

ILR 11 – Progress Review
12

Dorothy Kirlew

Team Daedalus Members: Mohak Bhardwaj, Shivam Gautam, Pranav Maheshwari, and Richa Varma

April 11, 2016

1. Individual Progress

 For the progress review on April 11, Richa and I completed the first step in achieving our
reach goal of deciding on the optimal route for a vehicle.

a. Optimal Route

 Thus far, the optimal parking spot has been selected purely by choosing an empty

parking spot with minimal distance to the exit. We have used the built-in path planner in the

platform to move the vehicle throughout the lot based on waypoints. Richa and I implemented

an algorithm that will choose the optimal spot based on the distance from the spot to the exit

and based on the current and future traffic in the parking lot. That is, the selected route will

avoid the routes of other vehicles in addition to taking the shortest route possible. This

required modifications to the ROS and XBee communication infrastructure, as well as a

thorough understanding of the A* planning algorithm.

i. Communication Modifications

 In order for a vehicle to plan a route dependent on the routes of other vehicles, these

routes must be known and communicated between the vehicles. I modified the actions taken

when a ROS message is received and what information is sent between vehicles.

 I first modified the actions taken when a ROS message is received (Figure 1). When a

Park command is received, the XBee will now send the spot options and the waypoints of other

vehicles to the A* Planner. When the optimal spot and waypoints (or route) to the spot are

received, an update is sent to other XBees so that they know what waypoints the vehicle is

traveling to. The waypoints are also sent to the Navigation node so that it can begin executing

a trajectory. A similar course of action is followed when a return command is received, with the

exception that the spot options are negligible, as the destination of the vehicle is known. When

a Parked notification is received, the vehicle now deletes its personal waypoints from the

waypoint dictionary, as it is no longer on that path.

Figure 1: ROS Messages Communication Architecture

 I then modified the XBee communication architecture (Figure 2). When an INTRO

message is received from another XBee, the waypoint dictionary will be updated to include the

waypoints that were received. The other significant change to the architecture is that when an

UPDATE message is received, the XBee will update the waypoint dictionary only if the vehicle

sending the message is moving, i.e. parking or returning. When the vehicle receives a PARKED

or RETURNED message from another XBee, it deletes the waypoints of that XBee from the

waypoints dictionary.

Figure 2: XBee Messages Communication Architecture

ii. A* Implementation

 Richa and I created an algorithm to choose the best parking spot based on the available

parking spots and the paths of other vehicles in the parking lot. The first step is to choose the

10 best available spots in the parking lot. This is based on proximity to exit. Then, the A*

algorithm is run on each of these spots. The algorithm returns the waypoints to the spot and

the f-score of the path. The spot with the smallest f-score is chosen as the optimal spot and the

spot and the waypoints are returned.

 The g-score and h-score of the A* algorithm were modified to fit the context of our

system. Traditionally, the g-score is simply the distance from the start to the current node in

the algorithm. Generally, the distance between each node is the Euclidian distance. With only

4 directions of movement, this can be modeled in a distance map of 1s (Figure 3). We modified

this distance map by overlaying the paths of the vehicles, thereby increasing the cost by 1 for

each location on the map that the path covers (Figure 4). This means that the distance map

may be different, as it depends on the paths of the vehicles moving in the parking lot. We also

added a corner cost. Turning can often take the platform some time and introduces error to

the system. Because two paths can be of equal length, but with varying numbers of turns, we

implemented a corner cost of 1 to encourage the algorithm to make only necessary turns.

Figure 3: Traditional Distance Map

Figure 4: Distance Map with Path Overlaid. Example Path is

from (18,18) to (18, 2) to (4,2) to (4,4)

 The h-cost of the A* algorithm is the distance of the spot to the exit. There is a subtle

but significant difference here. Traditionally, an easy h-cost is the distance between the current

node and the goal. Instead, we are using the distance between the current node and the

parking lot exit. Although this may seem simple, it is an imperative part of the algorithm when

selecting the best spot of 10. If the purpose of the algorithm was to simply choose the shortest

path, regardless of the proximity of the spot to the exit, the algorithm would choose the

parking spot closest to the entrance of the lot. Having the heuristic cost of distance to exit

means that two spots with equal path length will have a different cost due to their proximity to

the exit. The h-cost map can be seen in (Figure 5).

Figure 5: Heuristic Cost Map

 When the algorithm completes, it has a path composed of every node that was passed

through. We then “shorten” this path, i.e. reduce the path nodes to only the start, goal, and

corners. This creates simple waypoints for the platform to navigate to, rather than telling the

platform to move straight multiple times.

2. Challenges

 I faced no challenges for this PR. However, there were difficulties faced on the physical
side of the system. A wire was loose on the platform, which took some time to discover. The
work on simulation created challenges typical to any software work.

3. Teamwork

 Pranav, Mohak, and Shivam worked on the simulation environment, including global and
local planning and the simulator. Shivam and Pranav worked on navigation with the physical
platform. Richa performed the final fixes on the original platform to get it in working order. Richa
and I created and implemented a planning algorithm on the XBees.

4. Future Plans

 Pranav, Mohak, and Shivam will put finishing touches on the platform. Richa and I will
integrate the UI with the new A* planner in order to simulate more complex environments. This
will also include integrating the planner with navigation. We have received our third and final
platform and will set that up to perform in the SVE.

