to Exit 

 By the time Benjamin reaches the hospital exit, where his car is waiting for him.  He 

enters his car, grateful that he did not have to walk through the large parking lot after such a long 

day. 

5 System Level Requirements 

 The system-level requirements are categorized as Mandatory (M) or Desirable (D), as 

well as Functional (F) or Nonfunctional (N).  The requirements are meant to be read as “The 

system shall…”, followed by the requirement.  The performance metric(s) detail how the 

requirements can be validated.  Furthermore, the subsystem column shows which of the 

following subsystems the requirement applies to Communication (P2P or Bluetooth), Perception, 

Mobile Platform, Software, or Control. 

 The requirements are much the same as those listed in the Preliminary Design Review, 

with the exception of the communication performance requirements.  Those have been adjusted 

to measure P2P communication in terms of the percentage of messages received instead of the 

time it takes to establish communication.  This is because XBees establish communication 

immediately, and it is more likely to lose a message, or for it to be misinterpreted, than for the 

XBees to not establish communication with one another.  Another requirement change has 

moved the MF.11 from a desirable requirement to a mandatory one. 

Table 1: Mandatory Functional (MF) System Level Requirements 

ID Requirement Performance Metric(s) Subsystem 

MF.1 

Receive "Park" and "Return" 

commands from user via smartphone 

app 

95% of messages will be received. 
Communication 

(Bluetooth)  

MF.2 

Share location, parking spot, and 

obstacle-related data with other 

vehicles. 

Establish communication with other 

vehicles within the 10mx10m test 

area. 

90% of messages will be received. 

Communication (P2P), 

Perception  

MF.3 
Navigate autonomously through 

parking lot. 

100% of navigation will be 

autonomous. 
Mobile Platform  

MF.4 Plan optimal route to exit. 

The vehicle will exit the parking lot 

within 90 seconds of receiving 

command. 

Software  



ID Requirement Performance Metric(s) Subsystem 

MF.5 Follow optimal route to exit. 
The vehicle will maintain a velocity 

between 0 and 10 cm/sec. 

Mobile Platform, 

Software  

MF.6 Park inside parking spot. 

Park 100% within a parking spot 

within 2 attempts.  Be within 35º of 

parallel with the neighboring 

vehicles or the lines of the spot, as 

applicable. 

Mobile Platform, 

Perception  

MF.7 Exit parking spot 
Exit the spot within 2 attempts 

without collision. 
Mobile Platform  

MF.8 Sense obstacles in the environment. 
Avoid obstacles between 10-50 cm 

high and 10-120 cm wide. 

Mobile Platform, 

Perception  

MF.9 Avoid infrastructure 

The vehicle will maintain a distance 

of 30.48 cm (1 ft.) between itself 

and the parking lot infrastructure. 

Mobile Platform, 

Perception  

MF.10 Stop in the event of an emergency 

Stop within 3 seconds of an 

emergency (obstacle or internal 

vehicle error). 

Mobile Platform, 

Perception  

MF.11  Maneuver efficiently through the lot 
Vehicle has turning radius between 

0 and 0.8 meters  

Mobile Platform, 

Software  

 
Table 2: Desirable Functional (DF) System Level Requirements 

ID Requirement Performance Metric(s) Subsystem 

DF.1 Identify optimal parking spot 
Identify optimal spot 98% of the 

time  

Communication (P2P), 

Software  

DF.2 Plan optimal route to spot 
Optimal path is chosen 90% of the 

time  
Software  

DF.3 Follow optimal route to spot 
Vehicle maintains a velocity 

between 0 and 10 cm/sec  

Mobile Platform, 

Software  

DF.4 Avoid other vehicles 

Vehicle maintains at least 60.96 cm 

(2 ft.) between itself and the back of 

another moving vehicle  

Mobile Platform, 

Perception  

 

Table 3: Mandatory Non-Functional (MN) System Level Requirements 

ID Requirement Performance Metric(s) Subsystem 

MN.1 
Use smartphone app to display vehicle 

status  
95% of messages are received  

Communication 

(Bluetooth)  

MN.2 
Communicate reliably between local 

vehicles 

The network will be able to handle 

collaboration between 3 vehicles  
Communication (P2P)  

MN.3 Efficiently exits the parking spot 
Will take no more than 45 seconds 

to exit the parking spot  

Mobile Platform, 

Perception, Software  

MN.4 Return to user as quickly as possible 

The vehicle will arrive at the exit 

within 90 seconds of receiving the 

“Return” command  

Communication (P2P 

and Bluetooth), Mobile 

Platform, Software  

MN.5 
Make minimal changes to 

infrastructure 

There will be ZERO changes to the 

infrastructure  
N/A  

MN.6 Be within stipulated budget  Budget is $4000  N/A  

 



Table 4: Desirable Non-Functional (DN) System Level Requirements 

ID Requirement Performance Metric(s) Subsystem 

DN.1 Maintain scalable network of vehicles 
Network is able to accommodate at 

least 3 vehicles  
Communication (P2P)  

DN.2  Efficiently enter the parking spot 

Vehicle backs into parking spot 

within 2 attempts 

Vehicle takes no more than 45 

seconds to back into spot  

Mobile Platform  

6 Functional Architecture 

 The system is represented in the functional architecture, as seen in Figure 15.  The inputs 

to the system are a preloaded map, the “Park” command from the user, and the “Return” 

command from the user.  The outputs from the system are the “Car Parked” and “Car Returned” 

notifications to the user. 

 The entire flow can be divided into two phases: Park and Return.  The structure of the 

flow diagram is based on the “Sense-Plan-Act” design. 

 In the Park phase, the vehicle receives a “Park” command from the user via the Android 

app and navigates to the entry queue, continuously localizing itself in the environment.  It 

queries other vehicles in the parking lot for information needed to plan its route to the optimal 

spot.  On selecting the best spot based on this data, it plans its route to the spot and starts 

navigation.  Localization data is needed to continuously update the path planner and if obstacles 

are encountered along the way, the path is modified accordingly.  Upon reaching the spot, the 

vehicles parks in the designated spot, sends a “Car Parked” notification to the user, and waits for 

the return command from the user. 

 In the Return phase, upon receiving the “Return” command from the user, the vehicle 

plans the optimal route to the exit based on its current location and the data provided by other 

cars regarding the conditions in the parking lot.  It starts navigating towards the exit, sensing 

obstacles along the way and sending a notification to the user once it reaches the exit queue. 



 

Figure 15: Functional Architecture 

7 Cyber-Physical Architecture 

 The system can be divided into 5 main subsystems, as seen in Figure 16.  The hardware 

and software interaction between these subsystems is detailed below. 



 

Figure 16: System Overview 

7.1 Hardware Architecture 

 The mobile platform houses all the major subsystems, apart from the mobile app, which 

exists on the user’s Android phone.  Currently, the mobile platform uses a MinnowBoard Max 

SBC which is running Xubuntu 14.04 and ROS Indigo.  The platform also has a Kinect v1 and 

three IR Proximity Sensors for obstacle detection.  IR Proximity Sensors interfacing and actuator 

control are done by two Arduino Nanos.  For the proximity sensor, the Arduino Nano is made to 

run as a ROS Node; for actuator control, the Arduino Nano communicates via Telnet Server.  

The DigiMesh XBee and Bluetooth 4.0 adapters are connected via USB to the SBC and act as 

Serial Ports for communication.  The Oculus Prime platform comes with a power distribution 

board that accepts 12V from the LiPo battery and then powers the DC Motors and the SBC 

through it (Figure 17). 



 

Figure 17: Hardware Architecture 

7.2 Software Architecture 

 The software architecture (Figure 18) is based on the simple principle of sense, think, and 

act, denoted by Perception, Planning, and Control.  Perception helps in interfacing with the 

environment and getting raw data, which then gets processed by Planning.  Planning carries out 

path planning, localization, and uses the point cloud data to detect various objects in the vicinity 

of the robot.  All of this information is then further transmitted to Control, where the robot 

carries out locomotion and also collaborates with other robots by sharing relevant data.  The 

emergency node helps in bringing the robot to a halt in case of internal failures or the presence of 

an obstacle. 



 

Figure 18: Software Architecture 

 The current algorithm to detect obstacles via Kinect can be seen in Figure 19. 

 

Figure 19: Kinect Obstacle Detection Algorithm 

 For collaboration, a simple protocol is defined whereby a platform sends out a request for 

collaboration and other platforms reply back with relevant data.  The flow of this interaction can 

be seen in Figure 20. 



 
Figure 20: Mesh Network Collaboration 

8 Current System Status 

8.1 Fall Semester Targeted System Requirements 

 The following functional requirements were targeted during the fall semester can be seen 

in Table 5: Requirements Targeted in Fall. 

Table 5: Requirements Targeted in Fall 

Requirement Performance Metric 

Receive commands from user via smartphone app 

(MF.1) 
95% of messages will be received 

Share data with other cars (MF.2) 
90% of messages are received 

Be able to handle collaboration between 2 vehicles 

Sense the environment (static obstacles) (MF.8) 
Detect obstacles within 20 cm of vehicle 

Detect obstacles 10-50 cm high and 10-120 cm wide 

Navigate through parking lot (MF.10) 

Stop within 20 cm of a static obstacle and 3 seconds of 

an internal vehicle error 

 

Maneuver efficiently through the lot (MF.11) 
Vehicle has a turning radius between 0 and 0.8 meters 

 



8.2 Current System Description 

 An overview of the current subsystems of the project is depicted in Figure 21: Auto-Park 

for Social Robots Subsystems.  The team focused on covering a larger breadth in subsystems so 

as to develop a good foundation for the spring semester.  In addition to laying the groundwork in 

all of the subsystems, the team also worked on integrating all of the systems capabilities. 

 

Figure 21: Auto-Park for Social Robots Subsystems 

8.2.1 Android – ROS Bluetooth Communication 

 The Android application developed for this task utilizes the Bluetooth adapter present in 

the smartphone to establish communication with the Single Board Computer, which is running 

ROS.  This bidirectional communication requires a server, client, and a service with a specific 

protocol through which all this interaction takes place.  This specific subsystem can be broken 

down into two main parts: 

 Android Application 

o The Android app developed utilizes the BluetoothChatService provided by 

Google for developers.  This chat service helps to establish and manage 

connections with remote devices by running the appropriate threads.  Data is sent 

from the app to the SBC whenever the user presses the Park or Return buttons on 

the app.  The data received by the app is used to update the status and initialize 

the timer.  The app can be made to connect with any Bluetooth device by entering 

the appropriate device name during startup.  The app can be seen in Figure 22 



with a status of Parking and a timer counting down.  In Figure 23, the app shows 

that the vehicle has returned. 

 

Figure 22: Vehicle is Parking 

 

Figure 23: Vehicle has Returned 

 ROS Node 

o The ROS Node running on the SBC communicates with the Android app by 

advertising a Bluetooth service to which the app can subscribe.  All this is done 

through an RFCOMM socket port.  Once this connection is established, the node 

starts two threads for sending and receiving data.  These two threads have two 

ROS topics associated with them which the other nodes can use to push and pull 

data via Bluetooth.  When the system is being shut down, an interrupt handler is 

called by the ROS node so that the ports can be closed properly before exit.  Not 

doing so affects the ability of the system to reestablish a Bluetooth connection. 

8.2.2 Mobile Platform 

 The Oculus Prime platform, depicted in Figure 24: Oculus Prime Platform, is the most 

suitable platform for the project needs.  The platform is developed by a Canada-based company, 

Xaxxon, and is primarily used by the ROS community for surveillance related applications.  The 

platform is made of ABS plastic with mounts for the Xtion, Microsoft LifeCam, four motors and 

external peripherals (Spotlights, Speakers etc.). 



 

Figure 24: Oculus Prime Platform 

 The Oculus is powered by a 5000 mAh battery and a dedicated power management unit 

which supports onboard charging and voltage sensing.  A charging dock is used to charge the 

battery without removing it from the chassis.  The motor control board- MALG (Motors Audio 

Lights Gyro), is an ATMEGA 328 based microcontroller.  The MALG is powered through the 

power management unit and serves as the actuator control board. 

 The assembly instructions in the Documentation for the Oculus Prime were followed to 

assemble the platform and the docking station.  Later, the camera and the Kinect were mounted.  

The electrical integration of the platform needed customization according to the hardware.  This 

involved the following major tasks- 

 Increasing wire gauge and re-soldering existing joints on the platform 

 Adding external voltage regulators for the 5V voltage level to power high current 

consuming devices like the SBC. 

 Connecting power and data lines for peripherals like the motors, encoders, SBC, HD 

LifeCam, actuator control board, power distribution board, Kinect, USB hub and other 

components. 

 Mounting the electronics using 3D printed mounts (Figure 25: 3D Printed SBC Mount 

and Figure 26: 3D Printed IR Mount), Velcro, etc. 

 Integrating the proximity detection PCB. 

 Adding external power supply to USB hubs to prevent overloading on a USB port. 



 

Figure 25: 3D Printed SBC Mount 

 

Figure 26: 3D Printed IR Mount 

8.2.3 Single Board Computer/ Decision Unit 

 The SBC runs the nodes for all the other subsystems as well as a central, decision-making 

node (Figure 27).  The decision unit is responsible for managing all the data flowing between 

various subsystems.  It is important to keep a track of current system status, user requests, 

obstacles in the environment, as well as other tasks.  The central node is responsible for fetching, 

processing, and making decisions based on all of this data.  Commands for locomotion are also 

issued by this node. 

 

Figure 27: Decision Unit 

 As per the current routine, the decision unit gets triggered by a user command sent via the 

Android app.  This command gets relayed to the decision unit through the Mobile App node.  If a 

Park command is received, the platform sends a request to nearby platforms, asking for a 

destination.  This takes place through the Collaboration Node.  Once this data is received, it gets 

processed and final destination for the platform is calculated.  This is then transmitted to the 

Locomotion Node as a waypoint.  The Locomotion Node is connected to the Oculus Prime 

server and is able to control the platform.  The Locomotion Node also keeps a track of whether 

or not the platform has reached its destination.  When it has reached its destination, it publishing 



this data back to the decision unit so that it can be sent back to the app through the Mobile App 

node. 

 The decision unit has a thread running in parallel to all of this which accepts data related 

to the presence of obstacles so that the platform can be stopped if a close range obstacle is 

detected. 

8.2.4 Actuator Control Board 

 The MALG takes in serial data from the Oculus Prime server node based on a fixed 

protocol.  Depending upon the data received, the MALG can carry out the following functions: 

1. Move the platform by a given distance. 

2. Turn on/off lights, speakers etc. 

3. Fuse data from encoders and gyro to relay accurate odometry data. 

 There were a couple of problems with the MALG that required a custom board to be 

made.  The first problem arose from a functional requirement (MF.11) that of the platform to be 

non-holonomic in nature.  The default firmware is such that the platform can execute only one-

dimensional motions and thus reach different positions only by turning on its axis.  The firmware 

was modified to include “arc-turns,” which better simulate the turning of a car.  However, the 

minimum turning radius that can be achieved by these stock motors is about 0.6m. 

 The second problem arose when one of the USB hubs malfunctioned and took out the 

MALG connected to its USB port.  The MALG, being an ATMega 328 based board, was 

replaced by a custom-made board (Figure 28 and Figure 29) and a motor driver (Figure 30), 

which mimic the functionality of the MALG, barring the external gyroscope. 

 

Figure 28: Front of Custom-Made Board 

 

Figure 29: Back of Custom-Made Board 

 



 

Figure 30: Motor Driver 

8.2.5 Localization and Navigation: 

 The locomotion node communicates with the Oculus Prime server running on the SBC 

via TELNET.  It functions include feeding waypoints to the platform, getting odometry data, and 

bringing the platform to a halt.  The coordinates for locomotion and the command to stop or 

resume are received from the decision unit.   

 The node implements its functionality through a state machine.  Whenever a command to 

move to a new point is received, the state machine enters a “Go-To” state.  In this state, the 

platform receives a command to move to a specified destination.  The locomotion node actively 

tracks the state of the system by getting odometry readings.  Once the platform reaches its 

destination, the node publishes a message to decision unit, confirming successful locomotion and 

goes in “Waiting” state.   

 While in motion, if a command to stop is received by the locomotion node, it goes to 

“Emergency” state, which makes the platform stop.  Later, when the emergency is cleared, the 

locomotion uses odometry readings to calculate the new waypoint in relation to the present 

position.  This ensures that the platform continues to its original destination. 

8.2.6 Collaboration and Communication: 

 The collaboration node running on the SBC uses DigiMesh XBee adapters to exchange 

serial data over 900MHz to collaborate with other platforms.  The architecture for the system is 

depicted in Figure 31: Collaboration Architecture. 



 

Figure 31: Collaboration Architecture 

 The data packets are encoded using a custom format that includes vehicle ID, data length, 

and checksum (Figure 32 and Figure 33), which is used to determine the origin and ensure the 

integrity of the data.  The current data being sent is the occupancy map of the environment.  This 

is a 5x5 grid, which the receiving platform can parse and find an empty spot to park.  Two bits 

are used to calculate the state of each cell in the grid. 

 The collaboration node must be running on multiple SBCs for it to be used.  This node 

runs two threads in parallel in order to send and receive data through the serial port.  The 

received data is parsed to find the appropriate waypoint for the locomotion node.  Once this 

waypoint is calculated, this data is published to the appropriate topic.  



 

Figure 32: Action Message 

 

Figure 33: Request Message 

8.2.7 Perception 

 Perception is used to detect obstacles so that the mobile platform will avoid any 

collisions.  It is split into two types: the MS Kinect detects cylindrical obstacles that are in the 

range of 0.5 to 1.5 meters and Sharp IR sensors detect obstacles closer than 0.5 meters.  This 

ensures that the vehicle has enough time to come to a complete stop regardless of the proximity 

of the obstacle. 

Obstacle Detection Using Kinect 

 The Point Cloud Library (PCL) is used to detect cylinders of 10-50 cm height and 10-120 

cm diameter.  The point cloud data is segmented in the form of planes and cylinders.  The 

algorithm implemented uses plane fitting of a cylinder model and RANSAC for outlier rejection.  

The parameters of these functions are varied in order to obtain an accurate segmentation of 

cylindrical objects.  The objective of this node is to publish the detection of an obstacle on an 

emergency topic.  The algorithm is shown in Figure 34. 



 

Figure 34: Obstacle Detection Algorithm 

 When the algorithm is applied to raw data from an initial point cloud data (Figure 35:), it 

produces a segmented image of a cylinder (Figure 36). 

 

Figure 35: Raw Data 

 

Figure 36: Segmented Cylinder 

Obstacle Detection Using IRs 

 A dedicated proximity detection subsystem is used to prevent collisions with close-range 

obstacles.  The system is implemented in the form of a plug-and-play PCB with sensors and a 

microcontroller to interpret the readings of the sensors.  The system is designed to detect 

obstacles that are within 50 cm of the platform and cannot be detected using point-cloud data 



from the Kinect.  Any obstacle less than 20 cm causes an emergency to be declared in the 

system, making the locomotion come to a complete halt.  Three IR sensors are mounted on the 

front of the platform (Figure 37).  A dedicated Printed Circuit Board (PCB) was also designed 

(Figure 38) to integrate the IR sensors within the system.  The PCB houses an Arduino Nano, 

voltage regulation unit, and connectors for a power supply and three IR sensors (Figure 39).  

Open headers are present on the PCB for debugging and the addition of new peripherals. 

 

Figure 37: Mounted IR Sensors 

 

Figure 38: PCB Design 
 

Figure 39: PCB on Mobile Platform 

 The Arduino operates as a ROS node and interfaces with the IR sensors to publish time-

stamped range data on a ROS topic.  This involves polling the three IR sensors and publishing 

the range data if the range is less than 50 cm.  A separate “emergency” ROS node running on the 

SBC interprets range data and publishes the current state of the emergency.  Figure 40 depicts 

the time-stamped range data being published on the left terminal window and the corresponding 

emergency state on the right.  An emergency state of “0” indicates that no emergency has been 

detected and the system can continue normal operation.  When a “1” is published on the 

“emergencyState” topic, the system is in a state of emergency and needs to stop immediately. 



 

Figure 40: Test Results from Proximity Detection Subsystem 

8.2.8 Visualization 

 A GUI was created to easily visualize and actively track the state of the occupancy map.  

Various elements in the environment such as the mobile platform, origin, destination, obstacles, 

etc., when visualized through a graphical user interface, can aid in achieving a better 

understanding of the working of the overall system.  This is done by rendering a 5x5 grid and 

overlaying different shapes on top to signify the origin, destination, and current location of the 

platform.  Once data is received from an occupancy map, the program goes through it and creates 

an image that represents the current state of the system.  OpenCV is used to do all of this in 

Python. 

 In Figure 41, the platform original is shown as a blue square and the destination is shown 

as a green square.  The estimated location of the platform itself is depicted as a gray circle. 



 

Figure 41: Occupancy Map GUI 

8.3 Testing 

 The following is a list of step-by-step testing and analysis for different subsystems: 

8.3.1 Android App 

 Android app is able to establish a reliable serial connection to single board computer via 

Bluetooth with repeatability. 

 Sending and receiving of commands with ROS node was tested to work without failure. 

 Testing with garbage commands being sent, like letters or anything outside of the defined 

protocol, to ensure that an incorrect response was not elicited from the ROS node and/or 

app. 

 Testing with untimely data sent to the app such as sending “Parked” status when it was 

“Returning” to ensure the system does not fail and an incorrect response is not produced. 

 App GUI tested to ensure that disabled buttons cannot be pressed and the status of the 

vehicle changes as required. 

8.3.2 Communication 

The following tests were performed using two XBee Pro 900 adaptors: 

 Range Test: 100% of messages received in 15 feet range. 

 Speed and Latency Test: 

Test – Time stamped 100-element integer list (502 bytes) sent serially. 

Result – Transmission time of 1.8 seconds observed. 

 Establishing Connection: Connection is established instantaneously without the need for 

authentication. 

8.3.3 Obstacle Detection 

 IR Sensors 

o Ground truth testing of range data to ensure reliable values. 



o Testing that emergencies are published to emergency node reliably and without 

fluctuations. 

o Testing that spurious detections do not induce emergency state. 

o Testing with the mobile platform. 

 MS Kinect 

o Testing of correct setup of libraries on the single board computer by visualizing 

point cloud data using RVIZ 

o Cylinder segmentation and detection occurs with repeatability. 

o Emergency messages published on emergency topic when a cylinder is detected 

in specified range reliably. 

o Emergency message does not fluctuate randomly  

o Spurious detections do not cause emergency message to be published 

8.3.4 Mobile Platform Locomotion 

 Ensuring mobile platform is fully functional on software and hardware end via 

teleoperation commands sent through HTTP interface. 

 Testing of Oculus Prime Telnet API by teleoperation through Telnet command interface. 

 Testing whether odometry is functional through Telnet command interface. 

 Testing locomotion state machine rigorously via mock data on ROS Publishers 

8.3.5 Subsystem Integration 

 Subsystem integration testing was done in two sections.  The first subsystems that were 

integrated were the two communication subsystems: Bluetooth and XBees (Figure 42: App and 

XBee Subsystem Integration).  To begin, the Park button on the Android app was pressed.  This 

sent a command over Bluetooth to the SBC.  The SBC sent a destination request from attached 

XBee to a secondary XBee on a secondary SBC.  The secondary XBee responded with an 

occupancy map, which was sent to the simulated mobile platform.  The mobile platform parses 

the map to determine the appropriate destination.  Additionally, a status update was sent over 

Bluetooth to the app.  A response from the mobile platform was simulated to indicate that it had 

reached its destination, which was also sent to the app in a status update.  The sequence was then 

repeated but in terms of Return instead of Park. 



 

Figure 42: App and XBee Subsystem Integration 

 The second subsystems that were integrated were mobile platform and obstacle 

avoidance (Figure 43: Mobile Platform and Obstacle Avoidance Subsystem Integration).  The 

mobile platform began locomotion to a fixed location.  The Kinect detected an obstacle and 

notified the platform, which stopped moving.  When the obstacle was removed, the Kinect 

notified the platform, which resumed locomotion towards the original location.  The same test 

was done to test the IRs. 

 

Figure 43: Mobile Platform and Obstacle Avoidance Subsystem Integration 

8.3.6 Final System Integration 

 The final system was tested using all systems, as seen in Figure 44: Full System 

Integration.  In the same manner described in the communication portion of the subsystem 

integration (Section 8.3.5), the app was used to initiate the park sequence.  A secondary XBee 

provided an occupancy map to the mobile platform, which parses the map to determine the 



appropriate destination.  While traveling to the destination, an obstacle was detected, as 

described in the mobile platform and obstacle detection portion of the subsystem integration 

(Section 8.3.5).  The vehicle stopped until the obstacle was removed, at which time the vehicle 

continued to the original destination.  Once the vehicle reached the destination, the process was 

repeated for the return sequence. 

 

Figure 44: Full System Integration 

8.4 Performance Evaluation against the Fall Validation Experiment (FVE) 

8.4.1 FVE Demo 1 
Table 6: FVE Demo 1 Tasks and Performance 

Task Success Criteria Performance in FVE 

“Park” command sent to the mobile 

platform using the Android app 

LED Blinks to indicate command 

received 

Task completed successfully at FVE 

Encore 

Vehicle begins locomotion upon 

receiving the command 
Vehicle Moves forward 

Task completed successfully at FVE 

Encore 

Return” command sent to the mobile 

platform via the Android app 
Vehicle Moves backward 

Task completed successfully at FVE 

Encore 

 

  



8.4.2 FVE Demo 2 
Table 7: FVE Demo 2 Tasks and Performance 

Task Success Criteria Performance in FVE 

“Park” command sent to the mobile 

platform using the Android app. 

LED Blinks to indicate command 

received 

Task completed successfully at FVE 

Encore 

Navigation Direction set on second 

SBC 

Platform moves according to set 

direction 

Collaboration using XBees working 

as a complete subsystem 

Platform navigates to the second 

position 
Vehicle moves forward/backward 

Not demonstrated as it is dependent 

on XBee collaboration 

While navigating to the spot, the 

vehicle will encounter an obstacle 

and stop within a safe distance of the 

obstacle 

Vehicle does not collide with 

obstacle 

Task completed successfully at FVE 

Encore 

8.4.3 Performance Evaluation with respect to Function and Performance 
Requirements 

 Functional Requirements Validated at FVE 

o Receive commands from user via smartphone app (MF.1) 

 The requirement was successfully validated at FVE Encore by 

demonstrating ROS framework to accept commands from smartphone app 

via Bluetooth.  Upon receiving “Park” or “Return” command successfully, 

an indicator LED blinks 

o Share data with other cars (MF.2) 

 Bidirectional communication with multiple XBees in a scalable network 

with mesh topology was demonstrated to work successfully as a 

subsystem. 

o Sense the environment (static obstacles) (MF.8) 

 Obstacle detection using infrared sensors and MS Kinect demonstrated 

successfully in FVE Encore. 

o Navigate through parking lot (MF.10) 
 Mobile platform successfully navigates to different locations in the 

parking lot, stops when an emergency is detected and resumes locomotion 

when emergency gets cleared. 

 Performance Requirements Validated at FVE 

o 90% of messages are received 
 Requirement validated successfully as the connection is established 

instantaneously using XBee Pro 900 adapters without the need for 

authentication. 

 



o Be able to handle collaboration between 2 vehicles 
 Requirement validated successfully as bidirectional communication 

between two different XBees was successfully achieved and network is 

scalable within 450ft indoor range 

o Detect obstacles within 20 cm of vehicle 
 Requirement validated successfully in FVE Encore shown by mobile 

platform stopping when an obstacle is within 20 cm. of the platform. 

o Detect obstacles 10-50 cm high and 10-120 cm wide. 

 Requirement validated successfully and visualized for detection of 

cylindrical obstacles using RViz (a 3D visualizer for displaying sensor 

data and state information from ROS). 

8.5 Conclusions 

8.5.1 Strong Points 

 One of the greatest strengths of the system is that all subsystems have partial 

functionality and there is a basis for building the project work in the spring semester.  It is 

anticipated that this will speed up implementation and testing.  Listed below are the subsystems 

and advantages: 

 Android app is functional and will enable efficient testing 

 Serial protocol for communication is defined and tested for long term goals in the multi-

vehicle scenario 

 Obstacle detection with IR and vision system provides basis for avoidance algorithm 

 Oculus Prime mobile platform provides versatile capabilities and its ROS packages will 

aid in developing the localization and planning subsystem. 

8.5.2 Weak Points 

 The system has many single points of failure, specifically in terms of hardware.  

Moreover, the dependency on Oculus Prime custom hardware; MALG PCB and Power 

distribution board is a risk and needs proper mitigation plans.  Another weak point is that 

integration of subsystems needed more time than originally anticipated.  This lead to only partial 

subsystem integration shown at the Fall Validation Experiment. 

 There have been issues selecting the most appropriate Single Board Computer (SBC) for 

the project.  The initially selected Odroid-XU4 was found to be incompatible with the mobile 

platform.  The MinnowBoard Max was then provided by Team C.  However, there is still some 

uncertainty regarding the suitability of its processing power considering the complexity of the 

system.  Elements that need refinement are: 

 Bluetooth connection with the mobile app needs to be made less prone to failure 

 Collaboration algorithm needs to be tested for a scaled system with multiple vehicles 

 Precise locomotion needs to be implemented using odometry techniques 

9 Project Management  



9.1 Work Breakdown Structure 

 The work breakdown structure (WBS) for the fall semester (Figure 45: Fall Work 

Breakdown Structure) depicts the subsystems that need to be developed, the tasks involved in 

their accomplishment, and system-level and subsystem-level testing that needs to be conducted.  

Each subsystem highlighted in the cyber-physical architecture has certain key tasks that need to 

be accomplished and modules that need to be developed.  Further, it is imperative to conduct 

subsystem testing and validation experiments to ensure seamless integration.  Within the 

structure, green indicates that the task has been complete, yellow indicates that it is in progress, 

and red indicates that it has not been started. 

 The majority of the tasks for the fall have been complete.  What remains is to have the 

Kinect working on the MinnowBoard Max.  Currently, it works when it is run on a laptop, but 

not on the SBC.  Additionally, the Bluetooth connection between the app and the SBC needs to 

be perfected in order to smoothly shut down the connection.  Currently, the connection does not 

completely close, leaving the port open.  This makes it impossible to reestablish communication 

on the same port.  The XBee network needs to be made scalable to accommodate multiple 

XBees.  The final section of the WBS is Project Management, which contains ongoing tasks that 

must be worked on throughout the project, such as Risk Management, Weekly Sprints, and 

updating the Kanban Board. 

 

Figure 45: Fall Work Breakdown Structure 

9.2 Schedule 

 The major system development milestones that need to be attained during the spring 

semester are: 

1. Scale the collaboration subsystem to work for multiple platforms 



2. Implement a robust navigation subsystem to move the platform in a precise manner 

3. Implement path planning to calculate shortest routes and obstacle avoidance 

4. Integration of all the subsystems 

 Currently, the project is slightly behind schedule as the work for the fall semester has not 

been completely wrapped up.  Once that is complete, the schedule will be back on track and the 

team will be in a position to resume the work on Navigation, Path Planning and Collaboration 

subsystems that is planned for the spring semester.  The spring schedule can be seen in Table 8. 

Table 8: Spring Schedule 

Timeline (Spring 2016) Goals Milestones 

01/11 - 01/25 

App is complete in all respects; 

Repetitive and precise locomotion 

control; Manufacture or acquire 

more platforms 

Completion of Mobile App 

Subsystem 

PR 7: Late January  

Multiple partially functional 

platforms; Fully functional mobile 

app 

 

01/25 - 02/08 

Navigation works for multiple 

waypoints; Literature survey for 

path planning is complete; XBee 

Mesh network tested with multiple 

platforms 

 

PR 8: Mid-February  

Mesh Network functional for 

multiple platforms; Demonstrate 

robust and accurate navigation of 

platforms 

Completion of Communication/ 

Collaboration Subsystem 

02/08 - 02/22 

Create a graphical user interface to 

be used for testing and 

demonstrations; Implement obstacle 

avoidance 

 

PR 9: Late February  
Platform travels in 2D from Point A 

to Point B while avoiding obstacles;  

Completion of Navigation 

Subsystem 

02/22 - 03/07 

Design Mock Parking Lot; Make the 

GUI fully functional and depict the 

existing setup; Create a path 

planning node and integrate with 

navigation subsystem 

 



Timeline (Spring 2016) Goals Milestones 

PR 10: Mid-March  

Platform localizes and navigates in 

mock parking lot; GUI gets updated 

and shows real-time information 

Completion of Path Planning 

Subsystem 

03/07 - 03/21 

Create dummy platforms to 

collaborate with; Extensively test 

navigation and path planning; Create 

a point cloud map of the parking lot; 

Make active platforms collaborate 

 

03/21 - 04/04 

Make the platform park in and exit 

spot; Start integration of all the 

subsystems 

Start integration 

PR 11: Early April  

Single platform collaborates with 

dummy platforms and parks itself; 

Multiple active platforms are aware 

of each other’s presence and avoid 

collision 

 

04/04 - 04/18 Testing  and integration Wrap-up integration 

PR 12: Mid-April  Testing  

9.3 Spring Test Plans 

9.3.1 Capability Milestones 

1. Sensor 
a. Test: Map a known environment and note the discrepancies between the actual 

and logged data.  Note the resolution of the map. 

Requirement Validated: MF.8 

Milestone(s): PR11 

2. Communication 

a. Parking Spot Matrix 

b. Test: Transfer a multidimensional array representing the parking spots in the 

lot between the single board computers and populate it with relevant data.  All 

the spots should be in the occupied, reserved, or free state.  Make some 

changes to the system and log how that affects matrix.  Ensure that the 

changes made on one board are carried over to the other boards. 

Requirement(s) Validated: MF.2, DF.1 

Milestone(s): PR8, PR9 

3. Android App Interface 

a. Car to Phone – Vehicle Status and Notification 

i. Test: Press “Park” from the Android app.  The vehicle moves towards a 

parking spot and the app displays the status “Parking”.  When the vehicle 



is parked in a spot, the app displays the status “Parked”.  Press “Return” 

from the Android app.  The vehicle exits the parking spot and moves 

towards the exit and the app displays the status “Returning”.  When the 

vehicle stopped at the exit, the app displays the status “Returned” and 

sends a notification to the user. 

Requirement(s) Validated: MN.1 

b. Android App Prevents User Error 

i. Test: The user can only press “Park” when the vehicle status displays 

“Waiting” on the app.  The user can only press “Return” when the vehicle 

status displays “Parked” on the app. 

Requirement(s) Validated: MN.4, MN.1 

Milestone(s): PR7 

4. Parking Spot – Entering and Exiting 

a. Test 1: Send the car to a spot with both adjacent spots occupied.  The car backs 

into space within two tries.  When the car is parked, it is 100% within the parking 

spot boundaries and within 35º of parallel to both the neighboring cars.  Send the 

car to the exit.  The car exits the spot within two attempts without coming into 

contact with nearby cars or the infrastructure. 

b. Test 2: Send the car to a spot with one adjacent spot occupied.  The car backs into 

space within two tries.  When the car is parked, it is 100% within the parking spot 

boundaries and within 35º of parallel to the neighboring car on one side and the 

parking spot line on the other side.  Send the car to the exit.  The car exits the spot 

within two attempts without coming into contact with nearby cars or the 

infrastructure. 

c. Test 3: Send the car to a spot with both adjacent spots unoccupied.  The car backs 

into space within two tries.  When the car is parked, it is 100% within the parking 

spot boundaries and within 35º of parallel to the parking spot boundaries.  Send 

the car to the exit.  The car exits the spot within two attempts without coming into 

contact with nearby cars or the infrastructure. 

d. Requirement(s) Validated: MF.6, MF.7, MN.3, MN.4, DN.3 

Milestone(s): PR11 

5. Mapping 

a. Place markers at specific intervals 

i. Test: Place markers at predefined locations.  Map the area.  Compare their 

position in the map to their actual physical location and ensure it is 

correct. 

Requirement(s) Validated: MF.8 

b. Ensure map can be loaded into vehicles 

i. Test: Upload the map generated to the SBC and visualize with RViz. 

Requirement(s) Validated: MF.8 

Milestone(s): PR11 

6. Path Planning – From Entrance to Parking Spot to Exit 

a. Test 1: Place the vehicle at the entrance of the parking lot.  Have the vehicle plan 

a path to a spot and ensure that this is the most optimal path. 



b. Test 2: Place the vehicle at the entrance of the parking lot.  Have the vehicle plan 

a path to a spot.  Then, introduce an obstacle in the path and see how the path gets 

altered.  Ensure that the new path is the most optimal 

Requirement(s) Validated: MF.4, MF.5, DF.2, DF.3, MN.4, DN.2 

Milestone(s): PR9 

7. Obstacle Detection 

a. Send and Receive Movement Information 

i. Test 1: Send a Return command to a vehicle.  Ensure that the vehicle 

publishes a message to other vehicles on the network that it is exiting the 

parking spot.  Nearby vehicles that are parking will yield the right of way 

to the exiting vehicle, allowing it enough space to exit the spot safely and 

efficiently. 

ii. Test 2: When a vehicle is parking, nearby vehicles maintain a safe 

distance to avoid a collision and give the parking vehicle adequate space 

to park safely and efficiently. 

Requirement(s) Validated: MF.2 

b. Maintain Safe Driving Distance 

i. Test: Send two vehicles to park in neighboring spots in quick succession.  

The first vehicle will maintain a constant speed.  The second vehicle will 

maintain a safe distance between itself and the first vehicle.  When 

parking, the second vehicle will stop at a safe distance so as not to 

interfere with the first vehicle parking. 

Requirement(s) Validated: DF.4 

Milestone(s): PR9 

9.3.2 Spring Validation Experiment 

 Location: B Floor, Newell-Simon Hall 

 Date: April 29, 2016 

 Logistics: Oculus Prime Platform (3), Kinect (3), SBC (6), XBee Pro DigiMesh Adapter 

(6), USB 4.0 Bluetooth Adaptor (3), Android Phone with Virtual Valet (3), Monitor 

Screen, Mock Parking Lot 

 Operating Area: 10m x 10m (open space on B Floor) 

Task Success Criteria Requirements Validated 

“Park” command sent to three mobile 

platforms in succession using three Android 

phones with the app 

LEDs blink to indicate 

command received 

MN.1 



Task Success Criteria Requirements Validated 

Mobile platforms will enter the parking lot 

and collaborate with other vehicles to 

choose the optimal parking spots (Figure 46: 

Vehicles Localize Within Parking 

Lot, Figure 47: , and Figure 48: Optimal 

Spots Identified) 

The three spots closest to the 

exit are chosen 

DF.1 

Mobile platforms will navigate along 

optimal paths to the spot (Figure 49: 

Shortest Paths to Spots Planned) 

The paths with the least 

amount of time are chosen 

DF.2, DF.3, DF.4, DN.2 

When a vehicle encounters an obstacle, it 

will plan a path around it and alert other 

vehicles of the obstacle location (Figure 50: 

Route Planned Around Obstacle and 

Figure 51: Route Followed Around 

Obstacle) 

The platforms will not hit 

obstacles and will park 100% 

within their designated 

parking spot 

MF.9, DN.2, DN.3 

A notification will be sent from each vehicle 

to the respective user when their vehicle is 

parked (Figure 52: Vehicles Park and 

Wait) 

Notification is received by 

three separate phones 

MF.6, MN.1 

When each user sends the command to 

return, the robot will exit the parking spot 

and navigate towards the exit spot along the 

optimal path (Figure 53: Return 

Command Received, Shortest Path to 

Exit Followed) 

No collisions occur and 

mobile platforms exit as 

quickly as possible 

MF.4, MF.5, MF.7, MN.1, 

MN.3, MN.4, DN.2 

When the vehicles reach the exit, they will 

each send their user a notification stating 

that it is at the exit 

Apps update accordingly and 

notifications are received on 

three separate phones 

MN.1, MN.4, 

 



 

Figure 46: Vehicles Localize Within Parking Lot 

 

Figure 47: Collaborative Communication Established 

 

 

Figure 48: Optimal Spots Identified 

 

Figure 49: Shortest Paths to Spots Planned 

 

 

Figure 50: Route Planned Around Obstacle 

 

Figure 51: Route Followed Around Obstacle 

 



 

Figure 52: Vehicles Park and Wait 

 

Figure 53: Return Command Received, Shortest Path 

to Exit Followed 

  



Performance Requirements Validated at SVE: 

 Maintain a velocity between 0 and 10 cm/sec 

 Park 100% within a parking spot within 2 attempts.  Be within 35º of parallel with the 

neighboring vehicles or the lines of the spot, as applicable 

 Maintain a distance of 30.48 cm (1 ft.) between vehicle and infrastructure 

 Vehicle maintains at least 60.96 cm (2 ft.) between the front of one moving vehicle and 

the back of another moving vehicle 

 Identify optimal spot 98% of the time 

 If incorrect spot is chosen, it is ranked within 5% of optimal spot 

 Optimal path is chosen 90% of time 

 90% of messages are received 

 Exit the spot within 2 attempts without collision 

 Will take no more than 45 seconds to exit the parking spot 

 The vehicle will arrive at the exit within 90 seconds of receiving the “Return” command 

 There will be ZERO changes to the infrastructure 

 Budget is within $4000 

9.4 Budget 
Table 9: Project Budget 

Part Part Number Quantity Cost/Unit Current Expense Total Cost 

Oculus Prime Mobile 

Platform* 

Xaxxon Oculus 

Prime Kit Version 
3 $499.00 $499.00 $1497.00 

ODROID-XU4 N/A 3 $74.00 $222.00 $222.00 

MinnowBoard Max* N/A 3 $147.00 $294.00 $441.00 

Arduino Nano v3.0 N/A 3 $15.38  $46.14 

Infrared Sensor 
Sharp 

GP2Y0A21YK 
9 $13.95  $125.55 

MS Kinect Sensor N/A 3 $149.99  $448.32 

Miscellaneous 

(mounts, electronics, 

memory, cables) 

N/A N/A N/A $190.99 $625.99 

DigiMesh XBee Pro* N/A 6 $99.00 $297.00 $594.00 

Total Budget:    $1502.99 (37.57%) $4000 

*big ticket items 

 The total project budget is $4000.  The most expensive items needed for the project are 

the Oculus Prime Mobile Platforms, the DigiMesh XBee Pro Adapters, and MinnowBoard Max 

single board computers.  Of the total budget, 37.57% has been spent to date. 

9.5 Risk Management 

 Since the Preliminary Design Review, updates have been made to risks, listed by their 

Risk ID below.  The complete, updated list of risks can be found in Table 10: Project Risks. 



1. No Mobile Platform.  After waiting for a response from the sponsor, the team finally 

purchased a mobile platform, the Oculus Prime, without the sponsor.  This closed the 

risk. 

2. Inadequate Mobile Platform.  This risk has been modified to encompass two new areas 

in which the Oculus Prime may be inadequate.  The pre-programmed motions of the 

Oculus Prime have it turning on its axis.  However, the platform should mimic a car in its 

movements, so this will have to be modified.  Additionally, the platform may have some 

difficulty handling the weight of the devices that have been added to it. 

3. Unsuitable Smartphone Interface.  The status of this risk has changed from “Open” to 

“In Progress”.  Because the subsystems are now roughly integrated, the system can be 

tested through the Virtual Valet app, which causes the app to be tested extensively in a 

variety of circumstances. 

4. Subsystem Incompatibility.  This risk will stay in progress until the end of the project as 

subsystem incompatibility poses a risk to the overall robustness and performance 

capability of the system. 

5. Too Many Requirements.  After an extensive review of the requirements, they have 

been revised and trimmed as needed to create a more manageable scope for the project.  

However, this risk remains ongoing. 

6. Inaccurate Parking Lot and Obstacles.  No update has been made to this risk. 

7. ROS Framework.  A new handling strategy has been added to this risk.  To ensure 

timing and message compatibility throughout the ROS nodes, a ROSLaunch file was 

created that launches all nodes in the correct order. 

8. SBC and Platform Incompatibility.  This risk has been closed.  Team C allowed us to 

use their unneeded MinnowBoard Max, which is 64-bit.  The MinnowBoard Max is able 

to run the Oculus Prime server, which closes this risk. 

9. MinnowBoard Max Processing Power Limitations.  This is a new risk.  After 

integrating the subsystems, the MinnowBoard Max began freezing when running all 

subsystems.  This is most likely due to limitations on the processing power of the 

MinnowBoard Max.  The current plan is to perform in-depth testing to isolate any other 

potential causes.  If no other causes are found, other SBCs with greater processing power 

will be assessed and purchased. 

10. Closing Bluetooth Port between ROS and App.  This is a new risk.  Bluetooth 

communication occurs between the Virtual Valet app running on an Android phone and 

the ROS node on the SBC.  There has been some difficult with the RFComm ports used 

to establish the communication.  When the app and the node do not shut down gracefully, 

the port will sometimes stay open, which prevents communication from being opened on 

that port again.  The python script to establish Bluetooth communication has been 

modified to only connect on one port and to close the port upon receiving “Ctrl+C” or 

“Ctrl+Z” keystrokes.  What remains is to have the app shut down Bluetooth 

communication gracefully so the port can be reused. 

The risk management categories are as follows: 

 ID: Number used to reference risk 

 Description: Brief description of the risk 

 Responsible Party: Indicates who is in charge of handling the risk. 



 Risk Analysis: The risk analysis has two numbers representing the ranking of the 

consequence of the risk and the likelihood that the risk will be realized.  It is formatted as 

(Consequence x Likelihood), which can more clearly be seen in Figure 54: Risk IDs 

Charted with Consequence and Likelihood Levels. 

 Area of Impact: Technical, Schedule, Cost, Programmatic 

 Handling Strategy: How the risk will be handled? 

 Status: Open (no work has been done), In Progress (work is being done to mitigate risk), 

Closed (no longer a risk) 

Table 10: Project Risks 

ID Description Owner 
Risk 

Analysis 
Area of 
Impact 

Handling Strategy Status 

1 
No Mobile 

Platform  
Mohak  N/A 

Technical, 

Schedule, Cost  

Purchased test 

platform without 

sponsor  

Closed  

2 
Inadequate 

Mobile Platform  
Shivam  3x3 Technical  

Correct turning 

radius, test weight 

limits  

In Progress  

3 

Unsuitable 

Smartphone 

Interface  

Dorothy  3x2 
Technical 

Programmatic  

Frequent and 

extensive testing  
In Progress  

4  
Subsystem 

Incompatibility  
Pranav  5x2 

Technical 

Schedule Cost 

Programmatic  

Research on ROS to 

ensure compatibility 

Carry out low-level 

cross compatibility 

tests 

Create an architecture 

to ease integration  

In Progress  

5 
Too Many 

Requirements  
Shivam  4x2 

Schedule 

Programmatic  

Trimmed 

requirements 

Began weekly sprints 

Created Kanban cards 

Open  

6 

Inaccurate 

Parking Lot and 

Obstacles  

Richa  1x1 Programmatic  

Analyze parking lots 

IRL.  Scale to match 

mobile platform  

Open 

7  
ROS Related 

Issues  
Pranav  5x1 Technical  

Arduino↔ROS 

testing.  ROS↔ROS 

serial communication.  

Initiate subsystem 

tests using 

ROSLaunch files.   

In Progress 

8  

SBC and 

Platform 

Incompatibility  

Mohak  N/A 

Technical 

Schedule Cost 

Programmatic  

Use MinnowBoard 

Max borrowed from 

Team C 

Closed 



ID Description Owner 
Risk 

Analysis 
Area of 
Impact 

Handling Strategy Status 

9  

MinnowBoard 

Max Processing 

Power 

Limitations 

Mohak 5x5 
Technical 

Programmatic 

Test SBC thoroughly 

to investigate other 

possible problems.  

Research alternative, 

more powerful SBCs 

In progress 

10  
Closing 

Bluetooth Port  
Dorothy 2x5 Technical 

Hardcode port 

number into script.  

Close port by 

keystroke on SBC 

side.  Close port when 

app closes on Android 

side 

In progress 

 

Figure 54: Risk IDs Charted with Consequence and Likelihood Levels 

10 Conclusions 

10.1 Lessons Learned 

 Avoid material and schedule bottlenecks – To avoid bottlenecks and ensure parallel 

progress in work, dependency in terms of materials and schedule needs to be minimized 

as much as possible, such that a delay in one task does not hinder progress in another. 

 Think ahead and order spares and backups; more backups for high-risk elements – High-

risk components in the system need to be identified at an early stage and enough spares 

and backups should be in place. 

 Integrate step-by-step – System integration should be carried out in a step-by-step 

manner.  This provides a way to debug efficiently and ensure subsystem compatibility. 



 Rigorously test subsystems – As this is a highly complex system, subsystems should be 

tested rigorously before starting integration.  All possible break cases need to be tested 

against and it should be ascertained that required performance is being achieved. 

 Maintain GitHub repository – The importance of well-organized documentation and 

version control cannot be emphasized enough. 

 Schedule should be based on well-defined metrics – Number of hours to be spent on each 

task, including buffers, should be used to set the schedule and timeline.  Estimates get 

better with time, but following this approach would ensure realistic goals and avoid 

schedule slips.  Also, schedule slips should be analyzed and corrective measures 

implemented. 

 Risk chart should be updated frequently – Risk chart should be updated on a regular basis 

to ward off potential high consequence risks ahead of time. 

10.2 Key Spring Activities 

 The next step is to scale up the system by acquiring two more Oculus Prime platforms.  

The SVE will feature three mobile and three stationary vehicles.  A mock parking lot will be 

created and its map generated.  Map generation will be a one-time exercise. 

 Communication subsystem will be scaled up with multiple adapters connected to each 

other in a mesh topology.  Since there is no central server to process the information being 

exchanged in the network, an algorithm will be developed for real-time handling of this data. 

 For the navigation subsystem, odometry will be used to facilitate precise vehicle 

maneuvers required for the project.  Obstacle avoidance routine will be incorporated during 

locomotion and will be tested extensively. 

 Localization and Planning would be the next key activity.  Early in the semester, a 

literature survey will be done on the potential techniques and algorithms that are suitable for the 

project in this domain.  This will basically involve a localization estimate of the vehicle and 

updating an occupancy map which will be used for waypoint generation and route planning.  

Consequently, the best-suited algorithms will be implemented and tested for the accuracy 

outlined by the performance requirements. 

 A key goal is to start integration of subsystems as early as possible.  A step-by-step 

approach for integration is the right way to go as it makes debugging much easier and helps in 

taking corrective measures early on. 
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