

Critical Design Review
Report: Auto-Park for

Social Robots
Collaborative Parking between Autonomous

Vehicles Utilizing Point-to-Point Communications

Team Daedalus: Mohak Bhardwaj, Shivam Gautam, Dorothy Kirlew,
Pranav Maheshwari, and Richa Varma

Masters of Science Robotics Systems Development
Sponsored by United Technologies Research Center

12/13/2015

1 Abstract

 This report summarizes the progress made by Team Daedalus on the Carnegie Mellon

University, Masters of Science in Robotic Systems Development project “Auto-Park for Social

Robots” during the fall 2015 semester. The team has identified key functional and non-

functional requirements of the project and has also defined relevant performance metrics. The

system-level architectures representing the various subsystems and their interactions are depicted

in the report. Detailed subsystem descriptions and their testing results are documented. The

formulated project management plans with respect to work-breakdown, schedules, test plans, and

budget are also discussed. The team has also identified key risks associated with the project and

their mitigation strategies. Having gained valuable experience from testing, the team has

identified the key lessons learned from this semester. This information has helped in planning

for the completion of this project in the spring semester.

2 Table of Contents

1 Abstract ... 2

3 Project Description.. 5

3.1 Keywords ... 5

3.2 Description ... 5

4 Use Case.. 6

5 System Level Requirements ... 10

6 Functional Architecture .. 12

7 Cyber-Physical Architecture ... 13

7.1 Hardware Architecture ... 14

7.2 Software Architecture .. 15

8 Current System Status ... 17

8.1 Fall Semester Targeted System Requirements ... 17

8.2 Current System Description ... 18

8.2.1 Android – ROS Bluetooth Communication .. 18

8.2.2 Mobile Platform .. 19

8.2.3 Single Board Computer/ Decision Unit .. 20

8.2.4 Actuator Control Board... 21

8.2.5 Localization and Navigation: .. 22

8.2.6 Collaboration and Communication: .. 23

8.2.7 Perception ... 24

8.2.8 Visualization: .. 27

8.3 Testing .. 28

8.3.1 Android App ... 28

8.3.2 Communication ... 28

8.3.3 Obstacle Detection .. 28

8.3.4 Mobile Platform Locomotion ... 29

8.3.5 Subsystem Integration ... 29

8.3.6 Final System Integration ... 30

8.4 Performance Evaluation against the Fall Validation Experiment (FVE) 31

8.4.1 FVE Demo 1 ... 31

8.4.2 FVE Demo 2 ... 32

8.4.3 Performance Evaluation with respect to Function and Performance Requirements32

8.5 Conclusions .. 33

8.5.1 Strong Points ... 33

8.5.2 Weak Points .. 33

9 Project Management ... 33

9.1 Work Breakdown Structure .. 34

9.2 Schedule ... 34

9.3 Spring Test Plans .. 36

9.3.1 Capability Milestones ... 36

9.3.2 Spring Validation Experiment .. 38

9.4 Budget .. 41

9.5 Risk Management ... 41

10 Conclusions ... 44

10.1 Lessons Learned ... 44

10.2 Key Spring Activities ... 45

11 References ... 45

3 Project Description

3.1 Keywords

 Optimal Spot – The optimal spot is the parking spot with the shortest route between that

spot and the exit. The optimal spot must also be unoccupied.

 Optimal Route – Also called Optimal Path. This is the route is from the vehicle’s current

position to the optimal spot or to the exit, depending on the vehicle’s status. It is optimal

because it takes the least amount of time to traverse.

 Vehicle – Also called Mobile Platform or Robot. This serves as the test platform to

implement and showcase the collaborative and autonomous aspects of the project, such as

path planning, navigation, communication, and obstacle detection.

 Vehicle Status – The vehicle can be in the following states:

o Free – The user has not yet told the vehicle to park. The vehicle is waiting for a

command.

o Parking – The vehicle has been told to park by the user. The vehicle is heading

towards the optimal spot but has not reached it yet.

o Parked – The vehicle is stationary within the parking spot.

o Returning – The vehicle has been told to return by the user. The vehicle is

heading towards the parking lot exit but has not reached it yet.

o Returned – The vehicle is at a complete stop at the parking lot exit and is waiting

for the user.

 Parking Lot – The parking lot is a single-level testing area with a known entrance, exit,

and known parking spots. The lot will be proportional to the size of the vehicle.

3.2 Description

 The imminent arrival of driverless cars has led to an increased focus on the development

of an ecosystem that supports them. This project, “Auto-Park for Social Robots”, aims at

developing an autonomous system for collaboratively parking driverless cars. As envisioned by

the team and the sponsor, United Technologies Research Center (UTRC), the project would

allow a user with a driverless car to park their vehicle by simply pressing “Park” on their

Android app.

 The motivation for the project stems from key factors affecting the current parking

system, such as poor parking safety standards, parking industry growth potential, and a

competitive advantage of developing such a system. According to reports by Fayard and Stark,

around 20% of all automobile accidents occur inside parking lots. About 90% of the people

involved in these accidents are injured. The parking industry is worth $25-$30 billion and has

potential to invest in upgrades [1] [2]. It regularly bleeds money to accident insurance claims, as

well as public transportation due to people that take the bus rather than find a spot in a congested

lot. The precious time wasted while searching for a parking spot, translated into lost revenue, is

also a motivation behind the project.

 This project consists of a scaled-down version of a car (mobile platform) that would be

able to receive a “Park” command from the user’s Android app, localize itself in a parking lot,

collaborate with other cars to identify the best possible parking spot, navigate to the spot, and

avoid any obstacles in the process. The vehicle would relay its status to the user’s app at specific

times. Upon receiving the “Return” command, the vehicle would then exit the parking spot and

navigate to the parking lot exit. The project’s main focus is on establishing a robust system for

effective collaboration between vehicles.

4 Use Case

 Benjamin is a retired Armed Forces veteran. He has been driving in Pittsburgh, his home

city, for many years now. The only thing that has made him think twice before taking his car out

is the nightmare of parking. Recently, Benjamin was diagnosed with prostate cancer. Ben is

receiving treatment at UPMC, 10 miles away from his home. The parking lot at the hospital is

always extremely congested (Figure 1: Crowded Parking Lot) and it sometimes takes him longer

to find a parking space than to drive from his home. He has to leave an hour and a half before

his appointment and is frequently late.

Figure 1: Crowded Parking Lot

 After his appointment last week, Ben was backing out of a parking spot when a reckless

driver sped into his bumper at 30 mph. He spent the next few weeks handling insurance claims

and getting repairs done. After the accident, Benjamin started taking the Port Authority bus to

the hospital, even though he had to transfer buses several times to reach the hospital. Benjamin

missed driving, but the scare from the accident had made him give it up altogether.

 Five years have passed. It is 2020 and Benjamin has purchased an autonomous car

equipped with CMU-UTRC Auto-Park System. His new car now takes him to the hospital for

his weekly appointments – efficiently, safely, and without any hassle.

 When Benjamin’s car stops at the entrance of the hospital, he exits his car and presses

“Park” on his smartphone app (Figure 2). The app sends the command to his driverless car and

the status of Benjamin’s car updates on his phone (Figure 3). Benjamin enters the hospital and

his car autonomously enters the queue at the entrance of the parking lot.

Figure 2: Virtual Valet App, Opening Screen

Figure 3: Virtual Valet App with “Park” Button

Pressed

 As the vehicle enters the parking lot, it localizes itself and identifies nearby cars (Figure

4). His vehicle then connects to the network of cars already inside the parking lot (Figure 5).

Figure 4: Vehicle Localizes Itself Within Parking Lot

Figure 5: Vehicle Initiates Collaborative

Communication with Parked Vehicles

 Benjamin’s car receives an occupancy map from the network of vehicles that allows it to

identify the location of a free parking spot that is closest to the exit (Figure 6). His car

autonomously plans a route to the spot and begins to follow the path (Figure 7).

Figure 6: Optimal Parking Spot is Identified

Figure 7: Shortest Route to Optimal Spot is Planned

 While en route to the spot, another car receives a “Return” command and notifies nearby

cars that it will be exiting its spot (Figure 8). Benjamin’s car stops to give right of way to the

exiting vehicle (Figure 9).

Figure 8: Benjamin’s Vehicle Stops as Another

Vehicle Receives “Return” Command

Figure 9: Benjamin’s Vehicle Gives Right of Way to

Exiting Vehicle

 Benjamin’s car waits for the exiting vehicle to be at a safe distance, and then continues

on the original route. It then parks in the designated spot (Figure 10), notifies him that it has

parked, and waits to receive the next command (Figure 11).

Figure 10: Vehicles Continue on Path

Figure 11: Benjamin’s Vehicle Waits for Return

Command

 Benjamin is tired at the end of his appointment and wants to get home as quickly as

possible. He hits the “Return” button on his app and walks towards the hospital exit (Figure 12).

 His car receives the command and alerts nearby cars that it is about to exit the spot.

Benjamin’s app shows that his car is returning to him and displays the estimated time it will take

to reach the exit (Figure 13).

Figure 12: App Shows Parked Status

Figure 13: App Shows Returning Status and ETA

 Ben’s car plans and follows the shortest route to the exit, where it waits for Ben (Figure

14).

Figure 14: Vehicle Plans Shortest Path to Exit

 By the time Benjamin reaches the hospital exit, where his car is waiting for him. He

enters his car, grateful that he did not have to walk through the large parking lot after such a long

day.

5 System Level Requirements

 The system-level requirements are categorized as Mandatory (M) or Desirable (D), as

well as Functional (F) or Nonfunctional (N). The requirements are meant to be read as “The

system shall…”, followed by the requirement. The performance metric(s) detail how the

requirements can be validated. Furthermore, the subsystem column shows which of the

following subsystems the requirement applies to Communication (P2P or Bluetooth), Perception,

Mobile Platform, Software, or Control.

 The requirements are much the same as those listed in the Preliminary Design Review,

with the exception of the communication performance requirements. Those have been adjusted

to measure P2P communication in terms of the percentage of messages received instead of the

time it takes to establish communication. This is because XBees establish communication

immediately, and it is more likely to lose a message, or for it to be misinterpreted, than for the

XBees to not establish communication with one another. Another requirement change has

moved the MF.11 from a desirable requirement to a mandatory one.

Table 1: Mandatory Functional (MF) System Level Requirements

ID Requirement Performance Metric(s) Subsystem

MF.1

Receive "Park" and "Return"

commands from user via smartphone

app

95% of messages will be received.
Communication

(Bluetooth)

MF.2

Share location, parking spot, and

obstacle-related data with other

vehicles.

Establish communication with other

vehicles within the 10mx10m test

area.

90% of messages will be received.

Communication (P2P),

Perception

MF.3
Navigate autonomously through

parking lot.

100% of navigation will be

autonomous.
Mobile Platform

MF.4 Plan optimal route to exit.

The vehicle will exit the parking lot

within 90 seconds of receiving

command.

Software

ID Requirement Performance Metric(s) Subsystem

MF.5 Follow optimal route to exit.
The vehicle will maintain a velocity

between 0 and 10 cm/sec.

Mobile Platform,

Software

MF.6 Park inside parking spot.

Park 100% within a parking spot

within 2 attempts. Be within 35º of

parallel with the neighboring

vehicles or the lines of the spot, as

applicable.

Mobile Platform,

Perception

MF.7 Exit parking spot
Exit the spot within 2 attempts

without collision.
Mobile Platform

MF.8 Sense obstacles in the environment.
Avoid obstacles between 10-50 cm

high and 10-120 cm wide.

Mobile Platform,

Perception

MF.9 Avoid infrastructure

The vehicle will maintain a distance

of 30.48 cm (1 ft.) between itself

and the parking lot infrastructure.

Mobile Platform,

Perception

MF.10 Stop in the event of an emergency

Stop within 3 seconds of an

emergency (obstacle or internal

vehicle error).

Mobile Platform,

Perception

MF.11 Maneuver efficiently through the lot
Vehicle has turning radius between

0 and 0.8 meters

Mobile Platform,

Software

Table 2: Desirable Functional (DF) System Level Requirements

ID Requirement Performance Metric(s) Subsystem

DF.1 Identify optimal parking spot
Identify optimal spot 98% of the

time

Communication (P2P),

Software

DF.2 Plan optimal route to spot
Optimal path is chosen 90% of the

time
Software

DF.3 Follow optimal route to spot
Vehicle maintains a velocity

between 0 and 10 cm/sec

Mobile Platform,

Software

DF.4 Avoid other vehicles

Vehicle maintains at least 60.96 cm

(2 ft.) between itself and the back of

another moving vehicle

Mobile Platform,

Perception

Table 3: Mandatory Non-Functional (MN) System Level Requirements

ID Requirement Performance Metric(s) Subsystem

MN.1
Use smartphone app to display vehicle

status
95% of messages are received

Communication

(Bluetooth)

MN.2
Communicate reliably between local

vehicles

The network will be able to handle

collaboration between 3 vehicles
Communication (P2P)

MN.3 Efficiently exits the parking spot
Will take no more than 45 seconds

to exit the parking spot

Mobile Platform,

Perception, Software

MN.4 Return to user as quickly as possible

The vehicle will arrive at the exit

within 90 seconds of receiving the

“Return” command

Communication (P2P

and Bluetooth), Mobile

Platform, Software

MN.5
Make minimal changes to

infrastructure

There will be ZERO changes to the

infrastructure
N/A

MN.6 Be within stipulated budget Budget is $4000 N/A

Table 4: Desirable Non-Functional (DN) System Level Requirements

ID Requirement Performance Metric(s) Subsystem

DN.1 Maintain scalable network of vehicles
Network is able to accommodate at

least 3 vehicles
Communication (P2P)

DN.2 Efficiently enter the parking spot

Vehicle backs into parking spot

within 2 attempts

Vehicle takes no more than 45

seconds to back into spot

Mobile Platform

6 Functional Architecture

 The system is represented in the functional architecture, as seen in Figure 15. The inputs

to the system are a preloaded map, the “Park” command from the user, and the “Return”

command from the user. The outputs from the system are the “Car Parked” and “Car Returned”

notifications to the user.

 The entire flow can be divided into two phases: Park and Return. The structure of the

flow diagram is based on the “Sense-Plan-Act” design.

 In the Park phase, the vehicle receives a “Park” command from the user via the Android

app and navigates to the entry queue, continuously localizing itself in the environment. It

queries other vehicles in the parking lot for information needed to plan its route to the optimal

spot. On selecting the best spot based on this data, it plans its route to the spot and starts

navigation. Localization data is needed to continuously update the path planner and if obstacles

are encountered along the way, the path is modified accordingly. Upon reaching the spot, the

vehicles parks in the designated spot, sends a “Car Parked” notification to the user, and waits for

the return command from the user.

 In the Return phase, upon receiving the “Return” command from the user, the vehicle

plans the optimal route to the exit based on its current location and the data provided by other

cars regarding the conditions in the parking lot. It starts navigating towards the exit, sensing

obstacles along the way and sending a notification to the user once it reaches the exit queue.

Figure 15: Functional Architecture

7 Cyber-Physical Architecture

 The system can be divided into 5 main subsystems, as seen in Figure 16. The hardware

and software interaction between these subsystems is detailed below.

Figure 16: System Overview

7.1 Hardware Architecture

 The mobile platform houses all the major subsystems, apart from the mobile app, which

exists on the user’s Android phone. Currently, the mobile platform uses a MinnowBoard Max

SBC which is running Xubuntu 14.04 and ROS Indigo. The platform also has a Kinect v1 and

three IR Proximity Sensors for obstacle detection. IR Proximity Sensors interfacing and actuator

control are done by two Arduino Nanos. For the proximity sensor, the Arduino Nano is made to

run as a ROS Node; for actuator control, the Arduino Nano communicates via Telnet Server.

The DigiMesh XBee and Bluetooth 4.0 adapters are connected via USB to the SBC and act as

Serial Ports for communication. The Oculus Prime platform comes with a power distribution

board that accepts 12V from the LiPo battery and then powers the DC Motors and the SBC

through it (Figure 17).

Figure 17: Hardware Architecture

7.2 Software Architecture

 The software architecture (Figure 18) is based on the simple principle of sense, think, and

act, denoted by Perception, Planning, and Control. Perception helps in interfacing with the

environment and getting raw data, which then gets processed by Planning. Planning carries out

path planning, localization, and uses the point cloud data to detect various objects in the vicinity

of the robot. All of this information is then further transmitted to Control, where the robot

carries out locomotion and also collaborates with other robots by sharing relevant data. The

emergency node helps in bringing the robot to a halt in case of internal failures or the presence of

an obstacle.

Figure 18: Software Architecture

 The current algorithm to detect obstacles via Kinect can be seen in Figure 19.

Figure 19: Kinect Obstacle Detection Algorithm

 For collaboration, a simple protocol is defined whereby a platform sends out a request for

collaboration and other platforms reply back with relevant data. The flow of this interaction can

be seen in Figure 20.

Figure 20: Mesh Network Collaboration

8 Current System Status

8.1 Fall Semester Targeted System Requirements

 The following functional requirements were targeted during the fall semester can be seen

in Table 5: Requirements Targeted in Fall.

Table 5: Requirements Targeted in Fall

Requirement Performance Metric

Receive commands from user via smartphone app

(MF.1)
95% of messages will be received

Share data with other cars (MF.2)
90% of messages are received

Be able to handle collaboration between 2 vehicles

Sense the environment (static obstacles) (MF.8)
Detect obstacles within 20 cm of vehicle

Detect obstacles 10-50 cm high and 10-120 cm wide

Navigate through parking lot (MF.10)

Stop within 20 cm of a static obstacle and 3 seconds of

an internal vehicle error

Maneuver efficiently through the lot (MF.11)
Vehicle has a turning radius between 0 and 0.8 meters

8.2 Current System Description

 An overview of the current subsystems of the project is depicted in Figure 21: Auto-Park

for Social Robots Subsystems. The team focused on covering a larger breadth in subsystems so

as to develop a good foundation for the spring semester. In addition to laying the groundwork in

all of the subsystems, the team also worked on integrating all of the systems capabilities.

Figure 21: Auto-Park for Social Robots Subsystems

8.2.1 Android – ROS Bluetooth Communication

 The Android application developed for this task utilizes the Bluetooth adapter present in

the smartphone to establish communication with the Single Board Computer, which is running

ROS. This bidirectional communication requires a server, client, and a service with a specific

protocol through which all this interaction takes place. This specific subsystem can be broken

down into two main parts:

 Android Application

o The Android app developed utilizes the BluetoothChatService provided by

Google for developers. This chat service helps to establish and manage

connections with remote devices by running the appropriate threads. Data is sent

from the app to the SBC whenever the user presses the Park or Return buttons on

the app. The data received by the app is used to update the status and initialize

the timer. The app can be made to connect with any Bluetooth device by entering

the appropriate device name during startup. The app can be seen in Figure 22

with a status of Parking and a timer counting down. In Figure 23, the app shows

that the vehicle has returned.

Figure 22: Vehicle is Parking

Figure 23: Vehicle has Returned

 ROS Node

o The ROS Node running on the SBC communicates with the Android app by

advertising a Bluetooth service to which the app can subscribe. All this is done

through an RFCOMM socket port. Once this connection is established, the node

starts two threads for sending and receiving data. These two threads have two

ROS topics associated with them which the other nodes can use to push and pull

data via Bluetooth. When the system is being shut down, an interrupt handler is

called by the ROS node so that the ports can be closed properly before exit. Not

doing so affects the ability of the system to reestablish a Bluetooth connection.

8.2.2 Mobile Platform

 The Oculus Prime platform, depicted in Figure 24: Oculus Prime Platform, is the most

suitable platform for the project needs. The platform is developed by a Canada-based company,

Xaxxon, and is primarily used by the ROS community for surveillance related applications. The

platform is made of ABS plastic with mounts for the Xtion, Microsoft LifeCam, four motors and

external peripherals (Spotlights, Speakers etc.).

Figure 24: Oculus Prime Platform

 The Oculus is powered by a 5000 mAh battery and a dedicated power management unit

which supports onboard charging and voltage sensing. A charging dock is used to charge the

battery without removing it from the chassis. The motor control board- MALG (Motors Audio

Lights Gyro), is an ATMEGA 328 based microcontroller. The MALG is powered through the

power management unit and serves as the actuator control board.

 The assembly instructions in the Documentation for the Oculus Prime were followed to

assemble the platform and the docking station. Later, the camera and the Kinect were mounted.

The electrical integration of the platform needed customization according to the hardware. This

involved the following major tasks-

 Increasing wire gauge and re-soldering existing joints on the platform

 Adding external voltage regulators for the 5V voltage level to power high current

consuming devices like the SBC.

 Connecting power and data lines for peripherals like the motors, encoders, SBC, HD

LifeCam, actuator control board, power distribution board, Kinect, USB hub and other

components.

 Mounting the electronics using 3D printed mounts (Figure 25: 3D Printed SBC Mount

and Figure 26: 3D Printed IR Mount), Velcro, etc.

 Integrating the proximity detection PCB.

 Adding external power supply to USB hubs to prevent overloading on a USB port.

Figure 25: 3D Printed SBC Mount

Figure 26: 3D Printed IR Mount

8.2.3 Single Board Computer/ Decision Unit

 The SBC runs the nodes for all the other subsystems as well as a central, decision-making

node (Figure 27). The decision unit is responsible for managing all the data flowing between

various subsystems. It is important to keep a track of current system status, user requests,

obstacles in the environment, as well as other tasks. The central node is responsible for fetching,

processing, and making decisions based on all of this data. Commands for locomotion are also

issued by this node.

Figure 27: Decision Unit

 As per the current routine, the decision unit gets triggered by a user command sent via the

Android app. This command gets relayed to the decision unit through the Mobile App node. If a

Park command is received, the platform sends a request to nearby platforms, asking for a

destination. This takes place through the Collaboration Node. Once this data is received, it gets

processed and final destination for the platform is calculated. This is then transmitted to the

Locomotion Node as a waypoint. The Locomotion Node is connected to the Oculus Prime

server and is able to control the platform. The Locomotion Node also keeps a track of whether

or not the platform has reached its destination. When it has reached its destination, it publishing

this data back to the decision unit so that it can be sent back to the app through the Mobile App

node.

 The decision unit has a thread running in parallel to all of this which accepts data related

to the presence of obstacles so that the platform can be stopped if a close range obstacle is

detected.

8.2.4 Actuator Control Board

 The MALG takes in serial data from the Oculus Prime server node based on a fixed

protocol. Depending upon the data received, the MALG can carry out the following functions:

1. Move the platform by a given distance.

2. Turn on/off lights, speakers etc.

3. Fuse data from encoders and gyro to relay accurate odometry data.

 There were a couple of problems with the MALG that required a custom board to be

made. The first problem arose from a functional requirement (MF.11) that of the platform to be

non-holonomic in nature. The default firmware is such that the platform can execute only one-

dimensional motions and thus reach different positions only by turning on its axis. The firmware

was modified to include “arc-turns,” which better simulate the turning of a car. However, the

minimum turning radius that can be achieved by these stock motors is about 0.6m.

 The second problem arose when one of the USB hubs malfunctioned and took out the

MALG connected to its USB port. The MALG, being an ATMega 328 based board, was

replaced by a custom-made board (Figure 28 and Figure 29) and a motor driver (Figure 30),

which mimic the functionality of the MALG, barring the external gyroscope.

Figure 28: Front of Custom-Made Board

Figure 29: Back of Custom-Made Board

Figure 30: Motor Driver

8.2.5 Localization and Navigation:

 The locomotion node communicates with the Oculus Prime server running on the SBC

via TELNET. It functions include feeding waypoints to the platform, getting odometry data, and

bringing the platform to a halt. The coordinates for locomotion and the command to stop or

resume are received from the decision unit.

 The node implements its functionality through a state machine. Whenever a command to

move to a new point is received, the state machine enters a “Go-To” state. In this state, the

platform receives a command to move to a specified destination. The locomotion node actively

tracks the state of the system by getting odometry readings. Once the platform reaches its

destination, the node publishes a message to decision unit, confirming successful locomotion and

goes in “Waiting” state.

 While in motion, if a command to stop is received by the locomotion node, it goes to

“Emergency” state, which makes the platform stop. Later, when the emergency is cleared, the

locomotion uses odometry readings to calculate the new waypoint in relation to the present

position. This ensures that the platform continues to its original destination.

8.2.6 Collaboration and Communication:

 The collaboration node running on the SBC uses DigiMesh XBee adapters to exchange

serial data over 900MHz to collaborate with other platforms. The architecture for the system is

depicted in Figure 31: Collaboration Architecture.

Figure 31: Collaboration Architecture

 The data packets are encoded using a custom format that includes vehicle ID, data length,

and checksum (Figure 32 and Figure 33), which is used to determine the origin and ensure the

integrity of the data. The current data being sent is the occupancy map of the environment. This

is a 5x5 grid, which the receiving platform can parse and find an empty spot to park. Two bits

are used to calculate the state of each cell in the grid.

 The collaboration node must be running on multiple SBCs for it to be used. This node

runs two threads in parallel in order to send and receive data through the serial port. The

received data is parsed to find the appropriate waypoint for the locomotion node. Once this

waypoint is calculated, this data is published to the appropriate topic.

Figure 32: Action Message

Figure 33: Request Message

8.2.7 Perception

 Perception is used to detect obstacles so that the mobile platform will avoid any

collisions. It is split into two types: the MS Kinect detects cylindrical obstacles that are in the

range of 0.5 to 1.5 meters and Sharp IR sensors detect obstacles closer than 0.5 meters. This

ensures that the vehicle has enough time to come to a complete stop regardless of the proximity

of the obstacle.

Obstacle Detection Using Kinect

 The Point Cloud Library (PCL) is used to detect cylinders of 10-50 cm height and 10-120

cm diameter. The point cloud data is segmented in the form of planes and cylinders. The

algorithm implemented uses plane fitting of a cylinder model and RANSAC for outlier rejection.

The parameters of these functions are varied in order to obtain an accurate segmentation of

cylindrical objects. The objective of this node is to publish the detection of an obstacle on an

emergency topic. The algorithm is shown in Figure 34.

Figure 34: Obstacle Detection Algorithm

 When the algorithm is applied to raw data from an initial point cloud data (Figure 35:), it

produces a segmented image of a cylinder (Figure 36).

Figure 35: Raw Data

Figure 36: Segmented Cylinder

Obstacle Detection Using IRs

 A dedicated proximity detection subsystem is used to prevent collisions with close-range

obstacles. The system is implemented in the form of a plug-and-play PCB with sensors and a

microcontroller to interpret the readings of the sensors. The system is designed to detect

obstacles that are within 50 cm of the platform and cannot be detected using point-cloud data

from the Kinect. Any obstacle less than 20 cm causes an emergency to be declared in the

system, making the locomotion come to a complete halt. Three IR sensors are mounted on the

front of the platform (Figure 37). A dedicated Printed Circuit Board (PCB) was also designed

(Figure 38) to integrate the IR sensors within the system. The PCB houses an Arduino Nano,

voltage regulation unit, and connectors for a power supply and three IR sensors (Figure 39).

Open headers are present on the PCB for debugging and the addition of new peripherals.

Figure 37: Mounted IR Sensors

Figure 38: PCB Design

Figure 39: PCB on Mobile Platform

 The Arduino operates as a ROS node and interfaces with the IR sensors to publish time-

stamped range data on a ROS topic. This involves polling the three IR sensors and publishing

the range data if the range is less than 50 cm. A separate “emergency” ROS node running on the

SBC interprets range data and publishes the current state of the emergency. Figure 40 depicts

the time-stamped range data being published on the left terminal window and the corresponding

emergency state on the right. An emergency state of “0” indicates that no emergency has been

detected and the system can continue normal operation. When a “1” is published on the

“emergencyState” topic, the system is in a state of emergency and needs to stop immediately.

Figure 40: Test Results from Proximity Detection Subsystem

8.2.8 Visualization

 A GUI was created to easily visualize and actively track the state of the occupancy map.

Various elements in the environment such as the mobile platform, origin, destination, obstacles,

etc., when visualized through a graphical user interface, can aid in achieving a better

understanding of the working of the overall system. This is done by rendering a 5x5 grid and

overlaying different shapes on top to signify the origin, destination, and current location of the

platform. Once data is received from an occupancy map, the program goes through it and creates

an image that represents the current state of the system. OpenCV is used to do all of this in

Python.

 In Figure 41, the platform original is shown as a blue square and the destination is shown

as a green square. The estimated location of the platform itself is depicted as a gray circle.

Figure 41: Occupancy Map GUI

8.3 Testing

 The following is a list of step-by-step testing and analysis for different subsystems:

8.3.1 Android App

 Android app is able to establish a reliable serial connection to single board computer via

Bluetooth with repeatability.

 Sending and receiving of commands with ROS node was tested to work without failure.

 Testing with garbage commands being sent, like letters or anything outside of the defined

protocol, to ensure that an incorrect response was not elicited from the ROS node and/or

app.

 Testing with untimely data sent to the app such as sending “Parked” status when it was

“Returning” to ensure the system does not fail and an incorrect response is not produced.

 App GUI tested to ensure that disabled buttons cannot be pressed and the status of the

vehicle changes as required.

8.3.2 Communication

The following tests were performed using two XBee Pro 900 adaptors:

 Range Test: 100% of messages received in 15 feet range.

 Speed and Latency Test:

Test – Time stamped 100-element integer list (502 bytes) sent serially.

Result – Transmission time of 1.8 seconds observed.

 Establishing Connection: Connection is established instantaneously without the need for

authentication.

8.3.3 Obstacle Detection

 IR Sensors

o Ground truth testing of range data to ensure reliable values.

o Testing that emergencies are published to emergency node reliably and without

fluctuations.

o Testing that spurious detections do not induce emergency state.

o Testing with the mobile platform.

 MS Kinect

o Testing of correct setup of libraries on the single board computer by visualizing

point cloud data using RVIZ

o Cylinder segmentation and detection occurs with repeatability.

o Emergency messages published on emergency topic when a cylinder is detected

in specified range reliably.

o Emergency message does not fluctuate randomly

o Spurious detections do not cause emergency message to be published

8.3.4 Mobile Platform Locomotion

 Ensuring mobile platform is fully functional on software and hardware end via

teleoperation commands sent through HTTP interface.

 Testing of Oculus Prime Telnet API by teleoperation through Telnet command interface.

 Testing whether odometry is functional through Telnet command interface.

 Testing locomotion state machine rigorously via mock data on ROS Publishers

8.3.5 Subsystem Integration

 Subsystem integration testing was done in two sections. The first subsystems that were

integrated were the two communication subsystems: Bluetooth and XBees (Figure 42: App and

XBee Subsystem Integration). To begin, the Park button on the Android app was pressed. This

sent a command over Bluetooth to the SBC. The SBC sent a destination request from attached

XBee to a secondary XBee on a secondary SBC. The secondary XBee responded with an

occupancy map, which was sent to the simulated mobile platform. The mobile platform parses

the map to determine the appropriate destination. Additionally, a status update was sent over

Bluetooth to the app. A response from the mobile platform was simulated to indicate that it had

reached its destination, which was also sent to the app in a status update. The sequence was then

repeated but in terms of Return instead of Park.

Figure 42: App and XBee Subsystem Integration

 The second subsystems that were integrated were mobile platform and obstacle

avoidance (Figure 43: Mobile Platform and Obstacle Avoidance Subsystem Integration). The

mobile platform began locomotion to a fixed location. The Kinect detected an obstacle and

notified the platform, which stopped moving. When the obstacle was removed, the Kinect

notified the platform, which resumed locomotion towards the original location. The same test

was done to test the IRs.

Figure 43: Mobile Platform and Obstacle Avoidance Subsystem Integration

8.3.6 Final System Integration

 The final system was tested using all systems, as seen in Figure 44: Full System

Integration. In the same manner described in the communication portion of the subsystem

integration (Section 8.3.5), the app was used to initiate the park sequence. A secondary XBee

provided an occupancy map to the mobile platform, which parses the map to determine the

appropriate destination. While traveling to the destination, an obstacle was detected, as

described in the mobile platform and obstacle detection portion of the subsystem integration

(Section 8.3.5). The vehicle stopped until the obstacle was removed, at which time the vehicle

continued to the original destination. Once the vehicle reached the destination, the process was

repeated for the return sequence.

Figure 44: Full System Integration

8.4 Performance Evaluation against the Fall Validation Experiment (FVE)

8.4.1 FVE Demo 1
Table 6: FVE Demo 1 Tasks and Performance

Task Success Criteria Performance in FVE

“Park” command sent to the mobile

platform using the Android app

LED Blinks to indicate command

received

Task completed successfully at FVE

Encore

Vehicle begins locomotion upon

receiving the command
Vehicle Moves forward

Task completed successfully at FVE

Encore

Return” command sent to the mobile

platform via the Android app
Vehicle Moves backward

Task completed successfully at FVE

Encore

8.4.2 FVE Demo 2
Table 7: FVE Demo 2 Tasks and Performance

Task Success Criteria Performance in FVE

“Park” command sent to the mobile

platform using the Android app.

LED Blinks to indicate command

received

Task completed successfully at FVE

Encore

Navigation Direction set on second

SBC

Platform moves according to set

direction

Collaboration using XBees working

as a complete subsystem

Platform navigates to the second

position
Vehicle moves forward/backward

Not demonstrated as it is dependent

on XBee collaboration

While navigating to the spot, the

vehicle will encounter an obstacle

and stop within a safe distance of the

obstacle

Vehicle does not collide with

obstacle

Task completed successfully at FVE

Encore

8.4.3 Performance Evaluation with respect to Function and Performance
Requirements

 Functional Requirements Validated at FVE

o Receive commands from user via smartphone app (MF.1)

 The requirement was successfully validated at FVE Encore by

demonstrating ROS framework to accept commands from smartphone app

via Bluetooth. Upon receiving “Park” or “Return” command successfully,

an indicator LED blinks

o Share data with other cars (MF.2)

 Bidirectional communication with multiple XBees in a scalable network

with mesh topology was demonstrated to work successfully as a

subsystem.

o Sense the environment (static obstacles) (MF.8)

 Obstacle detection using infrared sensors and MS Kinect demonstrated

successfully in FVE Encore.

o Navigate through parking lot (MF.10)
 Mobile platform successfully navigates to different locations in the

parking lot, stops when an emergency is detected and resumes locomotion

when emergency gets cleared.

 Performance Requirements Validated at FVE

o 90% of messages are received
 Requirement validated successfully as the connection is established

instantaneously using XBee Pro 900 adapters without the need for

authentication.

o Be able to handle collaboration between 2 vehicles
 Requirement validated successfully as bidirectional communication

between two different XBees was successfully achieved and network is

scalable within 450ft indoor range

o Detect obstacles within 20 cm of vehicle
 Requirement validated successfully in FVE Encore shown by mobile

platform stopping when an obstacle is within 20 cm. of the platform.

o Detect obstacles 10-50 cm high and 10-120 cm wide.

 Requirement validated successfully and visualized for detection of

cylindrical obstacles using RViz (a 3D visualizer for displaying sensor

data and state information from ROS).

8.5 Conclusions

8.5.1 Strong Points

 One of the greatest strengths of the system is that all subsystems have partial

functionality and there is a basis for building the project work in the spring semester. It is

anticipated that this will speed up implementation and testing. Listed below are the subsystems

and advantages:

 Android app is functional and will enable efficient testing

 Serial protocol for communication is defined and tested for long term goals in the multi-

vehicle scenario

 Obstacle detection with IR and vision system provides basis for avoidance algorithm

 Oculus Prime mobile platform provides versatile capabilities and its ROS packages will

aid in developing the localization and planning subsystem.

8.5.2 Weak Points

 The system has many single points of failure, specifically in terms of hardware.

Moreover, the dependency on Oculus Prime custom hardware; MALG PCB and Power

distribution board is a risk and needs proper mitigation plans. Another weak point is that

integration of subsystems needed more time than originally anticipated. This lead to only partial

subsystem integration shown at the Fall Validation Experiment.

 There have been issues selecting the most appropriate Single Board Computer (SBC) for

the project. The initially selected Odroid-XU4 was found to be incompatible with the mobile

platform. The MinnowBoard Max was then provided by Team C. However, there is still some

uncertainty regarding the suitability of its processing power considering the complexity of the

system. Elements that need refinement are:

 Bluetooth connection with the mobile app needs to be made less prone to failure

 Collaboration algorithm needs to be tested for a scaled system with multiple vehicles

 Precise locomotion needs to be implemented using odometry techniques

9 Project Management

9.1 Work Breakdown Structure

 The work breakdown structure (WBS) for the fall semester (Figure 45: Fall Work

Breakdown Structure) depicts the subsystems that need to be developed, the tasks involved in

their accomplishment, and system-level and subsystem-level testing that needs to be conducted.

Each subsystem highlighted in the cyber-physical architecture has certain key tasks that need to

be accomplished and modules that need to be developed. Further, it is imperative to conduct

subsystem testing and validation experiments to ensure seamless integration. Within the

structure, green indicates that the task has been complete, yellow indicates that it is in progress,

and red indicates that it has not been started.

 The majority of the tasks for the fall have been complete. What remains is to have the

Kinect working on the MinnowBoard Max. Currently, it works when it is run on a laptop, but

not on the SBC. Additionally, the Bluetooth connection between the app and the SBC needs to

be perfected in order to smoothly shut down the connection. Currently, the connection does not

completely close, leaving the port open. This makes it impossible to reestablish communication

on the same port. The XBee network needs to be made scalable to accommodate multiple

XBees. The final section of the WBS is Project Management, which contains ongoing tasks that

must be worked on throughout the project, such as Risk Management, Weekly Sprints, and

updating the Kanban Board.

Figure 45: Fall Work Breakdown Structure

9.2 Schedule

 The major system development milestones that need to be attained during the spring

semester are:

1. Scale the collaboration subsystem to work for multiple platforms

2. Implement a robust navigation subsystem to move the platform in a precise manner

3. Implement path planning to calculate shortest routes and obstacle avoidance

4. Integration of all the subsystems

 Currently, the project is slightly behind schedule as the work for the fall semester has not

been completely wrapped up. Once that is complete, the schedule will be back on track and the

team will be in a position to resume the work on Navigation, Path Planning and Collaboration

subsystems that is planned for the spring semester. The spring schedule can be seen in Table 8.

Table 8: Spring Schedule

Timeline (Spring 2016) Goals Milestones

01/11 - 01/25

App is complete in all respects;

Repetitive and precise locomotion

control; Manufacture or acquire

more platforms

Completion of Mobile App

Subsystem

PR 7: Late January

Multiple partially functional

platforms; Fully functional mobile

app

01/25 - 02/08

Navigation works for multiple

waypoints; Literature survey for

path planning is complete; XBee

Mesh network tested with multiple

platforms

PR 8: Mid-February

Mesh Network functional for

multiple platforms; Demonstrate

robust and accurate navigation of

platforms

Completion of Communication/

Collaboration Subsystem

02/08 - 02/22

Create a graphical user interface to

be used for testing and

demonstrations; Implement obstacle

avoidance

PR 9: Late February
Platform travels in 2D from Point A

to Point B while avoiding obstacles;

Completion of Navigation

Subsystem

02/22 - 03/07

Design Mock Parking Lot; Make the

GUI fully functional and depict the

existing setup; Create a path

planning node and integrate with

navigation subsystem

Timeline (Spring 2016) Goals Milestones

PR 10: Mid-March

Platform localizes and navigates in

mock parking lot; GUI gets updated

and shows real-time information

Completion of Path Planning

Subsystem

03/07 - 03/21

Create dummy platforms to

collaborate with; Extensively test

navigation and path planning; Create

a point cloud map of the parking lot;

Make active platforms collaborate

03/21 - 04/04

Make the platform park in and exit

spot; Start integration of all the

subsystems

Start integration

PR 11: Early April

Single platform collaborates with

dummy platforms and parks itself;

Multiple active platforms are aware

of each other’s presence and avoid

collision

04/04 - 04/18 Testing and integration Wrap-up integration

PR 12: Mid-April Testing

9.3 Spring Test Plans

9.3.1 Capability Milestones

1. Sensor
a. Test: Map a known environment and note the discrepancies between the actual

and logged data. Note the resolution of the map.

Requirement Validated: MF.8

Milestone(s): PR11

2. Communication

a. Parking Spot Matrix

b. Test: Transfer a multidimensional array representing the parking spots in the

lot between the single board computers and populate it with relevant data. All

the spots should be in the occupied, reserved, or free state. Make some

changes to the system and log how that affects matrix. Ensure that the

changes made on one board are carried over to the other boards.

Requirement(s) Validated: MF.2, DF.1

Milestone(s): PR8, PR9

3. Android App Interface

a. Car to Phone – Vehicle Status and Notification

i. Test: Press “Park” from the Android app. The vehicle moves towards a

parking spot and the app displays the status “Parking”. When the vehicle

is parked in a spot, the app displays the status “Parked”. Press “Return”

from the Android app. The vehicle exits the parking spot and moves

towards the exit and the app displays the status “Returning”. When the

vehicle stopped at the exit, the app displays the status “Returned” and

sends a notification to the user.

Requirement(s) Validated: MN.1

b. Android App Prevents User Error

i. Test: The user can only press “Park” when the vehicle status displays

“Waiting” on the app. The user can only press “Return” when the vehicle

status displays “Parked” on the app.

Requirement(s) Validated: MN.4, MN.1

Milestone(s): PR7

4. Parking Spot – Entering and Exiting

a. Test 1: Send the car to a spot with both adjacent spots occupied. The car backs

into space within two tries. When the car is parked, it is 100% within the parking

spot boundaries and within 35º of parallel to both the neighboring cars. Send the

car to the exit. The car exits the spot within two attempts without coming into

contact with nearby cars or the infrastructure.

b. Test 2: Send the car to a spot with one adjacent spot occupied. The car backs into

space within two tries. When the car is parked, it is 100% within the parking spot

boundaries and within 35º of parallel to the neighboring car on one side and the

parking spot line on the other side. Send the car to the exit. The car exits the spot

within two attempts without coming into contact with nearby cars or the

infrastructure.

c. Test 3: Send the car to a spot with both adjacent spots unoccupied. The car backs

into space within two tries. When the car is parked, it is 100% within the parking

spot boundaries and within 35º of parallel to the parking spot boundaries. Send

the car to the exit. The car exits the spot within two attempts without coming into

contact with nearby cars or the infrastructure.

d. Requirement(s) Validated: MF.6, MF.7, MN.3, MN.4, DN.3

Milestone(s): PR11

5. Mapping

a. Place markers at specific intervals

i. Test: Place markers at predefined locations. Map the area. Compare their

position in the map to their actual physical location and ensure it is

correct.

Requirement(s) Validated: MF.8

b. Ensure map can be loaded into vehicles

i. Test: Upload the map generated to the SBC and visualize with RViz.

Requirement(s) Validated: MF.8

Milestone(s): PR11

6. Path Planning – From Entrance to Parking Spot to Exit

a. Test 1: Place the vehicle at the entrance of the parking lot. Have the vehicle plan

a path to a spot and ensure that this is the most optimal path.

b. Test 2: Place the vehicle at the entrance of the parking lot. Have the vehicle plan

a path to a spot. Then, introduce an obstacle in the path and see how the path gets

altered. Ensure that the new path is the most optimal

Requirement(s) Validated: MF.4, MF.5, DF.2, DF.3, MN.4, DN.2

Milestone(s): PR9

7. Obstacle Detection

a. Send and Receive Movement Information

i. Test 1: Send a Return command to a vehicle. Ensure that the vehicle

publishes a message to other vehicles on the network that it is exiting the

parking spot. Nearby vehicles that are parking will yield the right of way

to the exiting vehicle, allowing it enough space to exit the spot safely and

efficiently.

ii. Test 2: When a vehicle is parking, nearby vehicles maintain a safe

distance to avoid a collision and give the parking vehicle adequate space

to park safely and efficiently.

Requirement(s) Validated: MF.2

b. Maintain Safe Driving Distance

i. Test: Send two vehicles to park in neighboring spots in quick succession.

The first vehicle will maintain a constant speed. The second vehicle will

maintain a safe distance between itself and the first vehicle. When

parking, the second vehicle will stop at a safe distance so as not to

interfere with the first vehicle parking.

Requirement(s) Validated: DF.4

Milestone(s): PR9

9.3.2 Spring Validation Experiment

 Location: B Floor, Newell-Simon Hall

 Date: April 29, 2016

 Logistics: Oculus Prime Platform (3), Kinect (3), SBC (6), XBee Pro DigiMesh Adapter

(6), USB 4.0 Bluetooth Adaptor (3), Android Phone with Virtual Valet (3), Monitor

Screen, Mock Parking Lot

 Operating Area: 10m x 10m (open space on B Floor)

Task Success Criteria Requirements Validated

“Park” command sent to three mobile

platforms in succession using three Android

phones with the app

LEDs blink to indicate

command received

MN.1

Task Success Criteria Requirements Validated

Mobile platforms will enter the parking lot

and collaborate with other vehicles to

choose the optimal parking spots (Figure 46:

Vehicles Localize Within Parking

Lot, Figure 47: , and Figure 48: Optimal

Spots Identified)

The three spots closest to the

exit are chosen

DF.1

Mobile platforms will navigate along

optimal paths to the spot (Figure 49:

Shortest Paths to Spots Planned)

The paths with the least

amount of time are chosen

DF.2, DF.3, DF.4, DN.2

When a vehicle encounters an obstacle, it

will plan a path around it and alert other

vehicles of the obstacle location (Figure 50:

Route Planned Around Obstacle and

Figure 51: Route Followed Around

Obstacle)

The platforms will not hit

obstacles and will park 100%

within their designated

parking spot

MF.9, DN.2, DN.3

A notification will be sent from each vehicle

to the respective user when their vehicle is

parked (Figure 52: Vehicles Park and

Wait)

Notification is received by

three separate phones

MF.6, MN.1

When each user sends the command to

return, the robot will exit the parking spot

and navigate towards the exit spot along the

optimal path (Figure 53: Return

Command Received, Shortest Path to

Exit Followed)

No collisions occur and

mobile platforms exit as

quickly as possible

MF.4, MF.5, MF.7, MN.1,

MN.3, MN.4, DN.2

When the vehicles reach the exit, they will

each send their user a notification stating

that it is at the exit

Apps update accordingly and

notifications are received on

three separate phones

MN.1, MN.4,

Figure 46: Vehicles Localize Within Parking Lot

Figure 47: Collaborative Communication Established

Figure 48: Optimal Spots Identified

Figure 49: Shortest Paths to Spots Planned

Figure 50: Route Planned Around Obstacle

Figure 51: Route Followed Around Obstacle

Figure 52: Vehicles Park and Wait

Figure 53: Return Command Received, Shortest Path

to Exit Followed

Performance Requirements Validated at SVE:

 Maintain a velocity between 0 and 10 cm/sec

 Park 100% within a parking spot within 2 attempts. Be within 35º of parallel with the

neighboring vehicles or the lines of the spot, as applicable

 Maintain a distance of 30.48 cm (1 ft.) between vehicle and infrastructure

 Vehicle maintains at least 60.96 cm (2 ft.) between the front of one moving vehicle and

the back of another moving vehicle

 Identify optimal spot 98% of the time

 If incorrect spot is chosen, it is ranked within 5% of optimal spot

 Optimal path is chosen 90% of time

 90% of messages are received

 Exit the spot within 2 attempts without collision

 Will take no more than 45 seconds to exit the parking spot

 The vehicle will arrive at the exit within 90 seconds of receiving the “Return” command

 There will be ZERO changes to the infrastructure

 Budget is within $4000

9.4 Budget
Table 9: Project Budget

Part Part Number Quantity Cost/Unit Current Expense Total Cost

Oculus Prime Mobile

Platform*

Xaxxon Oculus

Prime Kit Version
3 $499.00 $499.00 $1497.00

ODROID-XU4 N/A 3 $74.00 $222.00 $222.00

MinnowBoard Max* N/A 3 $147.00 $294.00 $441.00

Arduino Nano v3.0 N/A 3 $15.38 $46.14

Infrared Sensor
Sharp

GP2Y0A21YK
9 $13.95 $125.55

MS Kinect Sensor N/A 3 $149.99 $448.32

Miscellaneous

(mounts, electronics,

memory, cables)

N/A N/A N/A $190.99 $625.99

DigiMesh XBee Pro* N/A 6 $99.00 $297.00 $594.00

Total Budget: $1502.99 (37.57%) $4000

*big ticket items

 The total project budget is $4000. The most expensive items needed for the project are

the Oculus Prime Mobile Platforms, the DigiMesh XBee Pro Adapters, and MinnowBoard Max

single board computers. Of the total budget, 37.57% has been spent to date.

9.5 Risk Management

 Since the Preliminary Design Review, updates have been made to risks, listed by their

Risk ID below. The complete, updated list of risks can be found in Table 10: Project Risks.

1. No Mobile Platform. After waiting for a response from the sponsor, the team finally

purchased a mobile platform, the Oculus Prime, without the sponsor. This closed the

risk.

2. Inadequate Mobile Platform. This risk has been modified to encompass two new areas

in which the Oculus Prime may be inadequate. The pre-programmed motions of the

Oculus Prime have it turning on its axis. However, the platform should mimic a car in its

movements, so this will have to be modified. Additionally, the platform may have some

difficulty handling the weight of the devices that have been added to it.

3. Unsuitable Smartphone Interface. The status of this risk has changed from “Open” to

“In Progress”. Because the subsystems are now roughly integrated, the system can be

tested through the Virtual Valet app, which causes the app to be tested extensively in a

variety of circumstances.

4. Subsystem Incompatibility. This risk will stay in progress until the end of the project as

subsystem incompatibility poses a risk to the overall robustness and performance

capability of the system.

5. Too Many Requirements. After an extensive review of the requirements, they have

been revised and trimmed as needed to create a more manageable scope for the project.

However, this risk remains ongoing.

6. Inaccurate Parking Lot and Obstacles. No update has been made to this risk.

7. ROS Framework. A new handling strategy has been added to this risk. To ensure

timing and message compatibility throughout the ROS nodes, a ROSLaunch file was

created that launches all nodes in the correct order.

8. SBC and Platform Incompatibility. This risk has been closed. Team C allowed us to

use their unneeded MinnowBoard Max, which is 64-bit. The MinnowBoard Max is able

to run the Oculus Prime server, which closes this risk.

9. MinnowBoard Max Processing Power Limitations. This is a new risk. After

integrating the subsystems, the MinnowBoard Max began freezing when running all

subsystems. This is most likely due to limitations on the processing power of the

MinnowBoard Max. The current plan is to perform in-depth testing to isolate any other

potential causes. If no other causes are found, other SBCs with greater processing power

will be assessed and purchased.

10. Closing Bluetooth Port between ROS and App. This is a new risk. Bluetooth

communication occurs between the Virtual Valet app running on an Android phone and

the ROS node on the SBC. There has been some difficult with the RFComm ports used

to establish the communication. When the app and the node do not shut down gracefully,

the port will sometimes stay open, which prevents communication from being opened on

that port again. The python script to establish Bluetooth communication has been

modified to only connect on one port and to close the port upon receiving “Ctrl+C” or

“Ctrl+Z” keystrokes. What remains is to have the app shut down Bluetooth

communication gracefully so the port can be reused.

The risk management categories are as follows:

 ID: Number used to reference risk

 Description: Brief description of the risk

 Responsible Party: Indicates who is in charge of handling the risk.

 Risk Analysis: The risk analysis has two numbers representing the ranking of the

consequence of the risk and the likelihood that the risk will be realized. It is formatted as

(Consequence x Likelihood), which can more clearly be seen in Figure 54: Risk IDs

Charted with Consequence and Likelihood Levels.

 Area of Impact: Technical, Schedule, Cost, Programmatic

 Handling Strategy: How the risk will be handled?

 Status: Open (no work has been done), In Progress (work is being done to mitigate risk),

Closed (no longer a risk)

Table 10: Project Risks

ID Description Owner
Risk

Analysis
Area of
Impact

Handling Strategy Status

1
No Mobile

Platform
Mohak N/A

Technical,

Schedule, Cost

Purchased test

platform without

sponsor

Closed

2
Inadequate

Mobile Platform
Shivam 3x3 Technical

Correct turning

radius, test weight

limits

In Progress

3

Unsuitable

Smartphone

Interface

Dorothy 3x2
Technical

Programmatic

Frequent and

extensive testing
In Progress

4
Subsystem

Incompatibility
Pranav 5x2

Technical

Schedule Cost

Programmatic

Research on ROS to

ensure compatibility

Carry out low-level

cross compatibility

tests

Create an architecture

to ease integration

In Progress

5
Too Many

Requirements
Shivam 4x2

Schedule

Programmatic

Trimmed

requirements

Began weekly sprints

Created Kanban cards

Open

6

Inaccurate

Parking Lot and

Obstacles

Richa 1x1 Programmatic

Analyze parking lots

IRL. Scale to match

mobile platform

Open

7
ROS Related

Issues
Pranav 5x1 Technical

Arduino↔ROS

testing. ROS↔ROS

serial communication.

Initiate subsystem

tests using

ROSLaunch files.

In Progress

8

SBC and

Platform

Incompatibility

Mohak N/A

Technical

Schedule Cost

Programmatic

Use MinnowBoard

Max borrowed from

Team C

Closed

ID Description Owner
Risk

Analysis
Area of
Impact

Handling Strategy Status

9

MinnowBoard

Max Processing

Power

Limitations

Mohak 5x5
Technical

Programmatic

Test SBC thoroughly

to investigate other

possible problems.

Research alternative,

more powerful SBCs

In progress

10
Closing

Bluetooth Port
Dorothy 2x5 Technical

Hardcode port

number into script.

Close port by

keystroke on SBC

side. Close port when

app closes on Android

side

In progress

Figure 54: Risk IDs Charted with Consequence and Likelihood Levels

10 Conclusions

10.1 Lessons Learned

 Avoid material and schedule bottlenecks – To avoid bottlenecks and ensure parallel

progress in work, dependency in terms of materials and schedule needs to be minimized

as much as possible, such that a delay in one task does not hinder progress in another.

 Think ahead and order spares and backups; more backups for high-risk elements – High-

risk components in the system need to be identified at an early stage and enough spares

and backups should be in place.

 Integrate step-by-step – System integration should be carried out in a step-by-step

manner. This provides a way to debug efficiently and ensure subsystem compatibility.

 Rigorously test subsystems – As this is a highly complex system, subsystems should be

tested rigorously before starting integration. All possible break cases need to be tested

against and it should be ascertained that required performance is being achieved.

 Maintain GitHub repository – The importance of well-organized documentation and

version control cannot be emphasized enough.

 Schedule should be based on well-defined metrics – Number of hours to be spent on each

task, including buffers, should be used to set the schedule and timeline. Estimates get

better with time, but following this approach would ensure realistic goals and avoid

schedule slips. Also, schedule slips should be analyzed and corrective measures

implemented.

 Risk chart should be updated frequently – Risk chart should be updated on a regular basis

to ward off potential high consequence risks ahead of time.

10.2 Key Spring Activities

 The next step is to scale up the system by acquiring two more Oculus Prime platforms.

The SVE will feature three mobile and three stationary vehicles. A mock parking lot will be

created and its map generated. Map generation will be a one-time exercise.

 Communication subsystem will be scaled up with multiple adapters connected to each

other in a mesh topology. Since there is no central server to process the information being

exchanged in the network, an algorithm will be developed for real-time handling of this data.

 For the navigation subsystem, odometry will be used to facilitate precise vehicle

maneuvers required for the project. Obstacle avoidance routine will be incorporated during

locomotion and will be tested extensively.

 Localization and Planning would be the next key activity. Early in the semester, a

literature survey will be done on the potential techniques and algorithms that are suitable for the

project in this domain. This will basically involve a localization estimate of the vehicle and

updating an occupancy map which will be used for waypoint generation and route planning.

Consequently, the best-suited algorithms will be implemented and tested for the accuracy

outlined by the performance requirements.

 A key goal is to start integration of subsystems as early as possible. A step-by-step

approach for integration is the right way to go as it makes debugging much easier and helps in

taking corrective measures early on.

11 References

1. Stark, John. "Parking Lots." University at Albany, 23 Apr. 2012. Web. 25 Sept. 2015.

<http://www.albany.edu/ihi/files/Parking_Lots_Where_Motorists_Become_Pedestrians.pdf>.

2. Fayard, GM. "Work-related Fatal Injuries in Parking Lots, 1993-2002." National Center for

Biotechnology Information. U.S. National Library of Medicine, 10 Jan. 2008. Web. 25

Sept. 2015. <http://www.ncbi.nlm.nih.gov/pubmed/18325411>.

