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Abstract 

This paper describes our plans to solve the problem of landing a helicopter on a ship deck.  

Ships in open water are inherently difficult to land on, as they are not stationary objects.  A 

ship’s deck is a moving target, which adds uncertainty to landing any flight, especially with a 

pilot’s constrained field of view, inhibited by the aircraft itself.  These factors make the landing 

portion of flight one of the most dangerous.  An autonomous landing control technology is 

proposed that utilizes infrared beacons to determine the position and characterize the movement 

of the landing deck.  The characterized movements will be used to determine a safe landing time 

and location.  This will allow the onboard system to calculate a trajectory to land safely and 

quickly.  The controller will then execute this planned trajectory to meet the landing deck at the 

calculated time and position.  This technology will improve the safety and efficiency of the 

landing process, preventing human injury as well as saving money by reducing expenses from 

recovering crashed aircraft.
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1. Project Description 

Project Kingfisher aims to develop a sensor suite and trajectory planning software for an 

autonomous rotorcraft to land on ships without the use of GPS or radio. Military operations at 

sea often utilize air vehicles traveling to and from ships. Aircraft carriers are large enough to 

allow landing and takeoff of fixed wing aircraft, but smaller ships are being used to support 

rotorcraft vehicles. With varying ship sizes and sea states, the pilot of a helicopter must be highly 

experienced to safely land the aircraft on the moving deck. 

With the performance improvement of processors and the maturity of sensor technologies, 

unmanned aerial vehicles (UAVs) are becoming popular in a wide range of applications. These 

applications include military service, aerial photography, surveillance, environment mapping, 

cargo shipping, etc. [1]. Work has been shared between man and machine, and the working 

efficiency and capability has been increased since UAVs can access places humans cannot and 

can operate more precisely. However, without intelligence onboard the vehicles, UAVs can be 

very dangerous. A collision between a UAV and a landing base can cause significant loss and 

even human injuries.  

Therefore, a technology that can autonomously land a rotorcraft on a shipdeck by combining 

sensing and prediction is a potential solution for improving landing performance. Project 

Kingfisher will utilize a vision system suite carried by a small-scale quadrotor to demonstrate 

algorithms that can safely land a rotorcraft on a dynamically moving deck. 

2. Use Case 

Mr. Gman is a pilot in the Navy. His main mission as a helicopter pilot is to survey the 

environment of the battlezone. Every time he goes on a mission, he is worried about whether he 

will be able to come back to the ship safely because the helicopter landing environment can be 

very dangerous. Beside the threat from enemies, natural disturbances such as wind, lack of 

lighting, and rough seas can easily cause an accident.  

The Navy utilizes many resources to reduce the risk of helicopter landing. Every possible 

effort has been made to solve the problem, including intense training for pilots and more stable 

vehicle platforms. The military has realized that the limitation of human capability is a key factor 

that causes accidents. Since environment surveying can be done by unmanned machines, one of 

the solutions is to apply the autonomous pilot system on the helicopter. After decades of 

cooperative research with the Robotics Institute at Carnegie Mellon University, a sensor suite 

and trajectory planning software are mature enough to provide autonomous landing for 

helicopters.  

With this new technology, Mr. Gman no longer needs to operate the helicopter during 

landing. Instead, he flies the helicopter to the vicinity of the ship and pushes a button to  activate 

landing mode. During landing mode, the controls are taken over by the landing autopilot. In this 

mode, the helicopter can sense the location of the ship deck from a far distance via cameras and 
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infrared beacons without the use of GPS. Although the waves of the ocean heave the ship deck, 

the helicopter is able to predict the motion to determine the point in time when the deck will be 

in the safest landing position. The helicopter determines the speed and trajectory it must fly to 

meet the deck at that point in time. The helicopter meets the deck safely and smoothly, though 

the deck is still heaving from the ship riding the waves. The landing mode then deactivates, 

sending a signal to Mr. Gman that the autopilot has successfully landed the helicopter on the 

deck. 

3. System-level Requirements 

 

Functional Requirements  

User Need Performance Requirement Mandatory/Desired 

Rotorcraft shall identify the deck 

within the environment. 

1 false positive deck identification allowable in 100 

trials from 100m. 

Desired 

Rotorcraft shall sense position of deck in relation to 

the rotorcraft with accuracy as function of distance 

as follows: 

1. Detection at minimum 100m distance 

2. <100m distance : 0.4cm allowable error for each 

meter away 

Mandatory 

When within landing range, 

rotorcraft shall predict dynamics of 

the deck. 

Rotorcraft shall predict movement of deck within 

0.8cm/m of current distance to deck over total 

algorithm loop time. 

Mandatory 

The rotorcraft shall robustly follow 

a planned trajectory. 

Follow planned trajectory 99% of time, within 

0.8cm/m of current distance to deck. 

Desired 

Rotorcraft shall land on the landing 

zone of the deck. 

Rotorcraft shall land within 50cm of center of the 

deck, as measured from the center of the rotorcraft. 

Mandatory 

Rotorcraft shall land on dynamically moving deck. Mandatory 

Rotorcraft shall perform 8 successful landings over 

a 10 cycle lifetime. 

Desired 
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Nonfunctional Requirements  

User Need Constraint/Requirement Required/Desired 

System shall operate in 

EMCON conditions. 

Operation of autonomous landing mode shall be possible 

without radio commands and in GPS-denied conditions. 

Mandatory 

System shall operate with 

minimal user input. 

Autonomous landing sequence shall execute after a single 

user "go" command. 

Mandatory 

Rotorcraft shall land safely. System shall operate without damage to rotorcraft or 

deck. 

Mandatory 

Rotorcraft shall operate in 

varying environmental 

conditions. 

System shall operate through steady wind up to 5mph. Desired 

System shall operate through gust wind up to 10mph. Desired 

System shall operate in 50m visibility. Desired 

System shall operate from minimum 0.0001 lux to 

maximum 100,000 lux 

Desired 

 

4. Functional Architecture 

4.1. Visual Structure: 

 
Figure 1: Functional Architecture of Landing Process 
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4.2. Inputs 

The input to the autonomous landing system is an environment containing the ship deck. It 

should be noted that for our system, the assumption is made that the rotorcraft and the ship deck 

are the only objects in the environment besides the ground/water. We assume that there are no 

obstacles either on the deck or in the path of the rotorcraft. 

4.3. Sense 

The sensors output data about the environment at the maximum data rate that can be handled 

by the system. 

4.4. Localize 

At long range, the position is sufficient to construct a heading for the rotorcraft to approach 

the deck. Once within landing range, a constructed frame is used to determine the relative 

position and orientation of the ship deck with respect to the rotorcraft. 

4.5. Predict 

Using the history of deck poses, the motion of the ship deck is modeled in time. Once 

sufficient data are collected for an accurate model, the model is used to predict the future pose of 

the ship deck. 

4.6. Plan Trajectory 

At long range, the planned trajectory is simply the shortest distance between the rotorcraft’s 

current position and the detected position of the ship deck. Once within landing distance, the 

prediction model for the motion of the ship deck is used to determine which windows in the 

deck’s cycle are safe to land during. Taking the system’s current position and average flight 

velocities into account, a trajectory is planned that times the landing with one of the future 

windows for safe landing. 

4.7. Follow Trajectory 

The desired trajectory is fed from the system’s computer into the flight controller for the 

rotorcraft. The rotorcraft then executes the planned trajectory until it is altered or the rotorcraft 

lands successfully. 

4.8. Send Landing Signal 

Upon landing, the system needs to send a confirmation signal to the user that it has landed. 

This allows the user to issue further commands or to perform some manual task on the rotorcraft. 
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4.9. Outputs 

The system output is a landed rotorcraft and an output signal to the user that the system has 

landed successfully. The system will then enter an idle state awaiting further instructions, 

releasing autonomous control of the rotorcraft. 

5. Cyberphysical Architecture 

5.1. Visual Structure 

 

Figure 2: Cyberphysical Architecture of Landing System 

5.2. Camera Mount 

Our cameras need to be mounted to the mobile platform.  The exact mount that will be used 

is yet to be determined.  The primary options we are considering are fix-mounting two cameras 

at different angles or building a motorized camera mount that can tilt in pitch to account for 

motion of the rotorcraft. 
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5.3. Single Board Computer 

Our single board computer houses the primary software and processing for our system.  The 

image processing, localization, prediction, trajectory planning, trajectory following, and flight 

command subsystems all reside here.  Additionally, there is a master node that handles the 

routing of command signals and switching between states.  

5.4. Additional Boards 

In addition to our primary single board computer, we have two signal conversion boards and 

an Arduino Nano.  The signal conversion boards convert the remote control signal from SBus to 

PWM and the motor controls from PWM to SBus.  This is needed because the DJI Phanom II 

expects SBus communication from the remote controller, but our single board computer and 

Arduino Nano use PWM communication.  The Arduino Nano takes the inputs from the remote 

controller and the single board computer and determines which signal should be routed to the 

rotorcraft. 

5.5. Power Distribution 

Our printed power distribution board takes power from the DJI Phantom II’s battery and 

distributes it to the various other boards.  There is a 5V regulator on this board to provide power 

to the single board computer and the conversion boards.  The Arduino Nano has an internal 

power regulator, so it receives the full voltage of the battery.  The cameras and IMU are powered 

via USB from the single board computer. 

6. Current System Status 

6.1. Fall-Semester Targeted System Requirements 

Table 7.1 – Fall Semester System Requirements and Associated Subsystems 

Functional Requirements  

User Need Performance Requirement Relevant Subsystems 

Rotorcraft shall identify the 

deck within the environment. 

Rotorcraft shall sense position of deck in relation to 

the rotorcraft with accuracy as function of distance 

as follows: 

1. Heading detection at minimum 50m distance 

2. <50m distance : 25cm+0.8cm/meter away 

Vision, Deck 

Marking, Localization 

Algorithm 

Rotorcraft shall land on the 

landing zone of the deck. 

Rotorcraft shall land within 50cm of center of the 

deck, as measured from the center of the rotorcraft. 

All except Prediction 

Algorithm 

Rotorcraft shall land on a stationary deck. All except Prediction 

Algorithm 
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Nonfunctional Requirements  

User Need Constraint/Requirement Relevant Subsystems 

System shall operate in 

EMCON conditions. 

Operation of autonomous landing mode shall be 

possible without radio commands and in GPS-

denied conditions. 

Entire System 

System shall operate with 

minimal user input. 

Autonomous landing sequence shall execute after a 

single user "go" command. 

Entire System 

Rotorcraft shall land safely. System shall operate without damage to rotorcraft or 

deck. 

Entire System 

 

6.2. Current System Descriptions 

6.2.1. Overall System Status: 

The kingfisher system as a whole contains an implementation of every major subsystem at 

the conclusion of fall semester. Many of the current iterations of these subsystems are limited in 

their application scope, and will require considerable improvement over the course of the next 

semester. Specific system statuses and planned changes are outlined by subsystem below. 

6.2.2. Vision Subsystem Status 

The vision subsystem is responsible for the detection of the ship deck and its relative pose. 

At long ranges, the position will be determined using the long range IR camera on the rotorcraft 

and the IR beacons on the corners of the deck. At medium range, all four of the IR beacons will 

be distinct enough for the camera to interpret individually. Finally, at close range, the vision 

system will switch to the short range landing camera to allow for a greater field-of-view as the 

distance to the deck decreases.  

As of the end of fall semester, the initial version of the vision subsystem is fully 

implemented. The long and short range cameras are both assembled with their respective lenses 

and are fitted with long-pass IR filters. The lens option selected for the short range camera may 

have to be changed next semester to accommodate a wider field of view. The current plano-

convex lens with a 7.5mm focal length yields a 39 degree field of view already. Unfortunately, 

the motion of the quad is significant enough that some maneuvers cause one or more of the deck 

beacons to leave the field of view. As a result, we will investigate the use of a fish-eye lens for 

the short range camera to combat this effect. The motion of the quad is less of an issue at long 

range where the angular separation of the beacons from the perceived center of the deck is much 

less. 

6.2.3. Deck Marking Subsystem Status 

The deck marking subsystem is responsible for indicating several points of interest on the 

ship deck to the rotorcraft. The IR beacons on the deck provide an approximate location at long 
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distance due to their greater than .5 mile visibility. Once the rotorcraft is close enough to 

distinguish between them, the center of the deck and the pose of the deck can be determined 

based on the prior knowledge of their configuration on the deck.  

Currently, they are arranged on the deck in a square of 1 foot side lengths offset from the 

center of the deck by a foot and a half in the vertical direction. This offset is to account for the 

current fixed mounting of the cameras at 30 degrees from horizontal. The offset allows the 

beacons to remain in the field of view even when the rotorcraft is on its final descent directly 

above the deck. 

6.2.4. Localization Algorithm Subsystem Status  

The input to the localization algorithm is the two images from the long range camera and the 

short range landing camera, as well as the data from the rotorcraft IMU. Let landing range be the 

range within which the deck beacons are within the field of view of the short range landing 

camera, but the long range camera can no longer see all 4 deck beacons. Let prediction range be 

the range beyond landing range, but within long range, within which the system will attempt to 

perform prediction of the deck’s motion. Let long range be the range beyond prediction range but 

within the maximum detectable range. 

While at long range, the algorithm will identify the centroid of the four beacons and output 

the relative heading direction between the rotorcraft and the centroid, using the known mounting 

configuration of the cameras to construct a heading for the rotorcraft. 

Once within prediction range, in addition to outputting the centroid location as above, the 

algorithm also reconstructs the pose of the deck. To do this, the algorithm identifies the centroid 

of the beacons to determine the deck’s relative position as before. Then, relative pose will be 

determined by solving for the perspective transform of the known configuration of beacons on 

the deck.  Finally, the “absolute” motion of the deck from one frame to the next will be 

determined by subtracting the rotorcraft’s motion model data from the corresponding frames. 

This accounts for the motion of the rotorcraft during the time between frames. This model is 

generated through a combination of the corresponding motion command from the path planner to 

the flight controller and the IMU data for the target time window. The prediction range 

localization algorithm outputs both the absolute and relative pose of the deck. 

Finally, within landing range, the algorithm will compute the relative and absolute poses as 

above, with the difference that the landing camera will be used in place of the long range camera.  

In its current implementation, the algorithm is vulnerable to several conditions that will need 

to be addressed in spring. The first of these conditions is if one or more, but not all, of the 

beacons departs the field of view of the cameras. Since we’re currently using K-Means to cluster 

the beacons to identify a single point to operate the perspective transform on, if there are fewer 

than four beacons in the image, the algorithm will incorrectly split one of the beacons to 

accommodate. This functionality is desired at longer ranges where the beacons are discernable, 
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but still contiguous, but causes problems at shorter ranges. To solve this for next semester, frame 

differencing will be used as a component of the filtering of the vision data to detect large 

perceived changes in beacon position and check if they’re caused by loss of field of view. This 

will also be useful to maintain the performance of the system if one or more beacons are 

temporarily disabled or occluded. Another vulnerability condition is the presence of glare or 

extra IR light in the scene. Previous frame beacon position and size will be used to filter out false 

beacons in the spring implementation. 

 
Figure 3: Current Status of Vision System. Upper-left: Scene image, with deck beacons where the blue tape is. 

Upper right: Raw camera input image. Bottom: Detected beacons numbered by concentric rings. 

6.2.5. Prediction Algorithm Subsystem Status  

The prediction algorithm will use the absolute pose of the deck over time to produce data of 

roll, pitch, and swell over time.  This data will be in reference to an absolute world frame 

centered at the deck.  The algorithm will then use a Kalman filter to predict the motion of the 

deck into the future.  This will allow the rotorcraft to plan a trajectory such that it meets the deck 

at a relative high point and a relative flat point on the deck’s path.  This is critical in order to 

perform a safe landing with minimal damage to the rotorcraft or the ship. 
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This algorithm has only undergone initial development at this time, since the deck was static 

for the fall semester. Some basic state estimation and Kalman filtering has been done on false 

data for a simple harmonic system to familiarize ourselves with the implementation of Kalman 

filters in code. The bulk of the prediction algorithm will be developed and tested next semester 

when the deck is in motion. 

6.2.6. Trajectory Generation Algorithm Subsystem Status  

The trajectory generation system is for generating a trajectory from initial state to a target 

position [14].  The trajectory planning algorithm will produce that ideal trajectory based on the 

predicted movement of the deck. The planned trajectory should allow for the rotorcraft to 

seamlessly adjust its velocity during flight to meet with the deck at the proper time and position.  

This algorithm has two separate stages. The first stage occurs outside the prediction distance, 

where the localization algorithm computes relative pose between the rotorcraft and the deck, and 

sends this information to the trajectory algorithm. The trajectory algorithm uses this information 

with desired state to compute a thrust and rotation matrix to send to the flight controller. The 

desired state in this stage is to minimize the relative distance. This allows for the rotorcraft to 

simply fly in the direction of the deck, reducing the distance and increasing the vision system’s 

ability to distinguish the individual beacons to get an accurate position and pose of the deck. The 

second stage of trajectory generation occurs within the prediction distance.  In this stage, the 

trajectory algorithm not only takes the information from the localization algorithm, but also from 

the prediction algorithm. The prediction algorithm predicts the dynamics of the deck, and sends 

the predicted pose of the deck over time to the trajectory algorithm. The trajectory planning 

algorithm analyzes the deck motion over time to identify acceptable landing times, and identifies 

the ideal landing time based on the rotorcraft’s distance from the deck.  The trajectory algorithm 

will then generate an ideal trajectory to land on the deck at the specified “ideal” time. The 

trajectory planning algorithm will take this ideal trajectory, and convert it into aircraft roll, pitch, 

yaw, and thrust commands.  These commands will be fed to the flight control microcontroller, 

which will in turn control the motors on the mobile platform. 

6.2.7. Trajectory Following Algorithm Subsystem Status  

The trajectory following algorithm subsystem is responsible for detecting errors in our 

current flightpath and making the corresponding course corrections to put the rotorcraft back on 

the target trajectory generated by the trajectory generation algorithm.  

Currently, the trajectory following algorithm is a PID controller used to keep the rotorcraft at 

its current waypoint based upon feedback from the vision system and the IMU. This subsystem 

requires further development due to the coupling between X-Y and Z position. 
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6.2.8. Flight Control Subsystem Status 

The flight control subsystem is responsible for converting the commands output from 

trajectory generation in terms of roll, pitch, yaw, and thrust to the necessary stick commands to 

emulate to the flight controller onboard the rotorcraft. Additionally, this subsystem toggles 

between manual flight of the rotorcraft by remote control and autonomous flight. Autonomous 

flight is achieved by emulating manual flight commands from the “remote control” generated by 

the trajectory generation and trajectory following algorithms. Control can be returned to the 

human safety pilot through the use of an extra channel on the remote control. 

6.2.9. Power Distribution Subsystem Status  

The power distribution subsystem is responsible for the distribution of power from the 

standard rotorcraft battery to all onboard subsystems, as well as the addition of the ability to 

hotswap batteries with only the actual rotorcraft motors needing to be powered down. Due to 

errors in design during the fall, the board and design will need to be reworked and refabricated in 

spring to achieve full functionality. In its current state, the power output is noisy but usable for 

all subsystems. However, the hotswap feature is inoperable and power consumption is higher 

than designed.  

6.2.10. Rotorcraft Subsystem Status  

The rotorcraft is responsible for executing the command sent from the single board computer 

such as flying, landing, and flight mode switching. The rotorcraft consists of flight avionics, 

actuators, radio transmitter and receiver, vehicle frames, and battery. Flight Avionics is the brain 

of the system; it consists of a processor, sensors, and input/output (I/O) pins. The basic sensor a 

rotorcraft requires is the gyroscopes, which provides the angular information of the rotorcraft. 

However, without the accelerometer, the user needs to manually control the orientation of the 

rotorcraft. Typically, most flight controllers apply proportional-integral-derivative (PID) control 

for stabilization of the rotorcraft. The I/O pins are responsible for providing connections of 

actuators and command receiver to the processor. In this work, there are two inputs responsible 

Figure 4: Flight Control Subsystem Depiction 
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for the dynamic movement of the rotorcraft. One is the trajectory command send by single board 

computer while the other one is from radio transmitter in case of emergency. For actuators, 

brushless dc motors are used; each of the motors is driven by electronic speed controller. The 

thrust of the vehicle is provided by attaching propellers on the motors [13].   

In the ideal situation, the rotorcraft should autonomously follow the exact planned trajectory 

under the influence of natural disturbance and in EMCON condition. Therefore, dynamic 

stability of the rotorcraft is the primary concern in this work since any disturbance to the 

rotorcraft could result in bias to the sensors. In the scope of rotorcraft platform trade study, the 

disturbance includes wind, payload, and etc. The rotorcraft should provide enough 

maneuverability and stability with the installation of single board computer, sensors and battery. 

Moreover, the landing gear should withstand multiple tests; so the cost can be minimized and the 

components can be protected. Finally, the application programming interface (API) and 

community support of the rotorcraft platform can be great sources to reduce development time.  

6.3. Modeling, Analysis, and Testing 

 
Figure 5: Camera field of view testing results. 
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Figure 6: Payload testing results. 

Additional testing was conducted prior to the FVE for the purpose of tuning the PID 

controller for trajectory following. 

6.4. Performance evaluation against the Fall Validation Experiment (FVE) 

Table 1: Requirements and test items for FVE. 

Functional Requirements Test item Result 

 Rotorcraft shall sense position of deck 

in relation to the rotorcraft. 

Heading detection at minimum 50m 

distance 
Check ✔ 

10m distance : Orientation and position 

of deck can be seen 
Check ✔ 

 Rotorcraft shall land on stationary 

deck. 

Rotorcraft shall land within 50cm of 

center of the deck, as measured from the 

center of the rotorcraft. 

Fail ✖ 

Non-Functional Requirements Test item Result 

 Operation of autonomous landing 

mode shall be possible without radio 

commands and in GPS-denied 

conditions. 

Does the system operate in GPS-denied 

condition? 
Check ✔ 

 Autonomous landing sequence shall 

execute after a single user "go" 

command. 

Is the user interface very simple? Check ✔ 

 System shall operate without damage 

to rotorcraft or deck. 

Is the system still perfect? Check ✔ 

 



14 

 

Five requirements were needed in the fall semester. Two of them are functional 

requirements, and the rest of them are non-functional requirements. 

The first functional requirement is for verifying the localization algorithm, and there are two 

test items in this part. First, at long distances (50m) the localization algorithm should detect the 

heading toward the deck. In this test item, the algorithm not only detects the correct direction but 

also provides the accurate position information.  Next, the localization algorithm should provide 

relative position and orientation between the quadrotor and the deck at distance below 10m. We 

demonstrated a video and an image at the FVE to show that the algorithm can provide accurate 

data. 

For the second functional requirement, we need to demonstrate the quadrotor landing on a 

stationary deck autonomously.  We did not accomplish this goal, but instead demonstrated 

autonomous hovering.  Though the position and orientation data provided by localization 

algorithm are accurate, we still cannot get the correct transform between coordinate frames. 

Also, the vision field of view range for detecting the beacons is limited. For these reasons, we 

were not able to land on the stationary deck. 

Our system satisfies all of the non-functional requirements. It can operate in GPS-denied 

conditions, the user interface in our system is very simple, and our system operates without any 

damage.  

According to the result mentioned above, we completed most of the requirements in FVE, 

and still need to work on the localization subsystem. Once we have correct feedback data, we can 

start to fine tune our controllers and move forward with landing the quadrotor. 

6.5. Strong Points  

6.5.1. Designed and built mechanical parts and power distribution board 

In this semester, we have built the mechanical parts to mount all of the components on the 

quadrotor including the power distribution board, the IMU, the signal switch board, and the 

single board computer. Also, we have designed and built the power distribution board to apply a 

5V and 11V voltage source to all of the components. Both of them work very well and reduce 

the difficulty to do experiments and testing. Though we might change some designs in spring, we 

can still leverage on this experience. 

6.5.2. Implemented the baseline of algorithm for most of subsystems including 

We implemented most of the subsystems in this semester and did the unit test on each of 

them. Every algorithm met their baseline requirements. All of us became familiar with ROS, so 

we are in a good position to modify or implement new algorithms next semester. 
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6.5.3. Integrated the system including mechanical parts, power distribution board, 

single board computer, and software algorithms 

We have already integrated most of our subsystems on a single board computer. Though we 

still have a mismatch between the single board computer and the camera driver, it can be fixed 

by either changing components or finding another driver. Once we solve this issue, we will have 

a complete system. Then we can focus on developing software algorithms. 

6.5.4. Built simulation environment to simulate the motion of the quadrotor 

We have implemented a simulator in Gazebo for simulating the motion of the quadrotor. 

Base on this experience, we can easily extend the functionality to help test algorithms in 

simulation before implementing them on the physical system. This simulator will be very useful 

in the next semester. 

6.6. Weak Points 

6.6.1. Need more stable localization data for the trajectory following 

Our localization algorithm now can provide very accurate position information while the 

quadrotor does not rotate. If the quadrotor does rotate, the position information is not accurate 

anymore. This is because the transform matrix between the frame of the deck and the frame of 

the quadrotor has proven to be difficult to determine. Another issue is that once the localization 

algorithm loses the view to the beacons, the information feedback is wrong. We plan to 

implement a tracking algorithm to help with this in the spring. 

6.6.2. Need to fine tuning the PID controllers 

We have implemented three PID controllers for position control in the x, y, and z directions. 

In the spring, we will fine tune the controller gains of each PID controller. 

6.6.3. Camera does not work on the single board computer 

Our cameras work very well on the laptop. However, they do not work on our single board 

computer. To solve this issue we plan to either change the camera or change the Odroid if we 

cannot find a suitable driver. 

6.6.4. Gimbal does not work 

We planned to use Gimbal to maintain the angle of the camera. However, the cable is very 

stiff and tends to retain its shape, and the motor on the Gimbal does not provide enough power to 

adjust the Gimbal. To solve this issue, we will build our own Gimbal or fix-mount the cameras. 
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7. Project Management 

7.1. Work Breakdown Structure 

 

Spring 
Tasks

Printed Circuit 
Board

Identify all 
supported 

components

Design board

Acquire PCB

Assemble

Test PCB

Motorized Camera 
Mount

Trade study

Purchase motor

Mechanical 
interface

Motor testing

Initialization/ 
calibration

Motor control 
node

Node testing

Cameras

Acquire parts

Download drivers

Initialization 
settings

Integration with 
localization

Position test with 
flat quad

Localization Filter

Incorporate roll

Test 
transformation

Flight Control

PID tuning for 
hover

Deck move test

Trajectory test

Height Sensor

Trade study

Acquire sensor

Install sensor 
driver

Sensor mount

Accuracy testing

Filtering and 
transformation

Roll and pitch test

Kalman filter

Motion test

Deck Motion

Concept proof

ROS node

Stationary quad 
test

Flying test

Prediction

Characterize past 
motion

Concept proof

ROS node for 
testing

Single sensor test

Edit code for w/ 
deck motion node

Stationary quad 
test

Flying test

Future prediction

Concept proof

ROS node

Integrate with 
past motion

Stationary quad 
test

Integrate with 
trajectory planner

Flying test

Master Node

Updates for added 
nodes

Launch Files

Updates for added 
nodes
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7.2. Schedule 

The table below shows task breakout by category and the corresponding due dates for each task. 

Task 

ID Category Task Sub-Task 

Estimated 

Hours 

Predicate 

Task IDs Due Date 

5 

Motorized Camera 

Mount Trade Study for Motor   2 
 -  11-Jan-16 

10   Purchase Motor   0.5 5 11-Jan-16 

20   Design Mechanical Interface CAD draft 8 5 11-Jan-16 

25     CAD updates for actual part 1 10, 20 PR 8 

30     3D Print 1 25 PR 8 

40     CAD updates 2 30 PR 8 

50     Machine parts 4 40 PR 8 

60   Motor Testing Camera load testing 2 50 PR 8 

70     Encoder Accuracy 1 60 PR 9 

80   Initialization/calibration   8 70 PR 9 

90   Write motor Control Node   4 80 PR 9 

100   Node testing   1 90 PR 9 

              

110 Cameras Contact Point Grey about 32bit architecture   4  -  23-Dec-15 

120   Spec new parts - trade study   2 110 4-Jan-16 

130   Acquire parts   0.5 120 11-Jan-16 

140   Download drivers   2 130 PR 8 

150   Determine initialization settings   2 140 PR 8 

160   Integration with localization   2 150 PR 8 

170   Position test with flat quad   1 160 PR 8 

              

180 Localization Filter Fix calculation to incorporate quad roll   4  -  11-Jan-16 

190   Test transformation   1 180 PR 7 

              

200 Flight Control Change PID node to fix subscription timing   8  -  PR 7 

205   Test still hover   2 200 PR 7 

210   Test deck movement effects on hover   1 210 PR 7 

220   PID test with a short trajectory   4 220 PR 8 

              

230 Height Sensor Trade study   2  -  3-Jan-16 

240   Acquire sensor   0.5 230 11-Jan-16 
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Task 

ID Category Task Sub-Task 

Estimated 

Hours 

Predicate 

Task IDs Due Date 

250   Install sensor driver   2 250, 130 PR 7 

260   Sensor Mount   4 240 PR 8 

270   Accuracy testing   2 250 PR 7 

280   Filtering and IMU orientation transformation   4 270 PR 8 

290   Roll and pitch testing   2 260, 280 PR 8 

300   Kalman filter integration with camera data   8 290 PR 9 

310   Motion test   1 300 PR 9 

              

320 Deck Motion Concept Proof in Matlab   4  -  11-Jan-16 

330   Build Node in ROS   4 320 PR 9 

340   Test with stationary quad and known deck motion   2 330, 300 PR 9 

350   Test with flying quad and known deck motion   2 340 PR 10 

              

360 Prediction Past Motion Characterization Concept Proof in Matlab 4  -  11-Jan-16 

370     Write ROS node to test sensor data 4 360 PR 8 

380     Test with single sensor data 2 370 PR 8 

390     

Edit code for use with deck motion 

node 4 
380, 330 PR 9 

400     

Test with stationary quad and 

known deck motion 2 
390 PR 10 

410     

Test with flying quad and known 

deck motion 2 
400 PR 10 

420   Future Prediction Concept Proof in Matlab 4  -  11-Jan-16 

430     Write ROS node 4 420 PR 8 

440     Test with single sensor data 4 430 PR 8 

450     

Integrate with past motion 

characterization 2 
440, 380 PR 8 

460     

Test with stationary quad and 

known slow deck motion 2 
450, 390 PR 9 

470     

Test with flight and progressively 

faster deck motions 4 
460 PR 11 

480     Integrate with trajectory planning 8 470 PR 12 

              

490 Master Node Updates for new nodes   8 (ongoing) (ongoing) 

              

500 Launch files Updates for new nodes   4 (ongoing) (ongoing) 
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7.3. Test Plan 

7.3.1. Progress Review Capability Milestones 

Progress Review 7 Localization node gives correct relative position and rotation at all tilt angles 

Late January Quad can hover in place using camera information about the deck 

 Quad maintains relative position to deck when deck is translated along the ground 

 Accuracy and limitation testing of height sensor 

  

Progress Review 8 Quad can execute a short trajectory using camera information to orient itself 

Mid-February Past motion characterization can  be done with data from one sensor 

 Height sensor gives correct height during roll and pitch 

 Cameras and localization work on single board computer 
  

Progress Review 9 Functionality of ROS control of motor for camera mount 

Late February Printed Circuit Board Rev C assembled and functional 

 Functionality of height sensor on single board computer 

 Landing possible on stationary deck 

  

Progress Review 10 
Functionality of motor mount control node - response to movement of deck in 
camera frame 

Mid-March Deck motions are accurately calculated 

  

Progress Review 11 Past motion characterization can  be done for deck motions 

Early April Future ideal landing times can be predicted 

  

Progress Review 12 
Trajectories are generated to meet correct location at correct landing time 

Mid-April 

 

7.3.2. Spring Validation Experiment 

A. Objective: Execute an autonomous landing of a quadcopter on a dynamic mock ship deck 

with three degrees of freedom (roll, pitch, swell). 

B. Elements to be tested: 

 Vision/localization subsystem 

Prediction subsystem 

Autonomous landing 

Safety features 

 

C. Requirements of relevance/significance to the test: 

Functional Requirements 

Rotorcraft shall sense position of deck in relation to the rotorcraft with accuracy as function of distance as 

follows: 

1. Detection at minimum 100m distance 

2. <100m distance : 25cm + 0.4cm/m allowable error for each meter away 
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Rotorcraft shall land on dynamic deck moving in swell. 

Rotorcraft shall land within 1 foot of center of the deck, as measured from the center of the rotorcraft. 

Non-Functional Requirements 

Operation of autonomous landing mode shall be possible without radio commands and in GPS-denied conditions. 

Autonomous landing sequence shall execute after a single user "go" command. 

System shall operate without damage to rotorcraft or deck. 

 

D. Methods 

Rotorcraft shall sense position of the deck: 

1. Power on all beacons on the mock deck 

2. Power on the on-board computer on the DJI and all sensors 

3. Plug in a laptop running sensor testing framework 

4. Without turning on the DJI motors, hold the DJI with the camera facing the deck 

5. Starting at 100m away from the deck, carry DJI towards deck 

6. Show on the laptop that the cameras are detecting the deck from 100m away, with at 

least 0.4cm accuracy per meter distance 

Rotorcraft shall land on dynamically moving deck: 

1. Power on all beacons on the mock deck 

2. Power on actuation of mock deck 

3. Power on the on-board computer on the DJI and all sensors 

4. Power on the DJI motors and controller 

5. Manually operate the DJI to optimal starting position relative to the deck 

6. Send “go” command 

7. Rotorcraft will then autonomously fly to the deck and land on it 

8. Safety operator will be standing by to take back manual control of the DJI if 

conditions become unsafe for any people or equipment 

Rotorcraft shall land within 1 foot of the center of the deck: 

1. Once completing the previous portion of the test, the rotorcraft will have landed on 

the deck 

2. There will be a circle of radius 1 foot painted on the deck. Ensure that the center of 

the rotorcraft is within this circle by inspection 

Demonstrate Prediction Algorithm: 
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1. Display graphs of pre-recorded data showing that the results of the prediction 

algorithm over time 

 

E. Logistics of testing  

Date: 03 December 2015 

Location: NSH Level B 

Equipment and supplies:  

 Rotorcraft 

 Sensor Suite 

 Deck 

 Spare Battery & Hot Swap Port 

 Laptop 

7.4. Budget 

Table 2 below shows a summary of the budget for the project.  To date, we have spent about 

two thirds of the total MRSD budget.  The big ticket items that remain are a new single board 

computer, a rework of our power distribution board, and potentially an actuated camera mount. 

Table 2: Budget summary for project. 

  MRSD Budget Sponsor Budget 

TOTAL 

BUDGET 

Initial  $      4,000.00   $           5,000.00   $         9,000.00  

Quadrotor (with spares)  $        (700.00)  $            (800.00)   

Optics  $    (1,230.00)     

Computation  $        (378.00)     

Other  $        (543.58)     

Spent to Date  $    (2,851.58)  $            (800.00)  $       (3,651.58) 

Remaining to Date  $      1,148.42   $           4,200.00   $         5,348.42  

Antipicated Additional Spend:       

Computation  $        (500.00)     

PCB  $        (250.00)     

Actuated Camera Mount  $        (200.00)     

Actuated Deck    $            (500.00)   

Total Additional Spend  $        (950.00)  $            (500.00)  $       (1,450.00) 

TOTAL ANTICIPATED REMAINING  $          198.42   $           3,700.00   $         3,898.42  
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7.5. Risk Management 

Risk 

# Risk Type Description L
ik

el
ih

o
o

d
 

C
o

n
se

q
u

e
n

ce
 

Likelihood Reduction Plan Consequence Reduction Plan 

1 Unstable 

Autonomous Flight 

Technical, 

Schedule, 

Budget 

Autonomous landing mode does not control flight 

adequately/correctly, causing DJI to maneuver in 

unsafe ways. 

4 2 RC switch for manual override Order extras of cheaper parts 

2 Light interference in 

vision system 

Technical Vision system identifies non-beacon source of 

light as beacon, causing localization to give 

inaccurate positions causing erratic flight 

behavior. 

5 4 Infrared pass filter, testing indoors RC switch for manual override 

3 Inadequate near 

vision 

Technical Vision system field of view cannot detect deck 

location/orientation at short distances 

2 4 Off-center location of beacons 

with compact orientation 

Feed-forward landing tests 

Additional sensors 

4 Asynchronous 

timing 

Technical Algorithms do not correctly interpret timing of 

signals 

2 5 Create publish rate dependencies 

on subscribing nodes 

Early implementation for 

troubleshooting 

5 Test location 

unavailable 

Schedule Testing is unable to be done at the planned 

location due to distance, access limitations, 

timing, or weather conditions. 

2 3 Early coordination with sponsor Construction of small test 

platform to be modular with 

large test platform 

6 Payload too heavy Technical Weight of sensors and circuitry is too heavy for 

DJI to perform flight maneuvers effectively 

1 5 Weight tracking of components 

and payload testing 

Identify and limit unnecessary 

weight 

7 Printed circuit board 

nonfunctional 

Schedule, 

technical 

Printed circuit board not designed correctly, 

resulting in rework, unpowered parts, or damaged 

components 

4 4 Perform all component planning 

prior to ordering board 

Define and order needed parts 

early 

Get board reviewed by TA or 

professor 

8 Inaccurate 

prediction 

Technical System is unable to predict an appropriate and 

executable landing time 

2 4 Early development of prediction 

algorithm to detect knowledge 

gaps and technical issues 

Manual override to prevent 

system from draining battery 

Identify alternative prediction 

model 

9 Microcontroller dies 

during flight 

Technical Microcontroller for forwarding flight commands 

loses functionality during flight, causing DJI to 

crash 

2 5 Robust testing in controlled 

environment 

Order spare parts 

10 Incompatibility 

between single 

board computer and 

ROS architecture 

Technical Software drivers for hardware components are not 

compatible with single board computer 

5 4 Investigate OS requirements of 

hardware prior to purchasing and 

development 

Reserve budget for acquiring 

alternative sensor or SBC 
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Figure 7: Consequence/likelihood risk chart. 

8. Conclusions 

8.1. Key Fall semester lessons learned 

The first lesson we learned from this project is the underestimation of the workload. With our 

limited experiences, we were not able to accurately estimate the task length and workload. 

Uneven workload distribution results in blocking actions and delay schedules.  

After the project definition with our sponsor and MRSD advisors, we only have one month 

left to finish our task. However, we promised to finish a prototype that can land on a static deck 

in Fall semester. We should have a more realistic goal. Instead of promising to have all 

subsystems integrated together, we should define our requirements on each individual subsystem 

first.  

Most of our team members don’t have enough knowledge in software development. We 

spent a great amount of time learning ROS, github, and single board computer. In the perspective 

of learning, we did a great job. In the perspective of the project development, this results in delay 

of the development and a great burden on the software person in our team. In addition, we should 

have start our version control before any software development, especially syncing all the results 

with our single board computer. Due to the delay arrival of our single board computer, the 
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compatibility issues between our laptops and the single board computer already pile up by the 

time we integrate our codes into it.  

A majority of our work has already been done in this field. Our sensors and algorithms are all 

well developed. Yet we didn’t ask for help often enough. We have a great sponsor that can 

provide us technical support but we only report our progress during weekly meeting. By the time 

we realized we need help, it was already too late to make any changes due to the deadline of 

FVE.  

We made our schedule too tight to account for any unexpected problems. There are many 

tasks that is hard to foresee. Our management needs to be more agile to meet our goals. For 

example, we promised to demonstrate the quadrotor flying using the integration results of the 

trajectory generation and flight control subsystems at the 4th progress review. To meet this goal, 

we not only need the software to work with each other, but also need the single board computer, 

the power distribution system, and the sensor mount to be ready to use. However, we didn’t plan 

these tasks in our schedule. Our solution to this problem was to plan a mini schedule for each 

member to work on these unscheduled tasks. The results were pretty successful. We need to 

employ this method more frequently.  

Although we have team meetings very frequently and we all know the progress of each 

subsystem. But when one subsystem goes wrong, we still need that person to fix it. We initially 

assigned two people responsible to one subsystem but we didn’t implement it. This results in 

unnecessary delay to our schedule. This problem should be avoided in the next semester. 

8.2. Key Spring semester activities 

The first thing we need to do for the next semester is to reevaluate our choice of the camera 

and the single board computer. If the camera driver is still not compatible with the single board 

computer, we might need to make some corresponding changes. After this problem is fixed, we 

need to change the design of the power distribution system. In addition, since we are using USB 

hub to provide more ports for our sensors and microcontrollers, we also need to consider using a 

powered hub and design a corresponding power outlet from our power distribution system. 

For the software development part, we need to integrate our code more often and install all 

required software and libraries on everyone’s laptop and the single board computer.  

Most of our subsystems need to upgrade for future challenges. Navigation strategy needs to 

account for the possibility of losing sight of the beacons. Prediction algorithm needs to be 

employed to give better state estimation and sensing results. The performance of the vision 

subsystem will be improved by fusing with inertial navigation techniques.  
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