# Auto-Park for Social Robots

By Team Daedalus

## Outline

- Project Description
- Use Case
- System-Level Requirements
- Functional Architecture
- Cyber-Physical Architecture
- System and Subsystem Descriptions
- Current System Status
- Project Management
  - Work Breakdown Structure

# Description

#### Motivations

- Poor parking safety standards
  - Injuries personal and vehicular
- Parking industry growth potential
- Competitive advantage
- Money
- Time

## Keywords

- Vehicle Also called Mobile Platform or Robot.
- Vehicle Status:
  - Free
  - Parking
  - Parked
  - Returning
  - Returned
- Parking Lot
- Optimal Spot
- Optimal Route

#### Use Case - Meet Benjamin



#### Ben has prostate cancer 🛞





![](_page_7_Picture_0.jpeg)

![](_page_8_Picture_0.jpeg)

![](_page_9_Picture_0.jpeg)

![](_page_10_Picture_0.jpeg)

![](_page_11_Picture_0.jpeg)

![](_page_12_Picture_0.jpeg)

![](_page_13_Picture_0.jpeg)

![](_page_14_Picture_0.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_20_Picture_0.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_24_Picture_0.jpeg)

## System-Level Requirements

## Mandatory Functional Requirements

| ID    | Requirement                                                              | Performance Metric(s)                                                                                                                              |
|-------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| MF.1  | Receive 'Park' and 'Return' commands from user via smartphone app        | 95% of messages will be received                                                                                                                   |
| MF.2  | Share location, parking spot, obstacles related data with other vehicles | Join network within 30 seconds of approaching the parking lot<br>90% of messages will be received                                                  |
| MF.3  | Navigate autonomously through parking lot                                | 100% of navigation will be autonomous                                                                                                              |
| MF.4  | Plan optimal route to exit                                               | Exit parking lot within 90 seconds of receiving command                                                                                            |
| MF.5  | Follow optimal route to exit                                             | Maintain a velocity between 0 and 10 cm/sec                                                                                                        |
| MF.6  | Park inside a parking spot                                               | Park 100% within a parking spot within 2 attempts. Be within 35° of parallel with the neighboring vehicles or the lines of the spot, as applicable |
| MF.7  | Exit parking spot                                                        | Exit the spot within 2 attempts without collision                                                                                                  |
| MF.8  | Sense obstacles in the environment                                       | Avoid obstacles between 1-50 cm high and 2-120 cm wide                                                                                             |
| MF.9  | Avoid infrastructure                                                     | Maintain a distance of 30.48 cm (1 ft.) between vehicle and infrastructure                                                                         |
| MF.10 | Stop in the event of an emergency                                        | Stop within 3 seconds of an emergency (obstacle or internal vehicle error)                                                                         |

#### Mandatory Non-Functional Requirements

| ID   | Requirement                                  | Performance Metric(s)                                                                   |
|------|----------------------------------------------|-----------------------------------------------------------------------------------------|
| MN.1 | Use smartphone app to display vehicle status | 95% of messages are received                                                            |
| MN.2 | Communicate reliably between local vehicles  | Rejoin network within 30 seconds of connection loss                                     |
| MN.3 | Efficiently exits the parking spot           | Will take no more than 45 seconds to exit the parking spot                              |
| MN.4 | Return to user as quickly as possible        | The vehicle will arrive at the exit within 90 seconds of receiving the "Return" command |
| MN.5 | Make minimal changes to infrastructure       | There will be ZERO changes to the infrastructure                                        |
| MN.6 | Be within stipulated budget                  | Budget is \$4000                                                                        |

## Desirable Functional Requirements

| ID   | Requirement                   | Performance Metric(s)                                                                                                            |  |  |  |  |  |  |  |  |  |  |  |
|------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| DF.1 | Identify optimal parking spot | Identify optimal spot 98% of the time                                                                                            |  |  |  |  |  |  |  |  |  |  |  |
|      |                               | If incorrect spot is chosen, it is within 5% of optimal spot                                                                     |  |  |  |  |  |  |  |  |  |  |  |
| DF.2 | Plan optimal route to spot    | imal route to spot Optimal path is chosen 90% of time                                                                            |  |  |  |  |  |  |  |  |  |  |  |
| DF.3 | Follow optimal route to spot  | Vehicle maintains a velocity between 0 and 10 cm/sec                                                                             |  |  |  |  |  |  |  |  |  |  |  |
| DF.4 | Avoid other vehicles          | Vehicle maintains at least 60.96 cm (2 ft.)<br>between the front of one moving vehicle and the<br>back of another moving vehicle |  |  |  |  |  |  |  |  |  |  |  |

#### Desirable Non-Functional Requirements

| ID   | Requirement                             | Performance Metric(s)                                                                                |
|------|-----------------------------------------|------------------------------------------------------------------------------------------------------|
| DN.1 | Maintain scalable network of vehicles   | Network able to accommodate at least 3 vehicles                                                      |
| DN.2 | Efficiently maneuver throughout the lot | Vehicle takes the fastest route (in time) 98% of the time                                            |
| DN.3 | Efficiently enter the parking spot      | Vehicle backs into parking spot within 2 attempts<br>Takes no more than 45 seconds to back into spot |

### Functional Architecture

![](_page_31_Figure_0.jpeg)

#### Cyber-Physical Architecture

![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_0.jpeg)

### Software Architecture

![](_page_35_Figure_0.jpeg)

# System and Subsystem Descriptions

- User Interface
- Control
- Navigation
- Sensing and Perception
- Communications

## User Interface

- Android Application
- Bluetooth Link
- Mobile Platform

![](_page_37_Figure_4.jpeg)

### Control

Xaxxon MALG PCB

- Single Board Computer
- Actuator Control Board
- ROS Environment

![](_page_38_Picture_4.jpeg)

![](_page_38_Picture_5.jpeg)

![](_page_38_Picture_6.jpeg)

![](_page_38_Picture_7.jpeg)

![](_page_38_Picture_8.jpeg)

## Navigation

- Map Generation
- Localization
- Path Planning

![](_page_39_Picture_4.jpeg)

Visualizing LIDAR data in Rviz https://www.youtube.com/watch?v=quqF5\_ZE\_fI

![](_page_39_Figure_6.jpeg)

http://wiki.ros.org/robot\_localization

![](_page_39_Picture_7.jpeg)

## Sensing and Perception

- Kinect
- SHARP IR

![](_page_40_Picture_3.jpeg)

Sensing the Environment http://www.universaldesignstyle.com/see-google-self-driving-car-sees/

![](_page_40_Picture_5.jpeg)

Proximity Sensor https://www.sparkfun.com/products/242

## Communications

- Hardware
- Architecture

![](_page_41_Figure_3.jpeg)

![](_page_41_Picture_4.jpeg)

DigiMesh RF 900Mhz Module http://www.digi.com/products/xbee-rf-solutions/modules/xbee-pro-900hp

VANETS - George Corser https://www.youtube.com/watch?v=DrH-1505-Mg

![](_page_42_Figure_0.jpeg)

## Android App Development

![](_page_43_Figure_1.jpeg)

# Sensing and Perception

Literature Survey

Kinect Libraries Installation

**Obstacle Definition** 

![](_page_44_Picture_4.jpeg)

## **Communication System**

![](_page_45_Figure_1.jpeg)

#### Hardware Procurement

![](_page_45_Picture_3.jpeg)

#### **Preliminary Testing**

![](_page_46_Figure_0.jpeg)

## Navigation and Control

![](_page_47_Picture_1.jpeg)

![](_page_47_Picture_2.jpeg)

### Work Breakdown Structure

![](_page_48_Figure_1.jpeg)

### Schedule

|                                       |                  | 14 |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    | 2  | 015 |      |      |     |    |       |
|---------------------------------------|------------------|----|------|------|----|----|----|----|----|------|------|------|-----|------|----|------|-------|----|------|-----|------|-----|-----|------|------|----|----|----|----|----|---------|----|----|-----|------|------|-----|----|-------|
|                                       |                  |    |      |      |    |    |    |    |    |      |      |      |     |      | Oc | tobe | er 20 | 15 |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     | Nove | mbe  | 201 | 5  |       |
| Activity                              | Percent Complete | 2  | 4 25 | 5 28 | 29 | 30 | 01 | 02 | 05 | 06 0 | 07 0 | 0 80 | 9 1 | 2 13 | 14 | 15   | 16    | 19 | 20 2 | 1 2 | 2 23 | 3 2 | 6 2 | 7 28 | 3 29 | 30 | 02 | 03 | 04 | 05 | 06      | 09 | 10 | 11  | 12 1 | 3 16 | 17  | 18 | 19 20 |
| Mobile Platform                       |                  | ~  |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Literature Survey                     | 100%             |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Acquisition                           | 75%              |    |      |      |    | _  |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Assembly and Mounting                 | 0%               |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    | 1  |    |    |         |    |    |     |      |      |     |    |       |
| Control board integration and testing | 0%               |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Single Board Computer                 |                  | ~  |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      | 1   |     |      |      |    |    | 1  |    |    |         |    |    |     |      |      |     |    |       |
| Literature Survey                     | 100%             |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Acquisition                           | 75%              |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Setup ROS                             | 0%               |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    | Ĩ.,     |    |    |     |      |      |     |    |       |
| Setup Kinect Libraries                | 0%               |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    | 1.5.4.4 |    |    |     |      |      |     |    |       |
| Interface with Kinect                 | 0%               |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Integrate with App                    | 0%               |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Interface with XBEE                   | 0%               |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     | _  |       |
| P2P Communication                     |                  | ~  |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Literature Survey                     | 100%             |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Hardware Acquisition                  | 100%             |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Hardware Testing                      | 100%             |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     | 1   |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| ROS XBEE Config File                  | 0%               |    |      |      |    |    |    |    |    |      |      |      |     | 11   |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Serial Protocol Definition            | 0%               |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    | 1  |    | 1  |         |    |    |     |      |      |     |    |       |
| Send Serial Commands and Parse        | 0%               |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Obstacle Avoidance                    |                  | ~  |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Literature Survey                     | 100%             |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Acquire Kinect                        | 100%             |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Setup Kinect Libraries on Laptop      | 100%             |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Interface Kinect with ROS and PCL     | 50%              |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    |     |      |      |     |    |       |
| Obstacle Definition                   | 0%               |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     | -    |      |    |    |    |    |    | . 11    |    |    |     |      |      |     |    |       |
| Implement Obstacle Avoidance Algorit  | 0%               |    |      |      |    |    |    |    |    |      |      |      |     |      |    |      |       |    |      |     |      |     |     |      |      |    |    |    |    |    |         |    |    | 1   |      |      |     |    |       |

![](_page_49_Picture_2.jpeg)

### Schedule

|                                      |                  |    | October 2015 |      |      |      |    |    | November 2015 |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    |      |      |      |
|--------------------------------------|------------------|----|--------------|------|------|------|----|----|---------------|------|-----|------|----|----|------|------|------|------|------|----|----|------|----|------|------|------|----|----|------|-----|------|----|----|------|------|----|------|------|------|----|------|------|------|
| Activity                             | Percent Complete | )5 | 06           | 07 ( | 0 80 | 9 12 | 13 | 14 | 15            | 16 1 | 9 2 | 0 21 | 22 | 23 | 26 2 | 27 2 | 28 2 | 9 30 | 0 02 | 03 | 04 | 05   | 06 | 09 1 | 10 1 | 1 12 | 13 | 16 | 17 1 | 8 1 | 9 20 | 23 | 24 | 25 2 | 6 27 | 30 | 01 ( | 02 0 | 3 04 | 07 | 08 0 | 9 10 | ) 11 |
| Mobile Platform                      | >                |    |              |      |      | X    |    |    |               |      |     |      |    |    |      |      |      |      | ¥.   |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    |      |      | I    |
| Single Board Computer                |                  |    | ľ            |      |      | X    |    |    |               |      |     | VI   |    |    |      |      |      |      |      |    |    |      | 1  |      |      |      |    |    |      |     | 1    |    |    |      |      |    |      |      |      |    |      |      |      |
| P2P Communication                    |                  |    |              |      |      | X    |    |    |               |      |     |      |    |    |      |      |      |      | ¥    |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    |      |      |      |
| Obstacle Avoidance                   |                  |    |              |      |      | X    |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    |      |      |      |
| Control and Navigation               |                  |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    |      |      |      |
| Hardware Acquisition                 | 100%             |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    |      |      |      |
| Integrate sensors and encoders       | 0%               |    |              |      |      |      |    |    | _             |      |     |      |    |    |      |      |      |      | 0    |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    | _    |      |      |
| Precise 1-D locomotion               | 0%               |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    |      |      |      |
| Coarse distance to obstacle          | 0%               |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    | 2  |      |     |      |    |    |      |      |    |      |      |      |    |      |      |      |
| Android App                          | ×                |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      | 1    |    |      |      |      |
| Literature Survey                    | 100%             |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    |      |      |      |
| GUI                                  | 100%             |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    |      |      |      |
| Laptop Bluetooth Server              | 100%             |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    |      |      |      |
| App Bluetooth serial functionality   | 50%              |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    |    |      |     | ľ    |    |    |      |      |    |      |      |      |    |      |      |      |
| Testing with laptop                  | 0%               |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    |      |      |      |
| Integration and Testing              |                  |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    |      |      |      |
| SBC and Obstacle Avoidance Algorithm | 0%               |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    |      |      |      |
| SBC and Comm System                  | 0%               |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    | -    |      |      |
| SBC and Android App                  | 0%               |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    |      |      |      |
| SBC and Arduino Mega                 | 0%               |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    | - 11 |    |      |      |      |    | i. |      |     |      |    |    |      |      |    |      |      |      |    |      |      |      |
| Full System Integration              | 0%               |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      |    |      |      |      |    |    |      |     |      |    |    |      |      |    |      |      |      |    |      |      |      |
| Full System Testing and Validation   | 0%               |    |              |      |      |      |    |    |               |      |     |      |    |    |      |      |      |      |      |    |    |      | -  |      |      |      |    |    |      |     |      |    |    | -    |      |    |      |      |      |    |      |      |      |

![](_page_50_Picture_2.jpeg)

## Work Owners

| SUBSYSTEM              | WORK OWNER |
|------------------------|------------|
| Mobile Platform        | Mohak      |
| Control and Navigation | Shivam     |
| Communication          | Richa      |
| Android App            | Dorothy    |
| SBC                    | Pranav     |
| Obstacle Detection     | Mohak      |
| Project Management     | Shivam     |

# High-Level Test Plan

#### Progress Review 3

- Show progress regarding obstacle detection
- Show progress regarding communication system
- Show integrated Oculus Prime Platform

#### Progress Review 4

- Integrate obstacle detection with Oculus Prime Platform
- Integrate communication system with Oculus Prime

# High-Level Test Plan

#### Spring Progress Reviews

- Show progress on obstacle avoidance
- Show platforms generating and sharing occupancy maps
- Show progress on path planning and localization
- Design and construct a test parking lot
- Show progress on entering and exiting a parking spot

# Fall Validation Experiment

- Location : B Floor, Newell-Simon Hall
- Date: 3 Dec, 2015
- Equipment Needed: Oculus Prime Platform, Odroid XU4, Kinect, Monitor Screen, XBee Pro, Android Phone with Virtual Valet installed
- **Operating Area**: 10m x 10m (Open Space at B Floor)

![](_page_54_Picture_5.jpeg)

![](_page_54_Picture_6.jpeg)

# Fall Demo 1

| Task                                                             | Success Criteria                            |
|------------------------------------------------------------------|---------------------------------------------|
| "Park" command sent to the mobile platform using the Android app | LED blinks to indicate command received     |
| Vehicle begins locomotion upon receiving the command             | Vehicle moves forward                       |
| "Return" command sent to the mobile platform via the Android app | Vehicle moves backward to original location |

# Fall Demo 2

| Task                                                                                                                       | Success Criteria                                  |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| "Park" command sent to the mobile platform using the Android app                                                           | LED blinks to indicate command received           |
| Navigation direction set on second SBC                                                                                     | Platform moves according to set direction         |
| Platform navigates to second position                                                                                      | Vehicle moves forward or backward, as appropriate |
| While navigating to the spot, the vehicle will<br>encounter an obstacle and stop within a safe distance<br>of the obstacle | Vehicle does not collide with obstacle            |

# **Requirements Validated at FVE**

#### Functional

- Receive commands from user via smartphone app (MF.1)
- Share data with other cars (MF.2)
- Sense the environment (static obstacles) (MF.8)
- Navigate through parking lot (MF.10)

#### Non-Functional

- Communicate reliably between local vehicles (MN.2)
- Network of cars is scalable (DN.1)
- Make minimal changes to infrastructure (MN.5)
- Be within \$4000 budget (MN.6)

# **Requirements Validated at FVE**

#### Performance

- Establish communication with other vehicles within 30 seconds
- Be able to handle collaboration between 2 vehicles
- Detect obstacles within 20 cm of vehicle
- Detect obstacles 1-50 cm high and 2-120 cm wide.

# Spring Validation Experiment

- Location: B Floor, Newell-Simon Hall
- Date: May, 2016
- Logistics: Oculus Prime Platform(3), Odroid XU4 (3), Kinect (3), Monitor Screen, XBee Pro DigiMesh Adapter (3), Android Phone with Virtual Valet installed, Mock Parking Lot
- **Operating Area:** 10m x 10m (Open Space at B Floor)

# Spring Demo

| Task                                                                                                                | Success Criteria                                                           |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| "Park" command sent to three mobile platform in succession using three Android phones with the app                  | LEDs blink to indicate command received                                    |
| Mobile platforms will enter the parking lot and collaborate with other vehicles to choose the optimal parking spots | The three spots closest to the exit are chosen                             |
| Mobile platforms will navigate along optimal paths to the spot                                                      | The paths with the least amount of time are chosen                         |
| When a vehicle encounters an obstacle, it will plan a path around it                                                | The platforms will not hit<br>obstacles and will<br>complete their journey |

# Spring Demo

| Task                                                                                                                                       | Success Criteria                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| A notification will be sent to each user when their vehicle is parked                                                                      | Notification is received by three separate phones                                        |
| When each user sends the command to return, the robot will exit the parking spot and navigate towards the exit spot along the optimal path | No collisions occur and<br>mobile platforms exit as<br>quickly as possible               |
| When it reaches the exit, it will send the user a notification stating that it is at the exit                                              | Apps update accordingly<br>and notifications are<br>received on three separate<br>phones |

#### Remaining Requirements Validated at SVE

#### Functional

- Plan optimal route to exit (MF.4)
- Follow optimal route to exit (MF.5)
- Park inside a parking spot (MF.6)
- Exit parking spot (MF.7)
- Avoid infrastructure (MF.9)
- Identify optimal parking spot (DF.1)
- Plan optimal route to spot (DF.2)
- Follow optimal route to spot (DF.3)
- Avoid other vehicles (DF.4)

#### Non-Functional

- Use smartphone app to display vehicle status (MN.1)
- Efficiently exits the parking spot (MN.3)
- Return to user as quickly as possible (MN.4)
- Efficiently maneuver throughout the lot (DN.2)
- Efficiently enter the parking spot (DN.3)

## Budget

| Item                              | Estimation    | Current     | Future       |
|-----------------------------------|---------------|-------------|--------------|
| Mobile Platform<br>(Oculus Prime) | \$2200        | \$550       | \$1650       |
| MS Kinect                         | \$450         | \$0         | \$450        |
| XBEE Pro<br>DIGIMESH Adaptor      | \$500         | \$200       | \$300        |
| Electronics                       | \$700         | \$100       | \$600        |
| Hardware                          | \$150         | \$0         | \$150        |
| TOTAL                             | \$4000 (100%) | \$850 (21%) | \$3150 (79%) |

## Risk Management

| ID | Description                        | Owner   | Area of Impact                                | Mitigation Plan                                                                                                                                 | Status           |
|----|------------------------------------|---------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1  | No Mobile Platform                 | Mohak   | Technical<br>Schedule<br>Cost                 | Purchase test platform<br>Email list of MPs to sponsor<br>Meet with Sponsor                                                                     | In<br>Progress   |
| 2  | Inadequate Mobile<br>Platform      | Shivam  | Technical                                     | Review platform needs<br>Only select adequate platform                                                                                          | Almost<br>Closed |
| 3  | Unsuitable Smartphone<br>Interface | Dorothy | Technical<br>Programmatic                     | Frequent and Extensive Testing                                                                                                                  | Open             |
| 4  | Subsystem<br>Incompatibility       | Pranav  | Technical<br>Schedule<br>Cost<br>Programmatic | Research on ROS to ensure<br>compatibility<br>Carry out low level cross<br>compatibility tests<br>Create an architecture to ease<br>integration | In<br>Progress   |

## Risk Management

| ID | Description                             | Owner  | Area of Impact           | Mitigation Plan                                                                                                                                  | Status         |
|----|-----------------------------------------|--------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 5  | Too Many Requirements                   | Shivam | Schedule<br>Programmatic | Trimmed requirements<br>Separated Mandatory from<br>Desirable<br>Appointed PM<br>Begin big weekly scrums<br>Add Kanban cards to lab<br>workspace | In<br>Progress |
| 6  | Inaccurate Parking Lot<br>and Obstacles | Richa  | Programmatic             | Analyze parking lots IRL<br>Scale to match mobile platform                                                                                       | Open           |

#### **Risk Management**

![](_page_66_Figure_1.jpeg)

# Thank you!

Questions?