
1

FINAL PROJECT REPORT

AUTO-PARK FOR SOCIAL ROBOTS

Collaborative Parking between Autonomous

Vehicles Utilizing Point-to-Point Communications

Team Daedalus

Mohak Bhardwaj, Shivam Gautam, Dorothy Kirlew, Pranav Maheshwari, and Richa Varma

Masters of Science Robotics Systems Development

Carnegie Mellon University

(Sponsored by United Technologies Research Center)

2

1. Abstract

Auto-Park for Social Robots is an autonomous and collaborative parking system for self-driving

vehicles in an indoor parking lot. This report summarizes the progress made by Team Daedalus as

part of the Master of Science in Robotic Systems Development project “Auto-Park for Social

Robots” during the academic year 2015/16 at Carnegie Mellon University.

Through this project the team has tried to develop decentralized systems for collaboration between

autonomous cars and implement effective planning and scheduling strategies for multiple

vehicles. The team aims to tackle the use-case of autonomous parking in parking garages by

implementing the collaborative strategies on physical robots and complex planning techniques in

software simulation.

The team has identified and fulfilled key functional and nonfunctional requirements of the project

as per the performance metrics specified by the team in agreement with their sponsor United

Technologies Research Center. In this report, detailed subsystem descriptions and their testing

results are documented following which project management, risks and mitigation strategies are

discussed. Having gained valuable experience from testing, the team has identified the key lessons

learned from this project.

The project was successful in accomplishing the goal of autonomous parking and returning of

vehicles, navigating collaboratively in a parking lot- all with the press of a button on a user’s

smartphone app. The simulation environment was used to park vehicles in a large parking lot with

hundreds of vehicles based on approaches like multiple-heuristic goal assignment and goal

assignment using the multi-armed-bandit approach. The end-to-end system developed during this

project is a contribution towards better and safer self-driving vehicles.

3

Table of Contents

1. Abstract…………………………………………………………………………………………………2

2. Project Description.. …………………………………………………………………………………...4

3. Use Case……………………………………………………………………………………………......4

4. System Level Requirements……………………………………………………………………………6

5. Functional Architecture. ………………………….……………………………………………………8

6. System-level Trade Study………………………….……………………………………………….…10

7. Cyber-Physical Architecture………………………………………………………………………….12

8. System Description…………………………………………………………………………………....15

8.1. Subsystem Description……………………………………………………………………..……15

8.2. Modeling, analysis, testing………………………………………………………………………20

8.3. SVE performance evaluation…………………………………………………………………….23

8.4. Strong and Weak Points……………………………………………………………………..…..26

9. Project Management……………………………………………………………………..……………27

9.1. Schedule……………………………………………………………………..….………………..27

9.2. Budget……………………………………………………………………..….……………….....29

9.3. Risk Management……………………………………………………………………..…………30

10. Conclusions……………………………………………………………………..….…………………33

10.1 Lessons Learned……………………………………………………………………..…………..33

10.2 Future Work……………………………………………………………………..………………34

11. References……………………………………………………………………..………………………36

4

2. Project Description
 The imminent arrival of driverless cars has led to an increased focus on the development

of an ecosystem that supports them. This project, “Auto-Park for Social Robots”, aims at

developing an autonomous system for collaboratively parking driverless cars.

 The motivation for the project stems from key factors affecting the current parking system,

such as poor parking safety standards, parking industry growth potential, and a competitive

advantage of developing such a system. According to reports by Fayard and Stark, around 20%

of all automobile accidents occur inside parking lots. About 90% of the people involved in these

accidents are injured. The parking industry is worth $25-$30 billion and has potential to invest in

upgrades [1] [2]. It regularly bleeds money to accident insurance claims, as well as public

transportation due to people that take the bus rather than find a spot in a congested lot. The

precious time wasted while searching for a parking spot, translated into lost revenue, is also a

motivation behind the project. This project consists of two distinct systems:

1) A physical system which consists of a scaled-down version of a car (mobile platform) that

would be able to receive a “Park” command from the user’s Android app, localize itself in a

parking lot, collaborate with other cars to identify the best possible parking spot, navigate to the

spot, and avoid any obstacles in the process. The vehicle would relay its status to the user’s app

at specific times. Upon receiving the “Return” command, the vehicle would then exit the parking

spot and navigate to the parking lot exit. The main focus is on establishing a robust system for

effective collaboration between vehicles.

2) A simulation system which helps in showcasing the potential benefits of implementing such a

collaborative system at a large scale in terms of saving time for the user. Various optimization

techniques are employed to efficiently plan and schedule the parking of large number of vehicles

with collaboration and data sharing between vehicles as a central theme.

3. Use case
 Black Friday, the day after Thanksgiving, is one of the nation’s largest shopping days.

Customers line up, and sometimes camp, outside stores hours before they open in hopes of getting

the best deals on the latest releases. So many people attend that it causes a 63% increase in parking

lot traffic (Figure 3.1) (INRIX, 2015). Parking lots are already incredibly dangerous, causing 20%

of vehicular accidents. With the increase in traffic and the palpable stress, these numbers can

increase dramatically.

 Kris has been eyeing the latest game system for a while now and has been waiting for the

Black Friday discount to purchase it. The stores open at midnight, so Kris arrives at 11:30 PM.

Without the use of the AutoPark system, Kris is forced to search for a parking spot without

assistance. Just after entering the lot, another driver cuts Kris off and takes her spot. A few minutes

later, Kris is fooled by a small Fiat parked too far forwards in a spot. The next free spot has been

blocked by a shopping cart (Figure 3.2). Kris is then nearly hit by a car reversing from a spot.

Finally, at 12:17 AM, Kris finds a spot far away from the entrance of the mall and begins the long

5

walk to the entrance. 47 minutes after driving into the parking lot, she finally enters the store and

begins to fight her way towards the gaming section.

 Figure 3.1 Figure 3.2

 Had Kris used the Virtual Valet app with the AutoPark system installed in her car, she

could have entered the parking lot at 12 AM, pulled up to the entrance of the mall, pressed “Park”

on the Virtual Valet app (Figure 3.3) and entered the mall a mere 3 minutes after entering the lot.

While Kris was entering the mall, the AutoPark system on her vehicle would initiate

communication with the other AutoPark vehicles in the parking lot. The vehicles would send Kris’

car information regarding what spots are free and the current path of any vehicle moving in the

parking lot (Figure 3.4). Kris’ car would use that information to find a free spot closest to where

it will be picking Kris up (Figure 3.5). It will also factor in the other vehicles moving in the lot to

avoid creating too much traffic in one area and congesting the lot (Figure 3.6). Once it has decided

on both a spot and a path, it will relay this information to other vehicles in the parking lot (Figure

3.7) so future vehicles can also make informed decisions.

Figure 3.3

Figure 3.4

Figure 3.5

 Figure 3.6

Figure 3.7

 Similarly, when Kris is ready to leave, she can simply press “Return” on the app. The app

will notify her when the car is ready for pickup, and she can promptly enter her car and leave the

lot within 5 minutes. Without the use of the AutoPark system, Kris would be leaving the mall at

a much later time, caused by the earlier delay in finding a parking spot. She would then have to

remember where she parked her car, and walk the length of the parking lot, weighed down by her

purchases. Finally, once she has entered her car, she would have to wait for a break in traffic to

exit her parking spot, and then slowly make her way out of the lot, battling traffic along the way.

The entire procedure would take approximately 25 minutes. Clearly, the AutoPark system saves

the user time and stress and creates a safer parking system for everyone.

6

4. System Level Requirements

 The system-level requirements are categorized as Mandatory (M) or Desirable (D), as well

as Functional (F) or Nonfunctional (N). The requirements are meant to be read as “The system

shall…”, followed by the requirement. The performance metric(s) detail how the requirements

can be validated. Furthermore, the subsystem column shows which of the following subsystems

the requirement applies to Communication (P2P or Bluetooth), Perception, Mobile Platform,

Software, or Control.

 As with any project, the requirements have changed several times over the year and the

final requirements are shown in the tables 1-4.

Table 1: Mandatory Functional (MF) System Level Requirements

ID Requirement Performance Metric(s) Subsystem

MF.1

Receive "Park" and "Return"

commands from user via smartphone

app

95% of messages will be received.
Communication

(Bluetooth)

MF.2
Share parking spot related data with

other vehicles.

Establish communication with other

vehicles within the 10mx10m test

area.

90% of messages will be received.

Communication (P2P),

Perception

MF.3
Navigate autonomously through

parking lot.

100% of navigation will be

autonomous.
Mobile Platform

MF.4 Follow optimal route to exit.
The vehicle will maintain a velocity

between 0 and 10 cm/sec.

Mobile Platform,

Software

MF.5 Park inside parking spot.

Park 100% within a parking spot

within 2 attempts. Be within 35º of

parallel with the neighboring vehicles

or the lines of the spot, as applicable.

Mobile Platform,

Perception

MF.6 Exit parking spot
Exit the spot within 2 attempts

without collision.
Mobile Platform

MF.7 Sense obstacles in the environment.
Avoid obstacles between 10-50 cm

high and 10-120 cm wide.

Mobile Platform,

Perception

MF.8 Avoid infrastructure

The vehicle will maintain a distance

of 30.48 cm (1 ft.) between itself and

the parking lot infrastructure.

Mobile Platform,

Perception

MF.9 Stop in the event of an emergency

Stop within 3 seconds of an

emergency (obstacle or internal

vehicle error).

Mobile Platform,

Perception

7

MF.10

Software simulation to showcase

effective planning and scheduling of

cars inside a parking garage

Performs significantly better in terms

of average park time, pause time and

exit time for over 100 vehicles

Planning and

visualization

Table 2: Desirable Functional (DF) System Level Requirements

ID Requirement Performance Metric(s) Subsystem

DF.1 Identify optimal parking spot Identify optimal spot 98% of the time
Communication (P2P),

Software

DF.2 Plan optimal route to spot
Optimal path is chosen 90% of the

time
Software

DF.3 Follow optimal route to spot
Vehicle maintains a velocity between

0 and 10 cm/sec

Mobile Platform,

Software

DF.4 Avoid other vehicles

Vehicle maintains at least 60.96 cm

(2 ft.) between itself and the back of

another moving vehicle

Mobile Platform,

Perception

Table 3: Mandatory Non-Functional (MN) System Level Requirements

ID Requirement Performance Metric(s) Subsystem

MN.1
Use smartphone app to display vehicle

status
95% of messages are received

Communication

(Bluetooth)

MN.2
Communicate reliably between local

vehicles

The network will be able to handle

collaboration between 3 vehicles
Communication (P2P)

MN.3 Efficiently exits the parking spot
Will take no more than 45 seconds to

exit the parking spot

Mobile Platform,

Perception, Software

MN.5
Make minimal changes to

infrastructure

There will be ZERO changes to the

infrastructure
N/A

MN.6 Be within stipulated budget Budget is $4000 N/A

8

Table 4: Desirable Non-Functional (DN) System Level Requirements

ID Requirement Performance Metric(s) Subsystem

DN.1 Maintain scalable network of vehicles
Network is able to accommodate at

least 3 vehicles
Communication (P2P)

DN.2 Efficiently enter the parking spot

Vehicle backs into parking spot

within 2 attempts

Vehicle takes no more than 45

seconds to back into spot

Mobile Platform

5. Functional Architecture

5.1 Physical System

The system is represented in the functional architecture, as seen in Figure 5.1. The inputs

to the system are a pre-loaded map, the “Park” command from the user, and the “Return”

command from the user. The outputs from the system are the “Car Parked” and “Car Returned”

statuses to the user.

The entire flow can be divided into two phases: Park and Return. The structure of the

flow diagram is based on the “Sense-Plan-Act” design.

In the Park phase, the vehicle receives a “Park” command from the user via the Android

app and navigates to the entry queue, continuously localizing itself in the environment. It

queries other vehicles in the parking lot for information needed to plan its route to the optimal

spot. On selecting the best spot based on this data, it plans its route to the spot and starts

navigation. Localization data is needed to continuously update the path planner and if obstacles

are encountered along the way, the path is modified accordingly. Upon reaching the spot, the

vehicles parks in the designated spot, sends a “Car Parked” status to the user, and waits for the

return command from the user.

In the Return phase, upon receiving the “Return” command from the user, the vehicle

plans the optimal route to the exit based on its current location and the data provided by other

cars regarding the conditions in the parking lot. It starts navigating towards the exit, sensing

obstacles along the way and sending a notification to the user once it reaches the exit queue.

9

Figure 5.1- Functional Architecture

5.2 Simulation System

The functional architecture for the simulation system is depicted in figure 5.2.

Figure 5.2 Overview of Simulation Functional Architecture

The simulation system is initiated whenever a vehicle enters the parking lot in the

visualization. The new car is added to a queue and the rendering engine queries the global planner

10

regarding which spot should be designated to the new entrant. The global planner receives

information regarding the current state of the all the spots in the lot and uses this information to

update the cost of each spot in the parking lot.

After this update, the global planner queries the local planner regarding costs of specific

spots. This query is needed to take into account the cost to reach a spot given the current condition

of the parking lot. The local planner returns the cost associated with the spot and the global planner

uses this to find the best spot in the parking lot. This information is relayed to the rendering engine.

The rendering engine, having received the spot the car in the queue should park at, queries

the local planner for a path to reach that spot. The local planner returns a path to the rendering

engine which is used to park the car in the designated spot. When a car queries the simulation

system, the rendering engine queries the local planner for a path from the current location of the

car to the exit.

6. System-level trade studies

6.1 Single Board Computer (SBC)

 A powerful single board computer is a fundamental requirement to implement autonomy

and create a collaborative network between various robots in a system. The processing unit needs

to handle Ubuntu 14.04, ROS navigation and planning algorithms, a vision system, and networking

with other platforms all running in parallel. To perform these tasks, it is important to choose a

single board computer, which has capable enough hardware, in terms of processing power, RAM,

etc., and supports other peripherals, such as a Kinect, XBees etc. For these reasons, performance,

ease of integration, and support of peripherals have the highest weights in the trade study. Cost is

an important factor because the system will require multiple units of these single board computers

[3]. The comparison is depicted in table 5.

Table 5 – Single Board Computer Trade Study (Point Scale: 0-10)

Criteria Weights
Raspberry

Pi 2
Edison

BeagleBone

Black Rev C
Odroid XU-4

Asus

N3150IC

Performance 25 6 10 4 10 10

Cost 10 10 4 7 6 8

Documentation 15 9 5 7 7 8

Ease of Integration 20 8 4 8 8 9

11

Peripheral 20 5 7 5 7 10

Availability 10 10 10 10 10 10

Total 7.5 6.9 6.4 8.2 9.3

6.2. Point-to-Point Communication

 One of the core technologies that the project is intended to showcase is point-to-

point communication between multiple vehicles. Additionally, the project will demonstrate how

the vehicles can utilize shared data to collaborate in an effective manner. The network technology

used to carry out this operation will have a huge impact on the implementation technique and

overall performance of the system. Eliminating a central server is a non-negotiable requirement

of the user, which is why cloud computing and wireless distributed computing are the two point-

to-point communication options. Since this network will be supporting collaboration between real

time systems, low latency is a major requirement. Owing to the short timeline of the project, ease

of implementation will play a critical role in getting the system up and running within the given

timeframe [4] [5]. The comparison is depicted in table 6.

Table 6 – Point-to-Point Communication Trade Study (Point Scale: 0-10)

Criteria Weights Cloud Computing Wireless Distributed Computing

Range 15 10 7

Reliability 15 10 8

Bandwidth 5 10 8

Latency 25 6 9

Cost 5 8 8

Ease of

Implementation
25 7 9

Scalability 10 8 6

Total 8.0 8.2

6.3. Communication Hardware

To implement the point-to-point communication system, each mobile platform needed a

hardware to establish and join a network. The hardware that were considered were point-to-point

WiFi routers like the Bullet 2HP[6] and the XBee [7] routers following the Zigbee or the Digimesh

protocol. The key features desired in the communication units were - support for mesh networking,

12

good indoor range, high bandwidth and robustness. All hardware that operated in the unlicensed

frequency range were considered while selection. The comparison is depicted in table 7.

Table 7 – Communication Hardware Trade Study (Point Scale: 0-10)

Criteria Weights XBee Pro 900 XBee Pro Bullet 2HP

Low Frequency 5 10 7 7

Mesh Networking 40 10 10 5

Range 20 7 3 5

Reliability 20 5 5 9

Bandwidth 5 5 5 9

Form Factor 10 7 7 3

Total 7.85 6.9 5.9

The XBee Pro 900 proved to be better than the WiFi based Bullet 2HP. One of the key

advantages it possessed, in addition to a longer indoor range and low frequency, was the inbuilt

mesh networking feature. Hence, the XBee Pro 900 was selected as the communication hardware

for the project.

6.4. Mobile Platforms

The mobile platforms are the most critical component of the project. The mobile platforms

are a central dependency for the project as every subsystem would be integrated with the platforms

in terms of hardware and software. The team therefore considered the option of creating a platform

from scratch to better suit the requirements or buy an off-the-shelf platform. The trade study is

depicted in table 8.

 Table 7 – Mobile Platform Trade Study (Point Scale: 0-10)

Criteria Weight Custom

Platform

Oculus Prime Pioneer Husky

Time To First Use 15 5 8 9 6

Cost 25 6 8 7 1

Non-Holonomic

Steer

10 9 5 5 5

13

ROS Support 20 1 9 7 9

Support

Documentation

10 1 8 7 8

Form Factor 10 8 8 8 5

Hardware 10 7 8 5 7

Total 4.95 7.9 7.3 5.85

The trade study showed that the Oculus Prime was a superior platform in terms of the

support it has form the ROS community and the support documentation provided from the

manufacturer. Hence, the team decided to go ahead with the Oculus Prime platform.

7. Cyber-Physical Architecture

The system can be divided into 5 main subsystems, as seen in Figure 7.1. The hardware

and software interaction between these subsystems is detailed below.

Figure 7.1: System Overview

7.1 Hardware Architecture

 The mobile platform houses all the major subsystems, apart from the mobile app, which

exists on the user’s Android phone. Currently, the mobile platform uses an Intel Desktop Board

which is running Xubuntu 14.04 and ROS Indigo. The platform also has a depth sensor (Xtion

Pro) for mapping, localization and navigation. The DigiMesh XBee and Bluetooth 4.0 adapters are

connected via USB to the SBC and act as Serial Ports for communication. The Oculus Prime

platform comes with a power distribution board that accepts 12V from the LiPo battery and then

powers the DC Motors and the SBC through it (Figure 7.2).

14

Figure 7.2: Hardware Architecture

7.2 Software Architecture

 The software architecture (Figure 7.3) is based on the simple principle of sense,

think, and act, denoted by Perception, Planning, and Control. Perception helps in interfacing with

the environment and getting raw data, which then gets processed by Planning. Planning carries

out path planning, localization, and uses the point cloud data to detect various objects in the vicinity

of the robot. All of this information is then further transmitted to Control, where the robot carries

out locomotion and also collaborates with other robots by sharing relevant data. The emergency

node helps in bringing the robot to a halt in case of internal failures or the presence of an obstacle.

Figure 7.3: Software Architecture

15

8. System Description and Evaluation

8.1 Subsystem Description

 An overview of the current subsystems of the project is discussed in this section. The team

focused on covering a larger breadth in subsystems so as to develop a good foundation for the

spring semester. In addition to laying the groundwork in all of the subsystems, the team also

worked on integrating all of the systems capabilities.

8.1.1 Android – ROS Bluetooth Communication

 The Android application developed for this task utilizes the Bluetooth adapter present in

the smartphone to establish communication with the single board computer, which is running ROS.

This bidirectional communication requires a server, client, and a service with a specific protocol

through which all this interaction takes place. This specific subsystem can be broken down into

two main parts:

● Android Application
The Android app developed utilizes the BluetoothChatService provided by Google for

developers. This chat service helps to establish and manage connections with remote devices by

running the appropriate threads. Data is sent from the app to the SBC whenever the user presses

the Park or Return buttons on the app. The data received by the app is used to update the status

and initialize the timer. The app can be made to connect with any Bluetooth device by entering

the appropriate device name during startup. The app can be seen in Figure 8.1 and 8.2.

Figure 8.1: Vehicle is Parking

Figure 8.2: Vehicle has Returned

● ROS Node
The ROS Node running on the SBC communicates with the Android app by advertising a

Bluetooth service to which the app can subscribe. All this is done through an RFCOMM socket

port. Once this connection is established, the node starts two threads for sending and receiving

16

data. These two threads have two ROS topics associated with them which the other nodes can use

to push and pull data via Bluetooth.

8.1.2 Mobile Platform

 The Oculus Prime platform, depicted in Figure 8.3, is the most suitable platform for the

project needs. The platform is developed by a Canada-based company, Xaxxon, and is primarily

used by the ROS community for surveillance related applications. The platform is made of ABS

plastic with mounts for the Xtion, Microsoft LifeCam, four motors and external peripherals

(spotlights, speakers etc.).

Figure 8.3: Oculus Prime Platform

 The Oculus Prime is powered by a 5000 mAh battery and a dedicated power management

unit which supports onboard charging and voltage sensing. A charging dock is used to charge the

battery without removing it from the chassis. The motor control board, MALG (Motors Audio

Lights Gyro), is an ATMEGA 328 based microcontroller.

8.1.3 Single Board Computer

 The single board computer runs the entire communication and planning subsystem. As per

the current routine, the system gets triggered by a user command sent via the Android app. This

command gets relayed to the decision unit through the Mobile App node. If a “Park” command is

received, the platform sends a request to nearby platforms, asking for a destination. This is then

transmitted to the Locomotion Node as a waypoint. The Locomotion Node is connected to the

Oculus Prime server and is able to control the platform. The Locomotion Node also keeps a track

of whether or not the platform has reached its destination, publishing this data back to the decision

unit so that it can be sent back to the app through the Mobile App node.

8.1.4 Mapping, Localization and Navigation:

ROS gmapping, which uses a Rao-Blackwellized particle filter based SLAM algorithm, is

used to map the entire parking lot structure. Following the mapping, the map is refined using

bitmap editor. ROS AMCL (Adaptive Monte-Carlo Localization) is used to localize in the parking

lot using wheel encoders and gyro for odometry and depth data for particle filtering. For path

planning the DWA (dynamic window allocation) planner is used. The planner first finds a feasible

trajectory to the goal location and then uses the shooting-method to shoot out different control

actions which are evaluated using value iteration on different criterion.

17

The locomotion node communicates with the Oculus Prime server running on the SBC via

TELNET. Its functions include feeding waypoints to the platform which are translated into

platform control commands using all the different ROS packages stated above.

8.1.5 Collaboration and Communication:

 The communication node running on the SBC uses DigiMesh XBee adapters to exchange

serial data over 900MHz to collaborate with other platforms. The architecture for the system is

depicted in Figure 8.4.

Figure 8.4: Collaboration Architecture

 The data packets are encoded using a custom format that includes vehicle ID, data length,

and checksum (Figure 32 and Figure 33), which is used to determine the origin and ensure the

integrity of the data. The current data being sent is a list of all the vehicles and their status within

the lot (in queue, parking, parked, returning, or returned) and a list of the waypoints taken by each

moving vehicle.

 The collaboration node is used to choose the most optimal spot and the path to that spot.

It is sent a list of spot options and a list of the waypoints being followed by the currently moving

vehicles. The spot options list can either be all the free spots in the parking lot or the pre-selected

spot. A spot is pre-selected in two instances - when the vehicle is exiting or when a virtual is

added, because it is added to a user-selected spot. When the spot is pre-selected, the collaboration

runs an A* planner to find the best path to the spot. The spot and path are returned from the

collaboration node. When there is a list of spots, the A* planner is run on the top 10 spots in the

list, where the top 10 is determined by the 10 spots closest to the exit. The A* planner returns the

path and the resulting f-score of the path. The spot and path with the lowest f-score are returned

from the collaboration node. In either case, the path is returned in the form of waypoints for the

vehicle to travel to.

 The A* planner is a modified version of the traditional A* in three respects. First, there is

an added corner cost. This is because the platform does not have accurate turns and thus should

make as few turns as possible. The second modification is to the g-cost. Instead of using a

traditional distance map with the same cost in each square, the distance map is overlaid with the

18

paths of any other vehicle moving in the parking lot. This discourages the planner from choosing

overlapping paths. There were several different ways the cost of a path could be added to the

distance path. For example, it could be a simple “1” or “2” added, or the cost of the path could be

higher at the entrance and lower at the spot, or vice versa. After testing several scenarios, it was

determined that adding a “2” along the path creates the best avoidance, without causing the vehicle

to take long or winding paths. The third modification to the A* planner is that the heuristic is not

the distance between the current location and the goal, but the distance between the current location

and the parking lot exit. This causes a higher overall f-score for the spots farther away from the

exit and a lower overall f-score for the spots closest to the exit, thereby encouraging a spot close

to the exit to be chosen.

8.1.6 Visualization

 A GUI was created to easily visualize and actively track the state of the occupancy map.

Various elements in the environment such as the mobile platform, origin, destination, paths, etc.,

when visualized through a graphical user interface, can aid in achieving a better understanding of

the working of the overall system. This is done by rendering a 10x10 grid and overlaying different

shapes on top to signify the origin, destination, and current location of the platform.

 In Figure 8.5, the vehicles are depicted by their number. Parking vehicles are depicted as

a number in their intended parking spot, colored lines going from the entrance to the spot, and the

same vehicle number in the entrance queue in a colored circle matching the color of the path

(example: vehicle 6). Parked vehicles are shown with a number and colored circle in their spot

(example: vehicle 2). Returning vehicles are shown a number in their parking spot, colored lines

going from the spot to the exit , and the same vehicle number in the exit queue in a colored circle

matching the color of the path (example: vehicle 1).

Figure 8.5: Occupancy Map GUI

 The GUI is also capable of adding and removing virtual vehicles from the parking lot. This

enables the creation of more complicated scenarios to enable more thorough testing. When a

virtual vehicle is added, the path to the spot is calculated and broadcast over the communication

system.

19

8.1.7. Simulation Subsystem

The main purpose of the simulation subsystem is to apply different planning and scheduling

methods to prove the effectiveness of collaboration in selecting optimal parking policies for more

than a hundred vehicles arriving and exiting at random instances of time. The simulation subsystem

was implemented using ROS and the detailed simulation architecture is shown in figure 8.6.

Figure 8.6 Simulation System in Action

The simulator was divided into four major sections whose details are specified below:

Global Planner: This planner is responsible to rank and assign costs to parking spots based

on multiple heuristics. The decision to assign a spot to the car is made by this unit. This information

is then relayed to the simulation engine to be processed and rendered in the environment. This

planner takes into account the static costs base of a spot in the parking lot (distance to exit[9],

nearby occupied spots) as well as the dynamic costs associated with selecting a spot (cost to

navigate to the spot, cars in queue and time of the day).

Local Planner: It is a custom Astar lattice based planner which returns a path and path

cost for a query from either the rendering engine or global planner. The planner takes into account

the distance from obstacles while planning and uses an ackerman steer motion model for motion

primitives. The planner relays a dynamic cost to the global planner associated with navigating to

a spot. It relays a path to the rendering engine between the queried points.

mabPlanner: In order to generate a globally optimal policy for parking vehicles, a trade-

off between exploration and exploitation is required. Also, the heuristic based planner does not

take into account the random process of arrival and exit of vehicles. Hence, a multi-armed bandit

approach was employed which uses UCB1 arm pulls as a one step look-ahead policy. To

implement this, the parking lot is divided into four different areas and each area is evaluated on

the actual average time to park and exit in the area . Whenever a car enters the parking lot, it is

assigned a one-step lookahead based on a UCB1 policy after which the default heuristic policy is

20

followed in that area. When the car parks or exits, the statistics for that area are updated. Since the

distribution is non-stationary, a discounted approach is employed. This online planning helps to

significantly improve the park, pause and exit times.

Rendering Engine: It accepts the data from other nodes to render an environment showing

the state of all the vehicles in the parking lot. RVIZ markers are used for the visualization of

different vehicles and their paths. It also updates the other systems with the real-time state of the

lot so that planning can take the dynamic environment into account. The rendering engine also run

a Numerical Optimization to switch places of cars based on a tradeoff between cost minimization

and reward maximization. The cost in this case is the addition to entropy of the system and the

reward is reduction in return times.

8.2. Testing
 The following is a list of step-by-step testing and analysis for different subsystems:

8.2.1 Android App
● Android app is able to establish a reliable serial connection to single board computer via

Bluetooth with repeatability.

● Sending and receiving of commands with ROS node was tested to work without failure.

● Testing with garbage commands being sent, like letters or anything outside of the defined

protocol, to ensure that an incorrect response was not elicited from the ROS node and/or

app.

● Testing with untimely data sent to the app such as sending “Parked” status when it was

“Returning” to ensure the system does not fail and an incorrect response is not produced.

● App GUI tested to ensure that disabled buttons cannot be pressed and the status of the

vehicle changes as required.

8.2.2 Communication

The following tests were performed using two XBee Pro 900 adaptors:

● Range Test: 100% of messages received in 15 feet range.
● Speed and Latency Test:

Test – Time stamped 100-element integer list (502 bytes) sent serially.

Result – Transmission time of 1.8 seconds observed.

● Establishing Connection: Connection is established instantaneously without the need for

authentication.

21

8.2.3 Mobile Platform Locomotion

The following tests were performed on Oculus Prime to ensure robustness of the

Oculus Prime Server:

● Ensuring mobile platform is fully functional on software and hardware end via

teleoperation commands sent through HTTP interface.
● Testing of Oculus Prime Telnet API by teleoperation through Telnet command interface.
● Testing whether odometry is functional through Telnet command interface.

8.2.4 User Interface and Communication Integration

The following validation tests were performed on User Interface to ensure it

works well with the Communication Subsystem:

● The user interface displays the data communicated by the XBees. Specifically, it shows

the state of each vehicle in the network.

● Virtual vehicles added through the interface become a part of the network.

● Path computed by the A* planner gets properly overlayed in the User Interface

8.2.5 Waypoint Navigation Accuracy

The following tests were performed to generate metrics for platform’s localization

and navigation performance:

● Give waypoints through the web interface to go from a fixed spot A to fixed spot B and

observe the planned and executed trajectory.

● Give waypoints through the Python script to go from a fixed spot A to fixed spot B and

observe the platform’s motion.

● Measure the inaccuracies, if any, between the desired and actual destination.

8.2.6 Simulation Environment

The performance of our planner and the greedy first-spot approach (Greedy 1) and

closest spot to exit (Greedy 2) were compared in the simulation environment. In our

planner, the heuristics only and multi-armed bandit approach were tested. The approaches

were compared based on three criteria- average time to park, average time to exit and the

average pause time of each vehicle. The average pause time denotes the time a vehicle

stops inside the parking lot due to congestion. Minimizing each of these times reflects a

good planning strategy, as can be seen in figure 8.7.

22

Approach Average Parking
Time (seconds)

Average Pause Time (seconds) Average Return Time

 (seconds)

Greedy 1 33.52 23.57 28.64

Greedy 2 36.85 25.72 31.92

Heuristics Only 23.31 17.17 26.62

Multi Armed
Bandit Approach

12.5 15.37 15.6

Figure 8.7: Comparative Results

8.2.7 Final System Integration

 The final system was tested using all systems, as seen in Figure 8.7: Full System

Integration. The app was used to initiate the park sequence on the first vehicle. A secondary XBee

connected to the UI informed the vehicle of all available spots. The vehicle interpreted this

information to choose the most optimal spot. This information was communicated over XBees

and reflected in the UI. While traveling to the destination, an obstacle was detected and avoided.

The vehicle continued to the original destination. While the first vehicle was parking, the second

vehicle received the park command from the app. Via XBee, it received information regarding the

free parking spots and the path being taken by the first vehicle. The second vehicle chose a spot

and a path to the spot that avoided the first vehicle. This was also communicated and shown in

the UI. When each vehicle reached its destination, it communicated this information over XBees

and the UI showed the new status of the vehicle. The process was repeated for the return sequence.

Figure 8.8: Full System Integration

23

8.3. Performance Evaluation against the Spring Validation Experiment (SVE)

8.3.1. SVE Demo 1

Table 8: SVE Demo 1 Tasks and Performance

Task Success Criteria Performance in SVE

“Park” command sent to the first

mobile platform using the Android

app

LED Blinks to indicate command

received, UI shows updated vehicle

destination and path

Task completed successfully at

SVE and SVE Encore

First vehicle begins locomotion

towards optimal spot upon

receiving the command
Vehicle moves forward

Task completed successfully at

SVE and SVE Encore

“Park” command sent to the second

mobile platform using the Android

app

LED Blinks to indicate command

received, UI shows updated vehicle

destination and path

Task completed successfully at

SVE and SVE Encore

Second vehicle begins locomotion

towards spot near entrance while

avoiding path of first vehicle upon

receiving the command

Vehicle moves forward
Task completed successfully at

SVE and SVE Encore

First vehicle parks in intended spot

Vehicle parks without colliding

with infrastructure. Avoids any

obstacles encountered. App and UI

update vehicle status.

Task completed successfully at

SVE and SVE Encore

Second vehicle parks in intended

spot

Vehicle parks without colliding

with infrastructure. Avoids any

obstacles encountered. App and UI

update vehicle status.

Task completed successfully at

SVE and SVE Encore

“Return” command sent to the first

mobile platform via the Android

app

Vehicle exits spot, plans and

follows path to exit without

colliding with infrastructure.

Task completed successfully at

SVE and SVE Encore. Vehicle

brushed against wall.

“Return” command sent to the

second mobile platform via the

Android app

Vehicle exits spot, plans and

follows path to exit without

colliding with infrastructure.

Task completed successfully at

SVE and SVE Encore.

24

8.3.2. SVE Demo 2

Table 9: SVE Demo 2 Tasks and Performance

Task Success Criteria Performance in SVE

Launch file shall be started to run

the simulation on Greedy and

Autopark approach

Autopark planner should perform

better than greedy approach in

terms of time i.e Average time to

park in of the Autopark planner is

lesser than the greedy approach.

Task completed successfully at

SVE and SVE Encore

A random pattern of arrival and

departure times for the vehicles will

be created.

Markers should appear and

disappear at the appropriate time.
Task completed successfully at

SVE and SVE Encore

RViz will display the environment

and start rendering vehicles as per

the data being received from the

rendering engine.

Markers shouldn’t overlap with

each other.
Task completed successfully at

SVE and SVE Encore

8.4 Performance Evaluation with respect to Function and Performance
Requirements

● Functional Requirements Validated at SVE

o Receive “Park” and “Return” commands from user via smartphone app

 (MF.1)

▪ The requirement was successfully validated at SVE by demonstrating ROS

framework to accept commands from smartphone app via Bluetooth. Upon

receiving “Park” or “Return” command successfully, an indicator LED

blinks and the UI and App show the updated status of the vehicle.

o Share parking spots states with other vehicles (MF.2)

▪ Bidirectional communication with multiple XBees in a scalable network

with mesh topology was demonstrated to work successfully between two

mobile platforms and one laptop acting as the UI.

o Navigate autonomously through parking lot (MF.3)

▪ Vehicles navigated throughout parking lot without human interference.

o Follow optimal route to exit (MF.4)

▪ Vehicles planned and executed the shortest path between their parking spot

and the exit.

o Park inside a parking spot (MF.5)

▪ Vehicles parked completely within a designated parking spot.

o Exit parking spot (MF.6)

▪ Vehicles exited parking spot without human interference.

o Sense obstacles in the environment (MF.7)

▪ Obstacle was detected and avoided.

o Avoid infrastructure (MF.8)

▪ Vehicle detected infrastructure and lightly brushed against it in one

occasion due to faulty localization.

o Stop in the event of an emergency (MF.9)

25

▪ Vehicle avoided detected obstacle and had no need to stop.

o Simulation to show collaborative planning and scheduling of over 100 cars

(MF.10)

▪ Notable improvement was observed in Park, Return and Pause times of the

vehicles

o Identify optimal parking spot (DF.1)

▪ Optimal spot was identified each time.

o Follow optimal route to spot (DF.3)

▪ Vehicles planned direct routes and avoided other vehicles

o Avoid other vehicles (DF.4)

▪ Vehicles did not collide and followed minimally overlapping paths to

ensure there were no congested areas.

● Performance Requirements Validated at SVE

o 95% of messages are received

▪ Requirement validated successfully as all Bluetooth messages were

successfully sent and received.

o Establish communication with other vehicles within the 10mx10m test area.

90% of messages will be received and 80% correctly parsed

▪ All vehicles were able to send, receive, and parse 100% of the messages

sent between the three XBees.

o 100% of navigation will be autonomous

▪ All navigation was performed autonomously.

o Exit parking lot within 120 seconds of receiving command

▪ Vehicles exited parking lot within 30 seconds of receiving command.

o Park 100% within a parking spot within 2 attempts

▪ Vehicles exited parking spot on first attempt.

o Exit the spot within 2 attempts without collision

▪ Vehicles did not collide while exiting the parking lot

o Detect obstacles between 10-50 cm high and 20-120 cm wide

▪ Requirement validated successfully in SVE by mobile platform avoiding

detected obstacle.

o Maintain a distance of 10-15 cm between vehicle and infrastructure

▪ Vehicles largely maintained this distance, although came closer on some

instances. This was due to the size of the parking spots and faulty

localization.

o Stop within 20 cm of a static obstacle

▪ Requirement is no longer valid. However, vehicle planned path around

parking lot, which is a more appropriate requirement.

o Distance between spot and exit is shortest amongst all available spots

▪ Requirement was validated by vehicles parking in most optimal spot

o Park in spot within 120 seconds of receiving command

▪ Vehicles parked within 60 seconds of receiving command.

o Vehicle maintains at least 60.96 cm (2 ft.) between the front of one moving

vehicle and the back of another moving vehicle

▪ Vehicles planned paths to avoid one another.

26

8.5 System Strength and Weaknesses

8.5.1. Strong Points

 One of the greatest strengths of the system is that the subsystems are largely modular and

can be applied to various parking lots and scenarios. Listed below are the subsystems and

advantages:

● Communication System is decentralized and does not alter the infrastructure in any way.
● Simulation System is scalable to any larger parking lot of varied dimensions.

● Owing to the modular software architecture, the global planner and local planner are

replaceable with any other planners that interface with the rendering engine in the same

way.

● Planning in simulation explores the multi-armed-bandit approach instead of weight tuning.

● Android app is functional and enables easy user interaction with system.
● The team has modular obstacle detection capabilities developed and ready to be integrated

as an alternative to ROS based obstacle avoidance.

● Communication subsystem is robust and has sufficient indoor range.
● Oculus Prime mobile platform provides versatile capabilities and its ROS packages aid in

developing the localization and planning subsystem.
● The mock parking lot created easy to assemble and its dimensions remain consistent with

the map.

8.5.2. Weak Points

 Listed below are the subsystems and disadvantages:

● The system has many single points of failure, specifically in terms of hardware like the

power distribution board and the actuator control board. Moreover, the dependency on

Oculus Prime custom hardware affected timelines in case a replacement part was needed

immediately as the manufacturer is based in Canada, which further increases lead times.

● The vision system on the platform is not robust which further affects the localization of the

platform. The symmetric nature of the parking lot further worsens this problem.

● The planner on the platform currently relies on the Dynamic Window Approach which

causes the platform to get stuck when navigating tight spots.

● The accumulation of the odometry errors on the platform results in the platform getting

progressively more lost as it traverses in the parking lot.

● Communication subsystem isn’t an exact implementation of VANET due to which its

performance under heavy traffic can’t be discerned.

● Simulation environment fails to capture the true dynamics of a vehicle due to which it

might exaggerate the results.

● Relying on a depth camera to generate laser scan adds unnecessary computation load as we

have to process more data.

● Oculus Prime doesn’t have Ackerman Steering due to which our planners and actual

locomotion of the platform are disjoint and need an additional layer of interfacing.

9. Project management

27

9.1 Critical Path/Schedule

The major system development milestones that need to be attained throughout the project were:

1. Implement a collaborative network to work for multiple platforms

2. Implement a robust navigation subsystem involving localization, path planning and

obstacle avoidance for multiple platforms.

3. Implement an entire simulation system to show effective planning and scheduling of over

100 vehicles in a parking garage.

4. Integration of all the subsystems

 Fall Semester Schedule:

The schedule for fall semester is detailed in the table 10 below:

Table 10: Fall Semester Schedule

Timeline Goals Milestones

Progress Review 1: 22-Oct
Literature studies for various subsystems complete, app GUI

complete and bluetooth interface with SBC tested

Progress Review 2: 29-Oct Actuator control board and SBC integrated

Progress Review 3
Collaboration Software and hardware setup and obstacle

avoidance software developed

Sensor control board

tested

Progress Review 4 Vision system integrated and map tested

Fall Validation Experiment

and Demonstration
30-Nov

11/30 - 12/3 Dedicated integration and testing

Progress Review 5 3-Dec FVE demo complete

Progress Review 6 10-Dec

 Spring Semester Schedule

Table 11: Spring Schedule

Timeline Goals Milestones

01/11 - 01/25
App is complete in all respects; Repetitive and precise locomotion control;

Manufacture or acquire more platforms

Completion of

Mobile App

Subsystem

28

PR 7: Late January Multiple partially functional platforms; Fully functional mobile app

01/25 - 02/08
Navigation works for multiple waypoints; Literature survey for path planning is

complete; XBee Mesh network tested with multiple platforms

PR 8: Mid-February
Mesh Network functional for multiple platforms; Demonstrate robust and

accurate navigation of platforms

Completion of

Communication

/ Collaboration

Subsystem

02/08 - 02/22
Create a graphical user interface to be used for testing and demonstrations;

Implement obstacle avoidance

PR 9: Late February Platform travels in 2D from Point A to Point B while avoiding obstacles;

Completion of

Navigation

Subsystem

02/22 - 03/07
Design Mock Parking Lot; Make the GUI fully functional and depict the existing

setup; Create a path planning node and integrate with navigation subsystem

PR 10: Mid-March
Platform localizes and navigates in mock parking lot; GUI gets updated and

shows real-time information

Completion of

Path Planning

Subsystem

03/07 - 03/21

Create dummy platforms to collaborate with; Extensively test navigation and path

planning; Create a point cloud map of the parking lot; Make active platforms

collaborate

03/21 - 04/04 Make the platform park in and exit spot; Start integration of all the subsystems Start integration

PR 11: Early April
Single platform collaborates with dummy platforms and parks itself; Multiple

active platforms are aware of each other’s presence and avoid collision

04/04 - 04/18 Testing and integration
Wrap-up

integration

PR 12: Mid-April Testing

The project was completed successfully as per the intended schedule.

9.2 Budget

29

Table 12: Project Budget

Part Part Number Quantity Cost/Unit Total Cost

Oculus Prime (Mobile

Platform)*
N/A

1 purchased, 1

from MRSD, 1

from sponsor

$499.00 $499.0

ODROID-XU4 N/A 3 $74.00 $222.00

MinnowBoard Max* N/A 2 $147.00 $294.00

Arduino Nano v3.0 N/A 3 $15.38 $46.14

Infrared Sensor
Sharp

GP2Y0A21YK
3 Inventory Inventory

Asus Xtion Pro N/A 1 $159.99 $159.99

Miscellaneous (mounts,

electronics, memory,

cables)

N/A N/A N/A $625.99

DigiMesh XBee Pro * N/A 5 $99.00 $594.00

MALG PCB XAX-053 3 $55.35 $166.05

AmazonBasics 7 Port

USB Hub
HU2W70E1 2 $15.79 $31.58

AmazonBasics 4 Port

USB Hub
HU3641V1 2 $16.98 $33.96

Parallax Laser Range

Finder
RB-Plx-257 1 $99 $99

Intel DN2800MT

Marshalltown Thin Mini-

ITX Motherboard -

BLKDN2800MT

Intel DN2800MT 1 $145 $145

Power Lipo3S PCB XAX-063 3 $48.64 $145.92

Adata 64GB SSD N/A 1 $52.66 $52.66

CC Bec Pro- Castle

Creations
N/A 3 $20.27 $60.81

Whitelabel Bluetooth 4.0

USB Dongle Adapter
N/A 4 $12.99 $51.96

Miscellaneous Electronics N/A N/A $500 $500

Miscellaneous Hardware N/A N/A $150 $150

Total Budget: $3878.06

*big ticket items

30

Evaluation of Budgeting Process:

The budgeting process was carried out very smoothly with parts ordered in a timely manner

with sufficient extras. We managed to keep the budget within the maximum amount of $4000

including all big ticket items. One of the major successes were the backups of the platforms and

Oculus Prime spare parts which turned out to be extremely critical towards the end of the project.

One of the major failures was the large number of different SBCs ordered due to inefficient trade

studies on our part at the beginning of the semester.

9.3. Risk Management

The risk management categories are as follows:

● ID: Number used to reference risk

● Description: Brief description of the risk

● Responsible Party: Indicates who is in charge of handling the risk.

● Risk Analysis: The risk analysis has two numbers representing the ranking of the

consequence of the risk and the likelihood that the risk will be realized. It is formatted as

(Consequence x Likelihood), which can more clearly be seen in Figure 54: Risk IDs

Charted with Consequence and Likelihood Levels.

● Area of Impact: Technical, Schedule, Cost, Programmatic

● Handling Strategy: How the risk will be handled?

● Status: Open (no work has been done), In Progress (work is being done to mitigate risk),

Closed (no longer a risk)

Table 13: Project Risks

ID Description Owner Risk Analysis Area of Impact Handling Strategy Status

1
No Mobile

Platform
Mohak N/A

Technical,

Schedule, Cost

Check Status with sponsor regularly,

Set final deadline for platforms to

arrive.

Email list of MPs to sponsor.

Meet with sponsor.

Purchase test platform.

Closed

2
Inadequate Mobile

Platform
Shivam 3x3 Technical

Review platform needs

Only select adequate platform
Closed

3

Unsuitable

Smartphone

Interface

Dorothy 3x2
Technical

Programmatic
Frequent and extensive testing Closed

31

4
Subsystem

Incompatibility
Pranav 5x2

Technical

Schedule Cost

Programmatic

Research on ROS to ensure

compatibility.

Software architecture to ease

integration.

Carry out low level cross

compatibility tests.

Closed

5
Too Many

Requirements
Shivam 4x2

Schedule

Programmatic

Trimmed requirements

Began weekly sprints

Created Kanban cards

Closed

6
Inaccurate Parking

Lot and Obstacles
Richa 1x1 Programmatic

Analyze parking lots IRL. Scale to

match mobile platform
Closed

7
ROS Related

Issues
Pranav 5x1 Technical

Arduino/ROS testing.

Android/ROS testing.

ROS-ROS serial communication.

Closed

8
SBC and Platform

Incompatibility
Mohak N/A

Technical

Schedule Cost

Programmatic

Use MinnowBoard Max borrowed

from Team C
Closed

9

MinnowBoard

Max Processing

Power Limitations

Mohak 5x5
Technical

Programmatic

Test SBC thoroughly to investigate

other possible problems. Research

alternative, more powerful SBCs

Closed

10
Closing Bluetooth

Port
Dorothy 2x5 Technical

Hardcode port number into script.

Close port by keystroke on SBC

side. Close port when app closes on

Android side

Closed

11

Mobile Platforms

don't arrive on

time

Shivam 4x5
Technical,Schedul

e,Cost

Check Status with sponsor regularly,

Talk to Prof. Dolan regarding

additional platform.

Closed

12
Data latency in

subsystems
Team 4x4 Technical Early and Extensive Testing Closed

13

Interference in

Bluetooth

and multiple

Xbees

Dorothy,

Richa
4x3 Technical

Early identification and fixing

requirements accordingly
Closed

14
Components

arriving late
Team 3x5

Schedule, Cost,

Programmatic

Order many extras, ordering well in

advance, contingency plans and

immediate action

Closed

32

15

Dependence on

Oculus Prime

ROS packages

Pranav 3x3
Schedule

Technical

Alter system design accordingly as

soon as loopholes or dead-ends are

identified

Closed

16

Dependency of

localization on

mapping

capabilities and

parking lot

complexity

Mohak 3x2
Programmatic,

Technical

Keep design of parking lot as simple

and “feature rich” as possible
Closed

17

Multiple points of

hardware related

failure in

perception

and

communication

Shivam,

Richa
3x4

Programmatic

Technical

Incremental integration and testing

during development
Closed

18

Inconsistencies in

communication

and planning logic

Richa 4x1 Technical
Incremental integration and testing

during development
Closed

19
Navigation Issues

in Parking Lot

Shivam,

Pranav
4x3 Technical

Extensive Testing, Modification of

Nav. Stack
Closed

In order to efficiently track the risks, a risk manager was appointed from within the team

in both semesters and each risk was assigned a risk owner. The high likelihood and consequence

risks such the mobile platforms not arriving on time, inadequate processing power and navigation

issues in the parking lot were actively mitigated by the whole team.

Figure 9.1 Risk IDs Charted with Consequence and Likelihood Levels

33

10. Conclusions
The project was largely successful in demonstrating collaborative parking between mobile

platforms in the physical world and the advantages of planned parking in simulation. The team

was able to meet most of its requirement according to the set performance metrics. The team

created a new way to implement the A* algorithm to avoid creating congestion while maintaining

optimal placement of vehicles. Additionally, the team was able to formulate a novel variant of the

classical ‘Exploration vs Exploitation’ problem that has been extensively discussed in the Multi-

Armed Bandit approach.

10.1 Lessons Learned

The team faced numerous challenges during the course of the project: both technical as

well as logistical. The project was great learning experience for the team and the critical lessons

learned are highlighted below:

Technical Lessons Learned

10.1.1 Sensor Placement

Sensor placement plays a critical role in any system, especially if you intend to localize

your robot using the sensor; case in point being the placement of the depth camera on the robot.

The range limitations and the sensor-cone of the depth camera should be taken into mind when

selecting the sensor and as well while placing it on the robot. This is even more critical while

running the ROS AMCL (Adaptive Monte-Carlo Localization) as the localization relies on a 2D

projection of a 3D world.

10.1.2 Generating Plans in Tight Spaces

The DWA (Dynamic Window Approach) planner essentially performs a forward

simulation from the robot's current state to predict what would happen if a sampled velocity were

applied for some period of time. In our case, the DWA planner could not find a valid trajectory

due to the proximity of the walls to the platform. The team learned that generating plans in tight

spaces would not work always and the team decided to code its own recovery maneuvers before

generating plans from the DWA.

10.1.3 Destructive Testing

This is the most critical lesson that the team learned the hard way- the importance of testing

your code and hardware for possible failure scenarios. This involves testing code with expected as

well as erroneous data for prolonged periods of time. Testing the mobile platforms for various

failure cases such as inaccurate localization and planning-failures also proved to be helpful in the

long run.

34

Project Management Lessons Learned

10.1.4 Procuring Backups

The importance of having backups ready to replace faulty components cannot be stressed

enough. The team invested in backups throughout the project and this paid off in the long run as

the failed components were swiftly replaced during testing. However, ordering backups of

components that are useless in the long run can prove to be detrimental to the financial planning

of the team

10.1.5 Identify Critical Components To The Project

Certain components, like the mobile platforms, are critical to the execution and delivery of

any project. It is absolutely essential to identify these components and take a call on them as early

as possible. Following up on these components should not only be the responsibility of the project

manager but collective responsibility rests on the team. The team faced further delays in receiving

one of its platforms due to a misunderstanding in ordering which makes it even more necessary

for the team to actively track such components.

10.1.6 The ‘Knock-it-off’ Point

One of the most difficult decisions in project management is taking the call on ‘knock-it-

off’ points- the time when the team would stop pursuing a strategy. This lesson addresses the

problem of what to do when a really great feature might not be delivered on time. Continuing

aimlessly without taking a call to not integrate the feature might cause unprecedented delays in

integrating the entire system and prove to be detrimental in the long run.

10.2 Future Work

The team successfully demonstrated the collaborative communication of the AutoPark

system. To continue this work, there are a few approaches:

10.2.1 Time-Base A*

The current implementation of our modified A* algorithm is state-based. That is, it

assumes that the vehicles in motion will stay in motion while the vehicle is executing its path and

the stationary vehicles will stay stationary while the vehicle is executing its path. A less naive

approach would be to incorporate the real-time updates mentioned in section 10.2.1 to plan a route

for the vehicle that will not create congestion at the time that the vehicle reaches the area. This

will create a more accurate planning system that enables a real-time approach to the parking

problem.

10.2.2 Map Sharing

35

The system has currently only been tested in a known parking lot with a pre-loaded map.

To enhance the system, map sharing would enable the AutoPark system to work in any parking

lot. When a vehicle enters a lot that is already occupied by AutoPark-enabled vehicles, it should

receive physical details of parking lot through the communication channel. The first vehicle in the

lot can obtain the map from the cloud through the secure, built-in update system of future

autonomous vehicles.

Following the successful results from the simulation environment, the team aims to

continue working on developing on its multi-armed bandit approach. One of the many challenges

in implementing the multi-armed bandit approach to the planned-parking problem include the

following:

10.2.3 Delay etween Action and Reward

The ‘reward’ term in the multi-armed bandit approach is generated after the vehicle has

parked in a spot and the planner learns the parking time for the vehicle. However, since the time

the ‘action’ of sending the vehicle to a spot is taken, many more new vehicles enter the lot and are

assigned spots. This delay in taking an action and receiving a reward is not covered as part of the

standard UCB1 algorithm. To overcome this, we tried to implement a discounted approach to the

UCB1 algorithm. However, in the future we aim to implement a variant where we generate an

‘estimated reward’ and update in later when the actual reward arrives.

10.2.4 Q Learning

The parking problem will in the future be formulated as a Q-Learning problem where the

current heuristics in the global planner will be treated as the features of the state of the parking lot

and temporal difference learning will be used to learn the weights on the features. The simulation

will be run for a long period of time and at each time step the reward obtained will be treated as a

sample of the Q-value of the particular state-action pair. When our agent has experienced enough

amount of episodes, the most optimal weights will be learnt for the parking lot and the planner will

converge on an optimal policy for spot allocation. Using approaches such as epsilon-greedy and

UCB, we will be able to appropriately trade-off between exploration and exploitation to arrive at

a globally optimal policy for the parking lot.

10.2.5 Policy Search

Another method that we will be employing is policy search to learn the best heuristic

weights. Unlike Q-Learning which learns weights taking the actual Q values as samples, we will

try to directly learn policies that predict the best Q values. Policy search evaluates the current

policy (weights) for a long time on the parking lot. The evaluation criterion will be the average

park and return times experienced in the parking lot. After we get the performance estimates, hill

climbing will be done to optimize the weight on the heuristic values.

36

11 References

1. Stark, John. "Parking Lots." University at Albany, 23 Apr. 2012. Web. 25 Sept.

2015. http://www.albany.edu/ihi/files/Parking_Lots_Where_Motorists_Become_Pedestrians.pdf

2. Fayard, GM. "Work-related Fatal Injuries in Parking Lots, 1993-2002." National

Center for Biotechnology Information. U.S. National Library of Medicine, 10 Jan. 2008.

Web. 25 Sept. 2015

 http://www.ncbi.nlm.nih.gov/pubmed/18325411.

3. "Comparison of Single-board Computers." Wikipedia. Wikimedia Foundation, 1

Oct. 2015. Web. 25 Sept. 2015.

 https://en.wikipedia.org/wiki/Comparison_of_single-board_computers

4. "Cloud Robotics." Wikipedia. Wikimedia Foundation, 23 Sept. 2015. Web. 25

Sept. 2015. https://en.wikipedia.org/wiki/Cloud_robotics

5. "Distributed Computing." Wikipedia. Wikimedia Foundation, 28 Aug. 2015.

Web. 25 Sept. 2015.

 https://en.wikipedia.org/wiki/Distributed_computing

6. "Bullet 2HP Review"

http://www.cruisersforum.com/forums/f13/internet-ubiquiti-bullet-any-good-59477.html

7. "XBee." XBee. XBee. Web. 25 Sept. 2015.

 http://xbee.wikispaces.com/

8. "Oculus Prime Details"

 http://www.xaxxon.com/oculusprime/details

9. Search Based Planning Laboratory

www.sbpl.net

10. “INRIX Predicts Increase of Thanksgiving and Black Friday Traffic for Malls,

Airports and Cities”
http://inrix.com/press/2015-thanksgiving-traffic-forecastiving-and-black-friday-traffic-for-

malls-airports-and-cities

http://www.albany.edu/ihi/files/Parking_Lots_Where_Motorists_Become_Pedestrians.pdf
http://www.albany.edu/ihi/files/Parking_Lots_Where_Motorists_Become_Pedestrians.pdf
http://www.ncbi.nlm.nih.gov/pubmed/18325411.
http://www.ncbi.nlm.nih.gov/pubmed/18325411.
https://en.wikipedia.org/wiki/Comparison_of_single-board_computers
https://en.wikipedia.org/wiki/Comparison_of_single-board_computers
https://en.wikipedia.org/wiki/Cloud_robotics
https://en.wikipedia.org/wiki/Cloud_robotics
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Distributed_computing
http://www.cruisersforum.com/forums/f13/internet-ubiquiti-bullet-any-good-59477.html
http://xbee.wikispaces.com/
http://xbee.wikispaces.com/
http://www.xaxxon.com/oculusprime/details
http://www.xaxxon.com/oculusprime/details
http://www.sbpl.net/
http://inrix.com/press/2015-thanksgiving-traffic-forecastiving-and-black-friday-traffic-for-malls-airports-and-cities/
http://inrix.com/press/2015-thanksgiving-traffic-forecastiving-and-black-friday-traffic-for-malls-airports-and-cities/

