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1. Abstract 

Auto-Park for Social Robots is an autonomous and collaborative parking system for self-driving 

vehicles in an indoor parking lot. This report summarizes the progress made by Team Daedalus as 

part of the Master of Science in Robotic Systems Development project “Auto-Park for Social 

Robots” during the academic year 2015/16 at Carnegie Mellon University.    

Through this project the team has tried to develop decentralized systems for collaboration between 

autonomous cars and implement effective planning and scheduling strategies for  multiple 

vehicles. The team aims to tackle the use-case of autonomous parking in parking garages by 

implementing the collaborative strategies on physical robots and complex planning techniques in 

software simulation.  

The team has identified and fulfilled key functional and nonfunctional requirements of the project 

as per the performance metrics specified by the team in agreement with their sponsor United 

Technologies Research Center. In this report, detailed subsystem descriptions and their testing 

results are documented following which project management, risks and mitigation strategies are 

discussed.  Having gained valuable experience from testing, the team has identified the key lessons 

learned from this project. 

The project was successful in accomplishing the goal of autonomous parking and returning of 

vehicles, navigating collaboratively in a parking lot- all with the press of a button on a user’s 

smartphone app. The simulation environment was used to park vehicles in a large parking lot with 

hundreds of vehicles based on approaches like multiple-heuristic goal assignment and goal 

assignment using the multi-armed-bandit approach. The end-to-end system developed during this 

project is a contribution towards better and safer self-driving vehicles.   
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2. Project Description 
 The imminent arrival of driverless cars has led to an increased focus on the development 

of an ecosystem that supports them.  This project, “Auto-Park for Social Robots”, aims at 

developing an autonomous system for collaboratively parking driverless cars.   

 The motivation for the project stems from key factors affecting the current parking system, 

such as poor parking safety standards, parking industry growth potential, and a competitive 

advantage of developing such a system.  According to reports by Fayard and Stark, around 20% 

of all automobile accidents occur inside parking lots.  About 90% of the people involved in these 

accidents are injured.  The parking industry is worth $25-$30 billion and has potential to invest in 

upgrades [1] [2].  It regularly bleeds money to accident insurance claims, as well as public 

transportation due to people that take the bus rather than find a spot in a congested lot.  The 

precious time wasted while searching for a parking spot, translated into lost revenue, is also a 

motivation behind the project. This project consists of two distinct systems: 

  

1) A physical system which consists of a scaled-down version of a car (mobile platform) that 

would be able to receive a “Park” command from the user’s Android app, localize itself in a 

parking lot, collaborate with other cars to identify the best possible parking spot, navigate to the 

spot, and avoid any obstacles in the process.  The vehicle would relay its status to the user’s app 

at specific times.  Upon receiving the “Return” command, the vehicle would then exit the parking 

spot and navigate to the parking lot exit.  The main focus is on establishing a robust system for 

effective collaboration between vehicles. 

2) A simulation system which helps in showcasing the potential benefits of implementing such a 

collaborative system at a large scale in terms of saving time for the user. Various optimization 

techniques are employed to efficiently plan and schedule the parking of large number of vehicles 

with collaboration and data sharing between vehicles as a central theme.  

 

3. Use case  
 Black Friday, the day after Thanksgiving, is one of the nation’s largest shopping days.  

Customers line up, and sometimes camp, outside stores hours before they open in hopes of getting 

the best deals on the latest releases.  So many people attend that it causes a 63% increase in parking 

lot traffic (Figure 3.1) (INRIX, 2015).  Parking lots are already incredibly dangerous, causing 20% 

of vehicular accidents.  With the increase in traffic and the palpable stress, these numbers can 

increase dramatically. 

 

 Kris has been eyeing the latest game system for a while now and has been waiting for the 

Black Friday discount to purchase it.  The stores open at midnight, so Kris arrives at 11:30 PM.  

Without the use of the AutoPark system, Kris is forced to search for a parking spot without 

assistance.  Just after entering the lot, another driver cuts Kris off and takes her spot.  A few minutes 

later, Kris is fooled by a small Fiat parked too far forwards in a spot.  The next free spot has been 

blocked by a shopping cart (Figure 3.2).  Kris is then nearly hit by a car reversing from a spot.  

Finally, at 12:17 AM, Kris finds a spot far away from the entrance of the mall and begins the long 
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walk to the entrance.  47 minutes after driving into the parking lot, she finally enters the store and 

begins to fight her way towards the gaming section. 

                       

 Figure 3.1                                                  Figure 3.2 

 Had Kris used the Virtual Valet app with the AutoPark system installed in her car, she 

could have entered the parking lot at 12 AM, pulled up to the entrance of the mall, pressed “Park” 

on the Virtual Valet app (Figure 3.3) and entered the mall a mere 3 minutes after entering the lot.  

While Kris was entering the mall, the AutoPark system on her vehicle would initiate 

communication with the other AutoPark vehicles in the parking lot.  The vehicles would send Kris’ 

car information regarding what spots are free and the current path of any vehicle moving in the 

parking lot (Figure 3.4).  Kris’ car would use that information to find a free spot closest to where 

it will be picking Kris up (Figure 3.5).  It will also factor in the other vehicles moving in the lot to 

avoid creating too much traffic in one area and congesting the lot (Figure 3.6).  Once it has decided 

on both a spot and a path, it will relay this information to other vehicles in the parking lot (Figure 

3.7) so future vehicles can also make informed decisions. 

 

 

Figure 3.3 
 

Figure 3.4 
 

Figure 3.5 
 

        Figure 3.6 
 

Figure 3.7 

 

 Similarly, when Kris is ready to leave, she can simply press “Return” on the app.  The app 

will notify her when the car is ready for pickup, and she can promptly enter her car and leave the 

lot within 5 minutes.  Without the use of the AutoPark system, Kris would be leaving the mall at 

a much later time, caused by the earlier delay in finding a parking spot.  She would then have to 

remember where she parked her car, and walk the length of the parking lot, weighed down by her 

purchases.  Finally, once she has entered her car, she would have to wait for a break in traffic to 

exit her parking spot, and then slowly make her way out of the lot, battling traffic along the way.  

The entire procedure would take approximately 25 minutes.  Clearly, the AutoPark system saves 

the user time and stress and creates a safer parking system for everyone. 
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4. System Level Requirements 

 The system-level requirements are categorized as Mandatory (M) or Desirable (D), as well 

as Functional (F) or Nonfunctional (N).  The requirements are meant to be read as “The system 

shall…”, followed by the requirement.  The performance metric(s) detail how the requirements 

can be validated.  Furthermore, the subsystem column shows which of the following subsystems 

the requirement applies to Communication (P2P or Bluetooth), Perception, Mobile Platform, 

Software, or Control. 

 As with any project, the requirements have changed several times over the year and the 

final requirements are shown in the tables 1-4.   

 

Table 1: Mandatory Functional (MF) System Level Requirements 

ID Requirement Performance Metric(s) Subsystem 

MF.1 

Receive "Park" and "Return" 

commands from user via smartphone 

app 

95% of messages will be received. 
Communication 

(Bluetooth) 

MF.2 
Share parking spot related data with 

other vehicles. 

Establish communication with other 

vehicles within the 10mx10m test 

area. 

90% of messages will be received. 

Communication (P2P), 

Perception 

MF.3 
Navigate autonomously through 

parking lot. 

100% of navigation will be 

autonomous. 
Mobile Platform 

MF.4 Follow optimal route to exit. 
The vehicle will maintain a velocity 

between 0 and 10 cm/sec. 

Mobile Platform, 

Software 

MF.5 Park inside parking spot. 

Park 100% within a parking spot 

within 2 attempts.  Be within 35º of 

parallel with the neighboring vehicles 

or the lines of the spot, as applicable. 

Mobile Platform, 

Perception 

MF.6 Exit parking spot 
Exit the spot within 2 attempts 

without collision. 
Mobile Platform 

MF.7 Sense obstacles in the environment. 
Avoid obstacles between 10-50 cm 

high and 10-120 cm wide. 

Mobile Platform, 

Perception 

MF.8 Avoid infrastructure 

The vehicle will maintain a distance 

of 30.48 cm (1 ft.) between itself and 

the parking lot infrastructure. 

Mobile Platform, 

Perception 

MF.9 Stop in the event of an emergency 

Stop within 3 seconds of an 

emergency (obstacle or internal 

vehicle error). 

Mobile Platform, 

Perception 
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MF.10 

Software simulation to showcase 

effective planning and scheduling of 

cars inside a parking garage 

Performs significantly better in terms 

of average park time, pause time and 

exit time for over 100 vehicles 

Planning and 

visualization 

 

 

Table 2: Desirable Functional (DF) System Level Requirements 

ID Requirement Performance Metric(s) Subsystem 

DF.1 Identify optimal parking spot Identify optimal spot 98% of the time 
Communication (P2P), 

Software 

DF.2 Plan optimal route to spot 
Optimal path is chosen 90% of the 

time 
Software 

DF.3 Follow optimal route to spot 
Vehicle maintains a velocity between 

0 and 10 cm/sec 

Mobile Platform, 

Software 

DF.4 Avoid other vehicles 

Vehicle maintains at least 60.96 cm 

(2 ft.) between itself and the back of 

another moving vehicle 

Mobile Platform, 

Perception 

 

 

Table 3: Mandatory Non-Functional (MN) System Level Requirements 

ID Requirement Performance Metric(s) Subsystem 

MN.1 
Use smartphone app to display vehicle 

status 
95% of messages are received 

Communication 

(Bluetooth) 

MN.2 
Communicate reliably between local 

vehicles 

The network will be able to handle 

collaboration between 3 vehicles 
Communication (P2P) 

MN.3 Efficiently exits the parking spot 
Will take no more than 45 seconds to 

exit the parking spot 

Mobile Platform, 

Perception, Software 

MN.5 
Make minimal changes to 

infrastructure 

There will be ZERO changes to the 

infrastructure 
N/A 

MN.6 Be within stipulated budget Budget is $4000 N/A 
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Table 4: Desirable Non-Functional (DN) System Level Requirements 

ID Requirement Performance Metric(s) Subsystem 

DN.1 Maintain scalable network of vehicles 
Network is able to accommodate at 

least 3 vehicles 
Communication (P2P) 

DN.2 Efficiently enter the parking spot 

Vehicle backs into parking spot 

within 2 attempts 

Vehicle takes no more than 45 

seconds to back into spot 

Mobile Platform 

 

 

 

5. Functional Architecture 

 

5.1  Physical System 

 

The system is represented in the functional architecture, as seen in Figure 5.1.  The inputs 

to the system are a pre-loaded map, the “Park” command from the user, and the “Return” 

command from the user.  The outputs from the system are the “Car Parked” and “Car Returned” 

statuses to the user. 

The entire flow can be divided into two phases: Park and Return.  The structure of the 

flow diagram is based on the “Sense-Plan-Act” design. 

  

In the Park phase, the vehicle receives a “Park” command from the user via the Android 

app and navigates to the entry queue, continuously localizing itself in the environment.  It 

queries other vehicles in the parking lot for information needed to plan its route to the optimal 

spot.  On selecting the best spot based on this data, it plans its route to the spot and starts 

navigation.  Localization data is needed to continuously update the path planner and if obstacles 

are encountered along the way, the path is modified accordingly.  Upon reaching the spot, the 

vehicles parks in the designated spot, sends a “Car Parked” status to the user, and waits for the 

return command from the user. 

  

In the Return phase, upon receiving the “Return” command from the user, the vehicle 

plans the optimal route to the exit based on its current location and the data provided by other 

cars regarding the conditions in the parking lot.  It starts navigating towards the exit, sensing 

obstacles along the way and sending a notification to the user once it reaches the exit queue. 
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Figure 5.1- Functional Architecture 

 

5.2 Simulation System 

 

The functional architecture for the simulation system is depicted in figure 5.2. 

 

 
Figure 5.2 Overview of Simulation Functional Architecture 

The simulation system is initiated whenever a vehicle enters the parking lot in the 

visualization. The new car is added to a queue and the rendering engine queries the global planner 
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regarding which spot should be designated to the new entrant. The global planner receives 

information regarding the current state of the all the spots in the lot and uses this information to 

update the cost of each spot in the parking lot.  

 

After this update, the global planner queries the local planner regarding costs of specific 

spots. This query is needed to take into account the cost to reach a spot given the current condition 

of the parking lot. The local planner returns the cost associated with the spot and the global planner 

uses this to find the best spot in the parking lot. This information is relayed to the rendering engine. 

  

The rendering engine, having received the spot the car in the queue should park at, queries 

the local planner for a path to reach that spot. The local planner returns a path to the rendering 

engine which is used to park the car in the designated spot. When a car queries the simulation 

system, the rendering engine queries the local planner for a path from the current location of the 

car to the exit.  

 

 

 

6. System-level trade studies  

6.1 Single Board Computer (SBC) 

 A powerful single board computer is a fundamental requirement to implement autonomy 

and create a collaborative network between various robots in a system.  The processing unit needs 

to handle Ubuntu 14.04, ROS navigation and planning algorithms, a vision system, and networking 

with other platforms all running in parallel.  To perform these tasks, it is important to choose a 

single board computer, which has capable enough hardware, in terms of processing power, RAM, 

etc., and supports other peripherals, such as a Kinect, XBees etc. For these reasons, performance, 

ease of integration, and support of peripherals have the highest weights in the trade study.  Cost is 

an important factor because the system will require multiple units of these single board computers 

[3]. The comparison is depicted in table 5. 

 

Table 5 – Single Board Computer Trade Study (Point Scale: 0-10) 

Criteria Weights 
Raspberry 

Pi 2 
Edison 

BeagleBone 

Black Rev C 
Odroid XU-4 

Asus 

N3150IC 

Performance 25 6 10 4 10 10 

Cost 10 10 4 7 6 8 

Documentation 15 9 5 7 7 8 

Ease of Integration 20 8 4 8 8 9 
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Peripheral 20 5 7 5 7 10 

Availability 10 10 10 10 10 10 

Total  7.5 6.9 6.4 8.2 9.3 

 

6.2. Point-to-Point Communication 

 One of the core technologies that the project is intended to showcase is point-to-

point communication between multiple vehicles.  Additionally, the project will demonstrate how 

the vehicles can utilize shared data to collaborate in an effective manner.  The network technology 

used to carry out this operation will have a huge impact on the implementation technique and 

overall performance of the system.  Eliminating a central server is a non-negotiable requirement 

of the user, which is why cloud computing and wireless distributed computing are the two point-

to-point communication options.  Since this network will be supporting collaboration between real 

time systems, low latency is a major requirement.  Owing to the short timeline of the project, ease 

of implementation will play a critical role in getting the system up and running within the given 

timeframe [4] [5]. The comparison is depicted in table 6. 

 

Table 6 – Point-to-Point Communication Trade Study (Point Scale: 0-10) 

Criteria Weights Cloud Computing Wireless Distributed Computing 

Range 15 10 7 

Reliability 15 10 8 

Bandwidth 5 10 8 

Latency 25 6 9 

Cost 5 8 8 

Ease of 

Implementation 
25 7 9 

Scalability 10 8 6 

Total  8.0 8.2 

 

6.3. Communication Hardware 

To implement the point-to-point communication system, each mobile platform needed a 

hardware to establish and join a network. The hardware that were considered were point-to-point 

WiFi routers like the Bullet 2HP[6] and the XBee [7] routers following the Zigbee or the Digimesh 

protocol. The key features desired in the communication units were - support for mesh networking, 
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good indoor range, high bandwidth and robustness. All hardware that operated in the unlicensed 

frequency range were considered while selection. The comparison is depicted in table 7. 

Table 7 – Communication Hardware Trade Study (Point Scale: 0-10) 

Criteria Weights XBee Pro 900 XBee Pro Bullet 2HP 

Low Frequency 5 10 7 7 

Mesh Networking 40 10 10 5 

Range 20 7 3 5 

Reliability 20 5 5 9 

Bandwidth 5 5 5 9 

Form Factor 10 7 7 3 

Total  7.85 6.9 5.9 

 

The XBee Pro 900 proved to be better than the WiFi based Bullet 2HP.  One of the key 

advantages it possessed, in addition to a longer indoor range and low frequency, was the inbuilt 

mesh networking feature. Hence, the XBee Pro 900 was selected as the communication hardware 

for the project. 

 

 

6.4. Mobile Platforms 

 

The mobile platforms are the most critical component of the project. The mobile platforms 

are a central dependency for the project as every subsystem would be integrated with the platforms 

in terms of hardware and software. The team therefore considered the option of creating a platform 

from scratch to better suit the requirements or buy an off-the-shelf platform. The trade study is 

depicted in table 8. 

 Table 7 – Mobile Platform Trade Study (Point Scale: 0-10) 

Criteria Weight Custom 

Platform 

Oculus Prime Pioneer Husky 

Time To First Use 15 5 8 9 6 

Cost 25 6 8 7 1 

Non-Holonomic 

Steer 

10 9 5 5 5 
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ROS Support 20 1 9 7 9 

Support 

Documentation 

10 1 8 7 8 

Form Factor 10 8 8 8 5 

Hardware 10 7 8 5 7 

Total  4.95 7.9 7.3 5.85 

 

The trade study showed that the Oculus Prime was a superior platform in terms of the 

support it has form the ROS community and the support documentation provided from the 

manufacturer. Hence, the team decided to go ahead with the Oculus Prime platform. 

 

7. Cyber-Physical Architecture  

The system can be divided into 5 main subsystems, as seen in Figure 7.1.  The hardware 

and software interaction between these subsystems is detailed below. 

 

Figure 7.1: System Overview 

7.1 Hardware Architecture 

 The mobile platform houses all the major subsystems, apart from the mobile app, which 

exists on the user’s Android phone.  Currently, the mobile platform uses an Intel Desktop Board 

which is running Xubuntu 14.04 and ROS Indigo.  The platform also has a depth sensor (Xtion 

Pro) for mapping, localization and navigation. The DigiMesh XBee and Bluetooth 4.0 adapters are 

connected via USB to the SBC and act as Serial Ports for communication.  The Oculus Prime 

platform comes with a power distribution board that accepts 12V from the LiPo battery and then 

powers the DC Motors and the SBC through it (Figure 7.2). 
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Figure 7.2: Hardware Architecture 

7.2 Software Architecture 

 The software architecture (Figure 7.3) is based on the simple principle of sense, 

think, and act, denoted by Perception, Planning, and Control.  Perception helps in interfacing with 

the environment and getting raw data, which then gets processed by Planning.  Planning carries 

out path planning, localization, and uses the point cloud data to detect various objects in the vicinity 

of the robot.  All of this information is then further transmitted to Control, where the robot carries 

out locomotion and also collaborates with other robots by sharing relevant data.  The emergency 

node helps in bringing the robot to a halt in case of internal failures or the presence of an obstacle. 

 

Figure 7.3: Software Architecture 
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8. System Description and Evaluation 

 

8.1 Subsystem Description 

 An overview of the current subsystems of the project is discussed in this section.  The team 

focused on covering a larger breadth in subsystems so as to develop a good foundation for the 

spring semester.  In addition to laying the groundwork in all of the subsystems, the team also 

worked on integrating all of the systems capabilities. 

8.1.1 Android – ROS Bluetooth Communication 

 The Android application developed for this task utilizes the Bluetooth adapter present in 

the smartphone to establish communication with the single board computer, which is running ROS.  

This bidirectional communication requires a server, client, and a service with a specific protocol 

through which all this interaction takes place.  This specific subsystem can be broken down into 

two main parts: 

● Android Application 
The Android app developed utilizes the BluetoothChatService provided by Google for 

developers.  This chat service helps to establish and manage connections with remote devices by 

running the appropriate threads.  Data is sent from the app to the SBC whenever the user presses 

the Park or Return buttons on the app.  The data received by the app is used to update the status 

and initialize the timer.  The app can be made to connect with any Bluetooth device by entering 

the appropriate device name during startup.  The app can be seen in Figure 8.1 and 8.2. 

 

Figure 8.1: Vehicle is Parking 

 

Figure 8.2: Vehicle has Returned 

● ROS Node 
The ROS Node running on the SBC communicates with the Android app by advertising a 

Bluetooth service to which the app can subscribe.  All this is done through an RFCOMM socket 

port.  Once this connection is established, the node starts two threads for sending and receiving 
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data. These two threads have two ROS topics associated with them which the other nodes can use 

to push and pull data via Bluetooth.   

8.1.2 Mobile Platform 

 The Oculus Prime platform, depicted in Figure 8.3, is the most suitable platform for the 

project needs.  The platform is developed by a Canada-based company, Xaxxon, and is primarily 

used by the ROS community for surveillance related applications.  The platform is made of ABS 

plastic with mounts for the Xtion, Microsoft LifeCam, four motors and external peripherals 

(spotlights, speakers etc.). 

 

Figure 8.3: Oculus Prime Platform 

 The Oculus Prime is powered by a 5000 mAh battery and a dedicated power management 

unit which supports onboard charging and voltage sensing.  A charging dock is used to charge the 

battery without removing it from the chassis.  The motor control board, MALG (Motors Audio 

Lights Gyro), is an ATMEGA 328 based microcontroller.   

8.1.3 Single Board Computer 

 The single board computer runs the entire communication and planning subsystem.  As per 

the current routine, the system gets triggered by a user command sent via the Android app.  This 

command gets relayed to the decision unit through the Mobile App node.  If a “Park” command is 

received, the platform sends a request to nearby platforms, asking for a destination.  This is then 

transmitted to the Locomotion Node as a waypoint.  The Locomotion Node is connected to the 

Oculus Prime server and is able to control the platform.  The Locomotion Node also keeps a track 

of whether or not the platform has reached its destination, publishing this data back to the decision 

unit so that it can be sent back to the app through the Mobile App node. 

8.1.4 Mapping, Localization and Navigation: 

ROS gmapping, which uses a Rao-Blackwellized particle filter based SLAM algorithm, is 

used to map the entire parking lot structure. Following the mapping, the map is refined using 

bitmap editor.  ROS AMCL (Adaptive Monte-Carlo Localization) is used to localize in the parking 

lot using wheel encoders and gyro for odometry and depth data for particle filtering. For path 

planning the DWA (dynamic window allocation) planner is used. The planner first finds a feasible 

trajectory to the goal location and then uses the shooting-method to shoot out different control 

actions which are evaluated using value iteration on different criterion.  
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The locomotion node communicates with the Oculus Prime server running on the SBC via 

TELNET.  Its functions include feeding waypoints to the platform which are translated into 

platform control commands using all the different ROS packages stated above.    

 

8.1.5 Collaboration and Communication: 

 The communication node running on the SBC uses DigiMesh XBee adapters to exchange 

serial data over 900MHz to collaborate with other platforms.  The architecture for the system is 

depicted in Figure 8.4. 

 

Figure 8.4: Collaboration Architecture 

 The data packets are encoded using a custom format that includes vehicle ID, data length, 

and checksum (Figure 32 and Figure 33), which is used to determine the origin and ensure the 

integrity of the data.  The current data being sent is a list of all the vehicles and their status within 

the lot (in queue, parking, parked, returning, or returned)  and a list of the waypoints taken by each 

moving vehicle.   

 The collaboration node is used to choose the most optimal spot and the path to that spot.  

It is sent a list of spot options and a list of the waypoints being followed by the currently moving 

vehicles.  The spot options list can either be all the free spots in the parking lot or the pre-selected 

spot.  A spot is pre-selected in two instances - when the vehicle is exiting or when a virtual is 

added, because it is added to a user-selected spot.  When the spot is pre-selected, the collaboration 

runs an A* planner to find the best path to the spot.  The spot and path are returned from the 

collaboration node.  When there is a list of spots, the A* planner is run on the top 10 spots in the 

list, where the top 10 is determined by the 10 spots closest to the exit.  The A* planner returns the 

path and the resulting f-score of the path.  The spot and path with the lowest f-score are returned 

from the collaboration node.  In either case, the path is returned in the form of waypoints for the 

vehicle to travel to. 

 The A* planner is a modified version of the traditional A* in three respects.  First, there is 

an added corner cost.  This is because the platform does not have accurate turns and thus should 

make as few turns as possible.  The second modification is to the g-cost.  Instead of using a 

traditional distance map with the same cost in each square, the distance map is overlaid with the 
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paths of any other vehicle moving in the parking lot.  This discourages the planner from choosing 

overlapping paths.  There were several different ways the cost of a path could be added to the 

distance path.  For example, it could be a simple “1” or “2” added, or the cost of the path could be 

higher at the entrance and lower at the spot, or vice versa.  After testing several scenarios, it was 

determined that adding a “2” along the path creates the best avoidance, without causing the vehicle 

to take long or winding paths.  The third modification to the A* planner is that the heuristic is not 

the distance between the current location and the goal, but the distance between the current location 

and the parking lot exit.  This causes a higher overall f-score for the spots farther away from the 

exit and a lower overall f-score for the spots closest to the exit, thereby encouraging a spot close 

to the exit to be chosen. 

8.1.6 Visualization 

 A GUI was created to easily visualize and actively track the state of the occupancy map.  

Various elements in the environment such as the mobile platform, origin, destination, paths, etc., 

when visualized through a graphical user interface, can aid in achieving a better understanding of 

the working of the overall system.  This is done by rendering a 10x10 grid and overlaying different 

shapes on top to signify the origin, destination, and current location of the platform.   

 In Figure 8.5, the vehicles are depicted by their number.  Parking vehicles are depicted as 

a number in their intended parking spot, colored lines going from the entrance to the spot, and the 

same vehicle number in the entrance queue in a colored circle matching the color of the path 

(example: vehicle 6).  Parked vehicles are shown with a number and colored circle in their spot 

(example: vehicle 2).  Returning vehicles are shown a number in their parking spot, colored lines 

going from the spot to the exit , and the same vehicle number in the exit queue in a colored circle 

matching the color of the path (example: vehicle 1). 

 

Figure 8.5: Occupancy Map GUI 

 The GUI is also capable of adding and removing virtual vehicles from the parking lot.  This 

enables the creation of more complicated scenarios to enable more thorough testing.  When a 

virtual vehicle is added, the path to the spot is calculated and broadcast over the communication 

system.   
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8.1.7. Simulation Subsystem 

The main purpose of the simulation subsystem is to apply different planning and scheduling 

methods to prove the effectiveness of collaboration in selecting optimal parking policies for more 

than a hundred vehicles arriving and exiting at random instances of time. The simulation subsystem 

was implemented using ROS and the detailed simulation architecture is shown in figure 8.6. 

 

Figure 8.6 Simulation System in Action 

 

The simulator was divided into four major sections whose details are specified below: 

 

Global Planner: This planner is responsible to rank and assign costs to parking spots based 

on multiple heuristics. The decision to assign a spot to the car is made by this unit. This information 

is then relayed to the simulation engine to be processed and rendered in the environment. This 

planner takes into account the static costs base of a spot in the parking lot (distance to exit[9], 

nearby occupied spots) as well as the dynamic costs associated with selecting a spot (cost to 

navigate to the spot, cars in queue and time of the day). 

 

Local Planner: It is a custom Astar lattice based planner which returns a path and path 

cost for a query from either the rendering engine or global planner. The planner takes into account 

the distance from obstacles while planning and uses an ackerman steer  motion model for motion 

primitives. The planner relays a dynamic cost to the global planner associated with navigating to 

a spot. It relays a path to the rendering engine between the queried points. 

 

mabPlanner: In order to generate a globally optimal policy for parking vehicles, a trade-

off between exploration and exploitation is required. Also, the heuristic based planner does not 

take into account the random process of arrival and exit of vehicles. Hence, a multi-armed bandit 

approach was employed which uses UCB1 arm pulls as a one step look-ahead policy. To 

implement this, the parking lot is divided into four different areas and each area is evaluated on 

the actual average time to park and exit in the area . Whenever a car enters the parking lot, it is 

assigned a one-step lookahead based on a UCB1 policy after which the default heuristic policy is 
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followed in that area. When the car parks or exits, the statistics for that area are updated. Since the 

distribution is non-stationary, a discounted approach is employed. This online planning helps to 

significantly improve the park, pause and exit times. 

 

Rendering Engine: It accepts the data from other nodes to render an environment showing 

the state of all the vehicles in the parking lot. RVIZ markers are used for the visualization of 

different vehicles and their paths. It also updates the other systems with the real-time state of the 

lot so that planning can take the dynamic environment into account. The rendering engine also run 

a Numerical Optimization to switch places of cars based on a tradeoff between cost minimization 

and reward maximization. The cost in this case is the addition to entropy of the system and the 

reward is reduction in return times. 

 

8.2. Testing 
 The following is a list of step-by-step testing and analysis for different subsystems: 

8.2.1 Android App 
● Android app is able to establish a reliable serial connection to single board computer via 

Bluetooth with repeatability. 

● Sending and receiving of commands with ROS node was tested to work without failure. 

● Testing with garbage commands being sent, like letters or anything outside of the defined 

protocol, to ensure that an incorrect response was not elicited from the ROS node and/or 

app. 

● Testing with untimely data sent to the app such as sending “Parked” status when it was 

“Returning” to ensure the system does not fail and an incorrect response is not produced. 

● App GUI tested to ensure that disabled buttons cannot be pressed and the status of the 

vehicle changes as required. 
 

8.2.2 Communication 

The following tests were performed using two XBee Pro 900 adaptors: 

● Range Test: 100% of messages received in 15 feet range. 
● Speed and Latency Test: 

Test – Time stamped 100-element integer list (502 bytes) sent serially. 

Result – Transmission time of 1.8 seconds observed. 

● Establishing Connection: Connection is established instantaneously without the need for 

authentication. 
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8.2.3 Mobile Platform Locomotion 
 

The following tests were performed on Oculus Prime to ensure robustness of the 

Oculus Prime Server: 

 

● Ensuring mobile platform is fully functional on software and hardware end via 

teleoperation commands sent through HTTP interface. 
● Testing of Oculus Prime Telnet API by teleoperation through Telnet command interface. 
● Testing whether odometry is functional through Telnet command interface. 

 

8.2.4 User Interface and Communication Integration 
 

The following validation tests were performed on User Interface to ensure it 

works well with the Communication Subsystem: 

 

● The user interface displays the data communicated by the XBees. Specifically, it shows 

the state of each vehicle in the network. 

● Virtual vehicles added through the interface become a part of the network. 

● Path computed by the A* planner gets properly overlayed in the User Interface 

 

 

8.2.5 Waypoint Navigation Accuracy 
 

The following tests were performed to generate metrics for platform’s localization 

and navigation performance: 

● Give waypoints through the web interface to go from a fixed spot A to fixed spot B and 

observe the planned and executed trajectory. 

● Give waypoints through the Python script to go from a fixed spot A to fixed spot B and 

observe the platform’s motion. 

● Measure the inaccuracies, if any, between the desired and actual destination. 

 

8.2.6 Simulation Environment 
 

The performance of our planner and the greedy first-spot approach (Greedy 1) and 

closest spot to exit (Greedy 2) were compared in the simulation environment. In our 

planner, the heuristics only and multi-armed bandit approach were tested. The approaches 

were compared based on three criteria- average time to park, average time to exit and the 

average pause time of each vehicle. The average pause time denotes the time a vehicle 

stops inside the parking lot due to congestion. Minimizing each of these times reflects a 

good planning strategy, as can be seen in figure 8.7. 
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Approach Average Parking 
Time (seconds) 

Average Pause Time (seconds) Average Return Time 

 (seconds) 

Greedy 1 33.52  23.57  28.64  

Greedy 2 36.85 25.72 31.92 

Heuristics Only 23.31 17.17 26.62 

Multi Armed 
Bandit Approach 

12.5 15.37 15.6 

Figure 8.7: Comparative Results 

 

8.2.7 Final System Integration 

 The final system was tested using all systems, as seen in Figure 8.7: Full System 

Integration.  The app was used to initiate the park sequence on the first vehicle.  A secondary XBee 

connected to the UI informed the vehicle of all available spots.  The vehicle interpreted this 

information to choose the most optimal spot.  This information was communicated over XBees 

and reflected in the UI.  While traveling to the destination, an obstacle was detected and avoided.  

The vehicle continued to the original destination.  While the first vehicle was parking, the second 

vehicle received the park command from the app.  Via XBee, it received information regarding the 

free parking spots and the path being taken by the first vehicle.  The second vehicle chose a spot 

and a path to the spot that avoided the first vehicle.   This was also communicated and shown in 

the UI.  When each vehicle reached its destination, it communicated this information over XBees 

and the UI showed the new status of the vehicle. The process was repeated for the return sequence. 

 

 

Figure 8.8: Full System Integration 
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8.3. Performance Evaluation against the Spring Validation Experiment (SVE) 
 

8.3.1. SVE Demo 1 
 

Table 8: SVE Demo 1 Tasks and Performance 

Task Success Criteria Performance in SVE 

“Park” command sent to the first 

mobile platform using the Android 

app 

LED Blinks to indicate command 

received, UI shows updated vehicle 

destination and path 

Task completed successfully at 

SVE and SVE Encore 

First vehicle begins locomotion 

towards optimal spot upon 

receiving the command 
Vehicle moves forward 

Task completed successfully at 

SVE and SVE Encore 

“Park” command sent to the second 

mobile platform using the Android 

app 

LED Blinks to indicate command 

received, UI shows updated vehicle 

destination and path 

Task completed successfully at 

SVE and SVE Encore 

Second vehicle begins locomotion 

towards spot near entrance while 

avoiding path of first vehicle upon 

receiving the command 

Vehicle moves forward 
Task completed successfully at 

SVE and SVE Encore 

First vehicle parks in intended spot 

Vehicle parks without colliding 

with infrastructure.  Avoids any 

obstacles encountered.  App and UI 

update vehicle status. 

Task completed successfully at 

SVE and SVE Encore 

Second vehicle parks in intended 

spot 

Vehicle parks without colliding 

with infrastructure.  Avoids any 

obstacles encountered.  App and UI 

update vehicle status. 

Task completed successfully at 

SVE and SVE Encore 

“Return” command sent to the first 

mobile platform via the Android 

app 

Vehicle exits spot, plans and 

follows path to exit without 

colliding with infrastructure. 

Task completed successfully at 

SVE and SVE Encore.  Vehicle 

brushed against wall. 

“Return” command sent to the 

second mobile platform via the 

Android app 

Vehicle exits spot, plans and 

follows path to exit without 

colliding with infrastructure. 

Task completed successfully at 

SVE and SVE Encore. 
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8.3.2. SVE Demo 2 
 

Table 9: SVE Demo 2 Tasks and Performance 

Task Success Criteria Performance in SVE 

Launch file shall be started to run 

the simulation on Greedy and 

Autopark approach 

Autopark planner should perform 

better than greedy approach in 

terms of time i.e Average time to 

park in of the Autopark planner is 

lesser than the greedy approach. 

Task completed successfully at 

SVE and SVE Encore 

A random pattern of arrival and 

departure times for the vehicles will 

be created. 

Markers should appear and 

disappear at the appropriate time. 
Task completed successfully at 

SVE and SVE Encore 

RViz will display the environment 

and start rendering vehicles as per 

the data being received from the 

rendering engine. 

Markers shouldn’t overlap with 

each other. 
Task completed successfully at 

SVE and SVE Encore 

 

8.4 Performance Evaluation with respect to Function and Performance 
Requirements 

● Functional Requirements Validated at SVE 

o Receive “Park” and “Return” commands from user via smartphone app 

 (MF.1) 

▪ The requirement was successfully validated at SVE by demonstrating ROS 

framework to accept commands from smartphone app via Bluetooth.  Upon 

receiving “Park” or “Return” command successfully, an indicator LED 

blinks and the UI and App show the updated status of the vehicle. 

o Share parking spots states with other vehicles (MF.2) 

▪ Bidirectional communication with multiple XBees in a scalable network 

with mesh topology was demonstrated to work successfully between two 

mobile platforms and one laptop acting as the UI. 

o Navigate autonomously through parking lot (MF.3) 

▪ Vehicles navigated throughout parking lot without human interference. 

o Follow optimal route to exit (MF.4) 

▪ Vehicles planned and executed the shortest path between their parking spot 

and the exit. 

o Park inside a  parking spot (MF.5) 

▪ Vehicles parked completely within a designated parking spot. 

o Exit parking spot (MF.6) 

▪ Vehicles exited parking spot without human interference. 

o Sense obstacles in the environment  (MF.7) 

▪ Obstacle was detected and avoided. 

o Avoid infrastructure (MF.8) 

▪ Vehicle detected infrastructure and lightly brushed against it in one 

occasion due to faulty localization. 

o Stop in the event of an emergency (MF.9) 
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▪ Vehicle avoided detected obstacle and had no need to stop. 

o Simulation to show collaborative planning and scheduling of over 100 cars 

(MF.10) 

▪ Notable improvement was observed in Park, Return and Pause times of the 

vehicles 

o Identify optimal parking spot (DF.1) 

▪ Optimal spot was identified each time. 

o Follow optimal route to spot (DF.3) 

▪ Vehicles planned direct routes and avoided other vehicles 

o Avoid other vehicles (DF.4) 

▪ Vehicles did not collide and followed minimally overlapping paths to 

ensure there were no congested areas. 

● Performance Requirements Validated at SVE 

o 95% of messages are received 

▪ Requirement validated successfully as all Bluetooth messages were 

successfully sent and received. 

o Establish communication with other vehicles within the 10mx10m test area.  

90% of messages will be received and 80% correctly parsed 

▪ All vehicles were able to send, receive, and parse 100% of the messages 

sent between the three XBees. 

o 100% of navigation will be autonomous 

▪ All navigation was performed autonomously. 

o Exit parking lot within 120 seconds of receiving command 

▪ Vehicles exited parking lot within 30 seconds of receiving command. 

o Park 100% within a parking spot within 2 attempts 

▪ Vehicles exited parking spot on first attempt. 

o Exit the spot within 2 attempts without collision 

▪ Vehicles did not collide while exiting the parking lot 

o Detect obstacles between 10-50 cm high and 20-120 cm wide 

▪ Requirement validated successfully in SVE by mobile platform avoiding 

detected obstacle. 

o Maintain a distance of 10-15 cm  between vehicle and infrastructure 

▪ Vehicles largely maintained this distance, although came closer on some 

instances.  This was due to the size of the parking spots and faulty 

localization. 

o Stop within 20 cm of a static obstacle 

▪ Requirement is no longer valid.  However, vehicle planned path around 

parking lot, which is a more appropriate requirement. 

o Distance between spot and exit is shortest amongst all available spots 

▪ Requirement was validated by vehicles parking in most optimal spot 

o Park in spot within 120 seconds of receiving command 

▪ Vehicles parked within 60 seconds of receiving command. 

o Vehicle maintains at least 60.96 cm (2 ft.) between the front of one moving 

vehicle and the back of another moving vehicle 

▪ Vehicles planned paths to avoid one another. 
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8.5 System Strength and Weaknesses 

8.5.1. Strong Points 

 One of the greatest strengths of the system is that the subsystems are largely modular and 

can be applied to various parking lots and scenarios.  Listed below are the subsystems and 

advantages: 

● Communication System is decentralized and does not alter the infrastructure in any way. 
● Simulation System is scalable to any larger parking lot of varied dimensions. 

● Owing to the modular software architecture, the global planner and local planner are 

replaceable with any other planners that interface with the rendering engine in the same 

way. 

● Planning in simulation explores the multi-armed-bandit approach instead of weight tuning. 

● Android app is functional and enables easy user interaction with system. 
● The team has modular obstacle detection capabilities developed and ready to be integrated 

as an alternative to ROS based obstacle avoidance. 

● Communication subsystem is robust and has sufficient indoor range. 
● Oculus Prime mobile platform provides versatile capabilities and its ROS packages aid in 

developing the localization and planning subsystem. 
● The mock parking lot created easy to assemble and its dimensions remain consistent with 

the map. 
 

8.5.2. Weak Points 

 Listed below are the subsystems and disadvantages: 

● The system has many single points of failure, specifically in terms of hardware like the 

power distribution board and the actuator control board.  Moreover, the dependency on 

Oculus Prime custom hardware affected timelines in case a replacement part was needed 

immediately as the manufacturer is based in Canada, which further increases lead times.   

● The vision system on the platform is not robust which further affects the localization of the 

platform. The symmetric nature of the parking lot further worsens this problem. 

● The planner on the platform currently relies on the Dynamic Window Approach which 

causes the platform to get stuck when navigating tight spots.    

● The accumulation of the odometry errors on the platform results in the platform getting 

progressively more lost as it traverses in the parking lot.  

● Communication subsystem isn’t an exact implementation of VANET due to which its 

performance under heavy traffic can’t be discerned. 

● Simulation environment fails to capture the true dynamics of a vehicle due to which it 

might exaggerate the results. 

● Relying on a depth camera to generate laser scan adds unnecessary computation load as we 

have to process more data. 

● Oculus Prime doesn’t have Ackerman Steering due to which our planners and actual 

locomotion of the platform are disjoint and need an additional layer of interfacing. 
 

 

9. Project management  
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9.1 Critical Path/Schedule 

The major system development milestones that need to be attained throughout the project were: 

1. Implement a collaborative network to work for multiple platforms 

2. Implement a robust navigation subsystem involving localization, path planning and 

obstacle avoidance for multiple platforms. 

3. Implement an entire simulation system to show effective planning and scheduling of over 

100 vehicles in a parking garage. 

4. Integration of all the subsystems 

 

 Fall Semester Schedule: 

The schedule for fall semester is detailed in the table 10 below:  

 

Table 10: Fall Semester Schedule 

Timeline Goals Milestones 

Progress Review 1: 22-Oct 
Literature studies for various subsystems complete, app GUI 

complete and bluetooth interface with SBC tested 
 

Progress Review 2: 29-Oct Actuator control board and SBC integrated  

Progress Review 3 
Collaboration Software and hardware setup and obstacle 

avoidance software developed 

Sensor control board 

tested 

Progress Review 4 Vision system integrated and map tested  

Fall Validation Experiment 

and Demonstration 
30-Nov  

11/30 - 12/3 Dedicated integration and testing  

Progress Review 5 3-Dec FVE demo complete  

Progress Review 6 10-Dec   

 

 

 

 Spring Semester Schedule 

Table 11: Spring Schedule 

Timeline  Goals Milestones 

01/11 - 01/25 
App is complete in all respects; Repetitive and precise locomotion control; 

Manufacture or acquire more platforms 

Completion of 

Mobile App 

Subsystem 
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PR 7: Late January Multiple partially functional platforms; Fully functional mobile app 
 

01/25 - 02/08 
Navigation works for multiple waypoints; Literature survey for path planning is 

complete; XBee Mesh network tested with multiple platforms  

PR 8: Mid-February 
Mesh Network functional for multiple platforms; Demonstrate robust and 

accurate navigation of platforms 

Completion of 

Communication

/ Collaboration 

Subsystem 

02/08 - 02/22 
Create a graphical user interface to be used for testing and demonstrations; 

Implement obstacle avoidance  

PR 9: Late February Platform travels in 2D from Point A to Point B while avoiding obstacles; 

Completion of 

Navigation 

Subsystem 

02/22 - 03/07 
Design Mock Parking Lot; Make the GUI fully functional and depict the existing 

setup; Create a path planning node and integrate with navigation subsystem  

PR 10: Mid-March 
Platform localizes and navigates in mock parking lot; GUI gets updated and 

shows real-time information 

Completion of 

Path Planning 

Subsystem 

03/07 - 03/21 

Create dummy platforms to collaborate with; Extensively test navigation and path 

planning; Create a point cloud map of the parking lot; Make active platforms 

collaborate 
 

03/21 - 04/04 Make the platform park in and exit spot; Start integration of all the subsystems Start integration 

PR 11: Early April 
Single platform collaborates with dummy platforms and parks itself; Multiple 

active platforms are aware of each other’s presence and avoid collision  

04/04 - 04/18 Testing  and integration 
Wrap-up 

integration 

PR 12: Mid-April Testing 
 

 

 

The project was completed successfully as per the intended schedule. 

9.2 Budget 
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Table 12: Project Budget 

Part Part Number Quantity Cost/Unit           Total Cost 

Oculus Prime (Mobile 

Platform)* 
N/A 

1 purchased, 1 

from MRSD, 1 

from sponsor 

$499.00 $499.0 

ODROID-XU4 N/A 3 $74.00 $222.00 

MinnowBoard Max* N/A 2 $147.00 $294.00 

Arduino Nano v3.0 N/A 3 $15.38 $46.14 

Infrared Sensor 
Sharp 

GP2Y0A21YK 
3 Inventory Inventory 

Asus Xtion Pro N/A 1 $159.99 $159.99 

Miscellaneous (mounts, 

electronics, memory, 

cables) 

N/A N/A N/A $625.99 

DigiMesh XBee Pro * N/A 5 $99.00 $594.00 

MALG PCB XAX-053 3 $55.35 $166.05 

AmazonBasics 7 Port 

USB Hub 
HU2W70E1 2 $15.79 $31.58 

AmazonBasics 4 Port 

USB Hub 
HU3641V1 2 $16.98 $33.96 

Parallax Laser Range 

Finder 
RB-Plx-257 1 $99 $99 

Intel DN2800MT 

Marshalltown Thin Mini-

ITX Motherboard - 

BLKDN2800MT 

Intel DN2800MT 1 $145 $145 

Power Lipo3S PCB XAX-063 3 $48.64 $145.92 

Adata 64GB SSD N/A 1 $52.66 $52.66 

CC Bec Pro- Castle 

Creations 
N/A 3 $20.27 $60.81 

Whitelabel Bluetooth 4.0 

USB Dongle Adapter 
N/A 4 $12.99 $51.96 

Miscellaneous Electronics N/A N/A $500 $500 

Miscellaneous Hardware N/A N/A $150 $150 

Total Budget:    $3878.06 

*big ticket items 
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Evaluation of Budgeting Process:  

The budgeting process was carried out very smoothly with parts ordered in a timely manner 

with sufficient extras. We managed to keep the budget within the maximum amount of $4000 

including all big ticket items. One of the major successes were the backups of the platforms and 

Oculus Prime spare parts which turned out to be extremely critical towards the end of the project. 

One of the major failures was the large number of different SBCs ordered due to inefficient trade 

studies on our part at the beginning of the semester.    

9.3. Risk Management 

The risk management categories are as follows: 

● ID: Number used to reference risk 

● Description: Brief description of the risk 

● Responsible Party: Indicates who is in charge of handling the risk. 

● Risk Analysis: The risk analysis has two numbers representing the ranking of the 

consequence of the risk and the likelihood that the risk will be realized.  It is formatted as 

(Consequence x Likelihood), which can more clearly be seen in Figure 54: Risk IDs 

Charted with Consequence and Likelihood Levels. 

● Area of Impact: Technical, Schedule, Cost, Programmatic 

● Handling Strategy: How the risk will be handled? 

● Status: Open (no work has been done), In Progress (work is being done to mitigate risk), 

Closed (no longer a risk) 

Table 13: Project Risks 

ID Description Owner Risk Analysis Area of Impact Handling Strategy Status 

1 
No Mobile 

Platform 
Mohak N/A 

Technical, 

Schedule, Cost 

Check Status with sponsor regularly, 

Set final deadline for platforms to 

arrive. 

Email list of MPs to sponsor. 

Meet with sponsor. 

Purchase test platform. 

Closed 

2 
Inadequate Mobile 

Platform 
Shivam 3x3 Technical 

Review platform needs 

Only select adequate platform 
Closed 

3 

Unsuitable 

Smartphone 

Interface 

Dorothy 3x2 
Technical 

Programmatic 
Frequent and extensive testing Closed 
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4 
Subsystem 

Incompatibility 
Pranav 5x2 

Technical 

Schedule Cost 

Programmatic 

Research on ROS to ensure 

compatibility. 

Software architecture to ease 

integration. 

Carry out low level cross 

compatibility tests. 

Closed 

5 
Too Many 

Requirements 
Shivam 4x2 

Schedule 

Programmatic 

Trimmed requirements 

Began weekly sprints 

Created Kanban cards 

Closed 

6 
Inaccurate Parking 

Lot and Obstacles 
Richa 1x1 Programmatic 

Analyze parking lots IRL.  Scale to 

match mobile platform 
Closed 

7 
ROS Related 

Issues 
Pranav 5x1 Technical 

Arduino/ROS testing. 

Android/ROS testing. 

ROS-ROS serial communication.   

Closed 

8 
SBC and Platform 

Incompatibility 
Mohak N/A 

Technical 

Schedule Cost 

Programmatic 

Use MinnowBoard Max borrowed 

from Team C 
Closed 

9 

MinnowBoard 

Max Processing 

Power Limitations 

Mohak 5x5 
Technical 

Programmatic 

Test SBC thoroughly to investigate 

other possible problems.  Research 

alternative, more powerful SBCs 

Closed 

10 
Closing Bluetooth 

Port 
Dorothy 2x5 Technical 

Hardcode port number into script.  

Close port by keystroke on SBC 

side.  Close port when app closes on 

Android side 

Closed 

11 

Mobile Platforms 

don't arrive on 

time 

Shivam 4x5 
Technical,Schedul

e,Cost 

Check Status with sponsor regularly, 

Talk to Prof. Dolan regarding 

additional platform. 

Closed 

 

12 
Data latency in 

subsystems 
Team 4x4 Technical Early and Extensive Testing Closed 

13 

Interference in 

Bluetooth 

and multiple 

Xbees 

Dorothy, 

Richa 
4x3 Technical 

Early identification and fixing 

requirements accordingly 
Closed 

14 
Components 

arriving late 
Team 3x5 

Schedule, Cost, 

Programmatic 

Order many extras, ordering well in 

advance, contingency plans and 

immediate action 

Closed 
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15 

Dependence on 

Oculus Prime 

ROS packages 

Pranav 3x3 
Schedule 

Technical 

Alter system design accordingly as 

soon as loopholes or dead-ends are 

identified 

Closed 

16 

Dependency of 

localization on 

mapping 

capabilities and 

parking lot 

complexity 

Mohak 3x2 
Programmatic, 

Technical 

Keep design of parking lot as simple 

and “feature rich” as possible 
Closed 

17 

Multiple points of 

hardware related 

failure in 

perception 

and 

communication 

Shivam, 

Richa 
3x4 

Programmatic 

Technical 

Incremental integration and testing 

during development 
Closed 

18 

Inconsistencies in 

communication 

and planning logic 

Richa 4x1 Technical 
Incremental integration and testing 

during development 
Closed 

19 
Navigation Issues 

in Parking Lot 

Shivam, 

Pranav 
4x3 Technical 

Extensive Testing, Modification of 

Nav. Stack 
Closed 

 

In order to efficiently track the risks, a risk manager was appointed from within the team 

in both semesters and each risk was assigned a risk owner. The high likelihood and consequence 

risks such the mobile platforms not arriving on time, inadequate processing power and navigation 

issues in the parking lot were actively mitigated by the whole team. 

 
Figure 9.1 Risk IDs Charted with Consequence and Likelihood Levels 
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10. Conclusions 
The project was largely successful in demonstrating collaborative parking between mobile 

platforms in the physical world and the advantages of planned parking in simulation. The team 

was able to meet most of its requirement according to the set performance metrics. The team 

created a new way to implement the A* algorithm to avoid creating congestion while maintaining 

optimal placement of vehicles.  Additionally, the team was able to formulate a novel variant of the 

classical ‘Exploration vs Exploitation’ problem that has been extensively discussed in the Multi-

Armed Bandit approach. 

 

10.1 Lessons Learned 

 

The team faced numerous challenges during the course of the project: both technical as 

well as logistical. The project was great learning experience for the team and the critical lessons 

learned are highlighted below: 

 

Technical Lessons Learned 

 

10.1.1 Sensor Placement 

Sensor placement plays a critical role in any system, especially if you intend to localize 

your robot using the sensor; case in point being the placement of the depth camera on the robot. 

The range limitations and the sensor-cone of the depth camera should be taken into mind when 

selecting the sensor and as well while placing it on the robot. This is even more critical while 

running the ROS AMCL (Adaptive Monte-Carlo Localization) as the localization relies on a 2D 

projection of a 3D world.  

 

10.1.2 Generating Plans in Tight Spaces 

The DWA (Dynamic Window Approach) planner essentially performs a forward 

simulation from the robot's current state to predict what would happen if a sampled velocity were 

applied for some period of time. In our case, the DWA planner could not find a valid trajectory 

due to the proximity of the walls to the platform. The team learned that generating plans in tight 

spaces would not work always and the team decided to code its own recovery maneuvers before 

generating plans from the DWA. 

 

10.1.3 Destructive Testing 

This is the most critical lesson that the team learned the hard way- the importance of testing 

your code and hardware for possible failure scenarios. This involves testing code with expected as 

well as erroneous data for prolonged periods of time. Testing the mobile platforms for various 

failure cases such as inaccurate localization and planning-failures also proved to be helpful in the 

long run. 
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Project Management Lessons Learned 

 

10.1.4 Procuring Backups 

The importance of having backups ready to replace faulty components cannot be stressed 

enough. The team invested in backups throughout the project and this paid off in the long run as 

the failed components were swiftly replaced during testing. However, ordering backups of 

components that are useless in the long run can prove to be detrimental to the financial planning 

of the team 

 

10.1.5 Identify Critical Components To The Project 

Certain components, like the mobile platforms, are critical to the execution and delivery of 

any project. It is absolutely essential to identify these components and take a call on them as early 

as possible. Following up on these components should not only be the responsibility of the project 

manager but collective responsibility rests on the team. The team faced further delays in receiving 

one of its platforms due to a misunderstanding in ordering which makes it even more necessary 

for the team to actively track such components. 

 

10.1.6 The ‘Knock-it-off’ Point 

One of the most difficult decisions in project management is taking the call on ‘knock-it-

off’ points- the time when the team would stop pursuing a strategy. This lesson addresses the 

problem of what to do when a really great feature might not be delivered on time. Continuing 

aimlessly without taking a call to not integrate the feature might cause unprecedented delays in 

integrating the entire system and prove to be detrimental in the long run. 

 

 

10.2 Future Work 

The team successfully demonstrated the collaborative communication of the AutoPark 

system.  To continue this work, there are a few approaches: 

 

10.2.1 Time-Base A* 

The current implementation of our modified A* algorithm is state-based.  That is, it 

assumes that the vehicles in motion will stay in motion while the vehicle is executing its path and 

the stationary vehicles will stay stationary while the vehicle is executing its path.  A less naive 

approach would be to incorporate the real-time updates mentioned in section 10.2.1 to plan a route 

for the vehicle that will not create congestion at the time that the vehicle reaches the area.  This 

will create a more accurate planning system that enables a real-time approach to the parking 

problem. 

 

10.2.2 Map Sharing 
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The system has currently only been tested in a known parking lot with a pre-loaded map. 

To enhance the system, map sharing would enable the AutoPark system to work in any parking 

lot.  When a vehicle enters a lot that is already occupied by AutoPark-enabled vehicles, it should 

receive physical details of parking lot through the communication channel. The first vehicle in the 

lot can obtain the map from the cloud through the secure, built-in update system of future 

autonomous vehicles. 

 

Following the successful results from the simulation environment, the team aims to 

continue working on developing on its multi-armed bandit approach. One of the many challenges 

in implementing the multi-armed bandit approach to the planned-parking problem include the 

following: 

 

10.2.3 Delay etween Action and Reward 

The ‘reward’ term in the multi-armed bandit approach is generated after the vehicle has 

parked in a spot and the planner learns the parking time for the vehicle. However, since the time 

the ‘action’ of sending the vehicle to a spot is taken, many more new vehicles enter the lot and are 

assigned spots. This delay in taking an action and receiving a reward is not covered as part of the 

standard UCB1 algorithm. To overcome this, we tried to implement a discounted approach to the 

UCB1 algorithm. However, in the future we aim to implement a variant where we generate an 

‘estimated reward’ and update in later when the actual reward arrives. 

 

10.2.4 Q Learning 

The parking problem will in the future be formulated as a Q-Learning problem where the 

current heuristics in the global planner will be treated as the features of the state of the parking lot 

and temporal difference learning will be used to learn the weights on the features. The simulation 

will be run for a long period of time and at each time step the reward obtained will be treated as a 

sample of the Q-value of the particular state-action pair. When our agent has experienced enough 

amount of episodes, the most optimal weights will be learnt for the parking lot and the planner will 

converge on an optimal policy for spot allocation. Using approaches such as epsilon-greedy and 

UCB, we will be able to appropriately trade-off between exploration and exploitation to arrive at 

a globally optimal policy for the parking lot. 

 

10.2.5 Policy Search 

Another method that we will be employing is policy search to learn the best heuristic 

weights. Unlike Q-Learning which learns weights taking the actual Q values as samples, we will 

try to directly learn policies that predict the best Q values. Policy search evaluates the current 

policy (weights) for a long time on the parking lot. The evaluation criterion will be the average 

park and return times experienced in the parking lot. After we get the performance estimates, hill 

climbing will be done to optimize the weight on the heuristic values.  
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