

PROJECT KINGFISHER

Critical Design Review

December 17, 2015

Eitan Babcock, Ryan Gibbs, Shu-Kai Lin, Kelsey Ritter, Samuel Wang

Abstract

This paper describes our plans to solve the problem of landing a helicopter on a ship deck.

Ships in open water are inherently difficult to land on, as they are not stationary objects. A

ship’s deck is a moving target, which adds uncertainty to landing any flight, especially with a

pilot’s constrained field of view, inhibited by the aircraft itself. These factors make the landing

portion of flight one of the most dangerous. An autonomous landing control technology is

proposed that utilizes infrared beacons to determine the position and characterize the movement

of the landing deck. The characterized movements will be used to determine a safe landing time

and location. This will allow the onboard system to calculate a trajectory to land safely and

quickly. The controller will then execute this planned trajectory to meet the landing deck at the

calculated time and position. This technology will improve the safety and efficiency of the

landing process, preventing human injury as well as saving money by reducing expenses from

recovering crashed aircraft.

Table of Contents
1. Project Description ... 1

2. Use Case ... 1

3. System-level Requirements .. 2

4. Functional Architecture .. 3

4.1. Visual Structure: ... 3

4.2. Inputs... 4

4.3. Sense ... 4

4.4. Localize ... 4

4.5. Predict ... 4

4.6. Plan Trajectory .. 4

4.7. Follow Trajectory.. 4

4.8. Send Landing Signal ... 4

4.9. Outputs .. 5

5. Cyberphysical Architecture .. 5

5.1. Visual Structure .. 5

5.2. Camera Mount .. 5

5.3. Single Board Computer... 6

5.4. Additional Boards ... 6

5.5. Power Distribution .. 6

6. Current System Status .. 6

6.1. Fall-Semester Targeted System Requirements ... 6

6.2. Current System Descriptions .. 7

6.2.1. Overall System Status:... 7

6.2.2. Vision Subsystem Status ... 7

6.2.3. Deck Marking Subsystem Status ... 7

6.2.4. Localization Algorithm Subsystem Status .. 8

6.2.5. Prediction Algorithm Subsystem Status .. 9

6.2.6. Trajectory Generation Algorithm Subsystem Status 10

6.2.7. Trajectory Following Algorithm Subsystem Status .. 10

6.2.8. Flight Control Subsystem Status ... 11

6.2.9. Power Distribution Subsystem Status .. 11

6.2.10. Rotorcraft Subsystem Status .. 11

6.3. Modeling, Analysis, and Testing .. 12

6.4. Performance evaluation against the Fall Validation Experiment (FVE) 13

6.5. Strong Points ... 14

6.5.1. Designed and built mechanical parts and power distribution board 14

6.5.2. Implemented the baseline of algorithm for most of subsystems including 14

6.5.3. Integrated the system including mechanical parts, power distribution board,

single board computer, and software algorithms .. 15

6.5.4. Built simulation environment to simulate the motion of the quadrotor 15

6.6. Weak Points .. 15

6.6.1. Need more stable localization data for the trajectory following 15

6.6.2. Need to fine tuning the PID controllers ... 15

6.6.3. Camera does not work on the single board computer 15

6.6.4. Gimbal does not work.. 15

7. Project Management ... 16

7.1. Work Breakdown Structure .. 16

7.2. Schedule .. 17

7.3. Test Plan.. 19

7.3.1. Progress Review Capability Milestones .. 19

7.3.2. Spring Validation Experiment ... 19

7.4. Budget ... 21

7.5. Risk Management ... 22

8. Conclusions .. 23

8.1. Key Fall semester lessons learned .. 23

8.2. Key Spring semester activities .. 24

9. References .. 25

1

1. Project Description

Project Kingfisher aims to develop a sensor suite and trajectory planning software for an

autonomous rotorcraft to land on ships without the use of GPS or radio. Military operations at

sea often utilize air vehicles traveling to and from ships. Aircraft carriers are large enough to

allow landing and takeoff of fixed wing aircraft, but smaller ships are being used to support

rotorcraft vehicles. With varying ship sizes and sea states, the pilot of a helicopter must be highly

experienced to safely land the aircraft on the moving deck.

With the performance improvement of processors and the maturity of sensor technologies,

unmanned aerial vehicles (UAVs) are becoming popular in a wide range of applications. These

applications include military service, aerial photography, surveillance, environment mapping,

cargo shipping, etc. [1]. Work has been shared between man and machine, and the working

efficiency and capability has been increased since UAVs can access places humans cannot and

can operate more precisely. However, without intelligence onboard the vehicles, UAVs can be

very dangerous. A collision between a UAV and a landing base can cause significant loss and

even human injuries.

Therefore, a technology that can autonomously land a rotorcraft on a shipdeck by combining

sensing and prediction is a potential solution for improving landing performance. Project

Kingfisher will utilize a vision system suite carried by a small-scale quadrotor to demonstrate

algorithms that can safely land a rotorcraft on a dynamically moving deck.

2. Use Case

Mr. Gman is a pilot in the Navy. His main mission as a helicopter pilot is to survey the

environment of the battlezone. Every time he goes on a mission, he is worried about whether he

will be able to come back to the ship safely because the helicopter landing environment can be

very dangerous. Beside the threat from enemies, natural disturbances such as wind, lack of

lighting, and rough seas can easily cause an accident.

The Navy utilizes many resources to reduce the risk of helicopter landing. Every possible

effort has been made to solve the problem, including intense training for pilots and more stable

vehicle platforms. The military has realized that the limitation of human capability is a key factor

that causes accidents. Since environment surveying can be done by unmanned machines, one of

the solutions is to apply the autonomous pilot system on the helicopter. After decades of

cooperative research with the Robotics Institute at Carnegie Mellon University, a sensor suite

and trajectory planning software are mature enough to provide autonomous landing for

helicopters.

With this new technology, Mr. Gman no longer needs to operate the helicopter during

landing. Instead, he flies the helicopter to the vicinity of the ship and pushes a button to activate

landing mode. During landing mode, the controls are taken over by the landing autopilot. In this

mode, the helicopter can sense the location of the ship deck from a far distance via cameras and

2

infrared beacons without the use of GPS. Although the waves of the ocean heave the ship deck,

the helicopter is able to predict the motion to determine the point in time when the deck will be

in the safest landing position. The helicopter determines the speed and trajectory it must fly to

meet the deck at that point in time. The helicopter meets the deck safely and smoothly, though

the deck is still heaving from the ship riding the waves. The landing mode then deactivates,

sending a signal to Mr. Gman that the autopilot has successfully landed the helicopter on the

deck.

3. System-level Requirements

Functional Requirements

User Need Performance Requirement Mandatory/Desired

Rotorcraft shall identify the deck

within the environment.

1 false positive deck identification allowable in 100

trials from 100m.

Desired

Rotorcraft shall sense position of deck in relation to

the rotorcraft with accuracy as function of distance

as follows:

1. Detection at minimum 100m distance

2. <100m distance : 0.4cm allowable error for each

meter away

Mandatory

When within landing range,

rotorcraft shall predict dynamics of

the deck.

Rotorcraft shall predict movement of deck within

0.8cm/m of current distance to deck over total

algorithm loop time.

Mandatory

The rotorcraft shall robustly follow

a planned trajectory.

Follow planned trajectory 99% of time, within

0.8cm/m of current distance to deck.

Desired

Rotorcraft shall land on the landing

zone of the deck.

Rotorcraft shall land within 50cm of center of the

deck, as measured from the center of the rotorcraft.

Mandatory

Rotorcraft shall land on dynamically moving deck. Mandatory

Rotorcraft shall perform 8 successful landings over

a 10 cycle lifetime.

Desired

3

Nonfunctional Requirements

User Need Constraint/Requirement Required/Desired

System shall operate in

EMCON conditions.

Operation of autonomous landing mode shall be possible

without radio commands and in GPS-denied conditions.

Mandatory

System shall operate with

minimal user input.

Autonomous landing sequence shall execute after a single

user "go" command.

Mandatory

Rotorcraft shall land safely. System shall operate without damage to rotorcraft or

deck.

Mandatory

Rotorcraft shall operate in

varying environmental

conditions.

System shall operate through steady wind up to 5mph. Desired

System shall operate through gust wind up to 10mph. Desired

System shall operate in 50m visibility. Desired

System shall operate from minimum 0.0001 lux to

maximum 100,000 lux

Desired

4. Functional Architecture

4.1. Visual Structure:

Figure 1: Functional Architecture of Landing Process

4

4.2. Inputs

The input to the autonomous landing system is an environment containing the ship deck. It

should be noted that for our system, the assumption is made that the rotorcraft and the ship deck

are the only objects in the environment besides the ground/water. We assume that there are no

obstacles either on the deck or in the path of the rotorcraft.

4.3. Sense

The sensors output data about the environment at the maximum data rate that can be handled

by the system.

4.4. Localize

At long range, the position is sufficient to construct a heading for the rotorcraft to approach

the deck. Once within landing range, a constructed frame is used to determine the relative

position and orientation of the ship deck with respect to the rotorcraft.

4.5. Predict

Using the history of deck poses, the motion of the ship deck is modeled in time. Once

sufficient data are collected for an accurate model, the model is used to predict the future pose of

the ship deck.

4.6. Plan Trajectory

At long range, the planned trajectory is simply the shortest distance between the rotorcraft’s

current position and the detected position of the ship deck. Once within landing distance, the

prediction model for the motion of the ship deck is used to determine which windows in the

deck’s cycle are safe to land during. Taking the system’s current position and average flight

velocities into account, a trajectory is planned that times the landing with one of the future

windows for safe landing.

4.7. Follow Trajectory

The desired trajectory is fed from the system’s computer into the flight controller for the

rotorcraft. The rotorcraft then executes the planned trajectory until it is altered or the rotorcraft

lands successfully.

4.8. Send Landing Signal

Upon landing, the system needs to send a confirmation signal to the user that it has landed.

This allows the user to issue further commands or to perform some manual task on the rotorcraft.

5

4.9. Outputs

The system output is a landed rotorcraft and an output signal to the user that the system has

landed successfully. The system will then enter an idle state awaiting further instructions,

releasing autonomous control of the rotorcraft.

5. Cyberphysical Architecture

5.1. Visual Structure

Figure 2: Cyberphysical Architecture of Landing System

5.2. Camera Mount

Our cameras need to be mounted to the mobile platform. The exact mount that will be used

is yet to be determined. The primary options we are considering are fix-mounting two cameras

at different angles or building a motorized camera mount that can tilt in pitch to account for

motion of the rotorcraft.

6

5.3. Single Board Computer

Our single board computer houses the primary software and processing for our system. The

image processing, localization, prediction, trajectory planning, trajectory following, and flight

command subsystems all reside here. Additionally, there is a master node that handles the

routing of command signals and switching between states.

5.4. Additional Boards

In addition to our primary single board computer, we have two signal conversion boards and

an Arduino Nano. The signal conversion boards convert the remote control signal from SBus to

PWM and the motor controls from PWM to SBus. This is needed because the DJI Phanom II

expects SBus communication from the remote controller, but our single board computer and

Arduino Nano use PWM communication. The Arduino Nano takes the inputs from the remote

controller and the single board computer and determines which signal should be routed to the

rotorcraft.

5.5. Power Distribution

Our printed power distribution board takes power from the DJI Phantom II’s battery and

distributes it to the various other boards. There is a 5V regulator on this board to provide power

to the single board computer and the conversion boards. The Arduino Nano has an internal

power regulator, so it receives the full voltage of the battery. The cameras and IMU are powered

via USB from the single board computer.

6. Current System Status

6.1. Fall-Semester Targeted System Requirements

Table 7.1 – Fall Semester System Requirements and Associated Subsystems

Functional Requirements

User Need Performance Requirement Relevant Subsystems

Rotorcraft shall identify the

deck within the environment.

Rotorcraft shall sense position of deck in relation to

the rotorcraft with accuracy as function of distance

as follows:

1. Heading detection at minimum 50m distance

2. <50m distance : 25cm+0.8cm/meter away

Vision, Deck

Marking, Localization

Algorithm

Rotorcraft shall land on the

landing zone of the deck.

Rotorcraft shall land within 50cm of center of the

deck, as measured from the center of the rotorcraft.

All except Prediction

Algorithm

Rotorcraft shall land on a stationary deck. All except Prediction

Algorithm

7

Nonfunctional Requirements

User Need Constraint/Requirement Relevant Subsystems

System shall operate in

EMCON conditions.

Operation of autonomous landing mode shall be

possible without radio commands and in GPS-

denied conditions.

Entire System

System shall operate with

minimal user input.

Autonomous landing sequence shall execute after a

single user "go" command.

Entire System

Rotorcraft shall land safely. System shall operate without damage to rotorcraft or

deck.

Entire System

6.2. Current System Descriptions

6.2.1. Overall System Status:

The kingfisher system as a whole contains an implementation of every major subsystem at

the conclusion of fall semester. Many of the current iterations of these subsystems are limited in

their application scope, and will require considerable improvement over the course of the next

semester. Specific system statuses and planned changes are outlined by subsystem below.

6.2.2. Vision Subsystem Status

The vision subsystem is responsible for the detection of the ship deck and its relative pose.

At long ranges, the position will be determined using the long range IR camera on the rotorcraft

and the IR beacons on the corners of the deck. At medium range, all four of the IR beacons will

be distinct enough for the camera to interpret individually. Finally, at close range, the vision

system will switch to the short range landing camera to allow for a greater field-of-view as the

distance to the deck decreases.

As of the end of fall semester, the initial version of the vision subsystem is fully

implemented. The long and short range cameras are both assembled with their respective lenses

and are fitted with long-pass IR filters. The lens option selected for the short range camera may

have to be changed next semester to accommodate a wider field of view. The current plano-

convex lens with a 7.5mm focal length yields a 39 degree field of view already. Unfortunately,

the motion of the quad is significant enough that some maneuvers cause one or more of the deck

beacons to leave the field of view. As a result, we will investigate the use of a fish-eye lens for

the short range camera to combat this effect. The motion of the quad is less of an issue at long

range where the angular separation of the beacons from the perceived center of the deck is much

less.

6.2.3. Deck Marking Subsystem Status

The deck marking subsystem is responsible for indicating several points of interest on the

ship deck to the rotorcraft. The IR beacons on the deck provide an approximate location at long

8

distance due to their greater than .5 mile visibility. Once the rotorcraft is close enough to

distinguish between them, the center of the deck and the pose of the deck can be determined

based on the prior knowledge of their configuration on the deck.

Currently, they are arranged on the deck in a square of 1 foot side lengths offset from the

center of the deck by a foot and a half in the vertical direction. This offset is to account for the

current fixed mounting of the cameras at 30 degrees from horizontal. The offset allows the

beacons to remain in the field of view even when the rotorcraft is on its final descent directly

above the deck.

6.2.4. Localization Algorithm Subsystem Status

The input to the localization algorithm is the two images from the long range camera and the

short range landing camera, as well as the data from the rotorcraft IMU. Let landing range be the

range within which the deck beacons are within the field of view of the short range landing

camera, but the long range camera can no longer see all 4 deck beacons. Let prediction range be

the range beyond landing range, but within long range, within which the system will attempt to

perform prediction of the deck’s motion. Let long range be the range beyond prediction range but

within the maximum detectable range.

While at long range, the algorithm will identify the centroid of the four beacons and output

the relative heading direction between the rotorcraft and the centroid, using the known mounting

configuration of the cameras to construct a heading for the rotorcraft.

Once within prediction range, in addition to outputting the centroid location as above, the

algorithm also reconstructs the pose of the deck. To do this, the algorithm identifies the centroid

of the beacons to determine the deck’s relative position as before. Then, relative pose will be

determined by solving for the perspective transform of the known configuration of beacons on

the deck. Finally, the “absolute” motion of the deck from one frame to the next will be

determined by subtracting the rotorcraft’s motion model data from the corresponding frames.

This accounts for the motion of the rotorcraft during the time between frames. This model is

generated through a combination of the corresponding motion command from the path planner to

the flight controller and the IMU data for the target time window. The prediction range

localization algorithm outputs both the absolute and relative pose of the deck.

Finally, within landing range, the algorithm will compute the relative and absolute poses as

above, with the difference that the landing camera will be used in place of the long range camera.

In its current implementation, the algorithm is vulnerable to several conditions that will need

to be addressed in spring. The first of these conditions is if one or more, but not all, of the

beacons departs the field of view of the cameras. Since we’re currently using K-Means to cluster

the beacons to identify a single point to operate the perspective transform on, if there are fewer

than four beacons in the image, the algorithm will incorrectly split one of the beacons to

accommodate. This functionality is desired at longer ranges where the beacons are discernable,

9

but still contiguous, but causes problems at shorter ranges. To solve this for next semester, frame

differencing will be used as a component of the filtering of the vision data to detect large

perceived changes in beacon position and check if they’re caused by loss of field of view. This

will also be useful to maintain the performance of the system if one or more beacons are

temporarily disabled or occluded. Another vulnerability condition is the presence of glare or

extra IR light in the scene. Previous frame beacon position and size will be used to filter out false

beacons in the spring implementation.

Figure 3: Current Status of Vision System. Upper-left: Scene image, with deck beacons where the blue tape is.

Upper right: Raw camera input image. Bottom: Detected beacons numbered by concentric rings.

6.2.5. Prediction Algorithm Subsystem Status

The prediction algorithm will use the absolute pose of the deck over time to produce data of

roll, pitch, and swell over time. This data will be in reference to an absolute world frame

centered at the deck. The algorithm will then use a Kalman filter to predict the motion of the

deck into the future. This will allow the rotorcraft to plan a trajectory such that it meets the deck

at a relative high point and a relative flat point on the deck’s path. This is critical in order to

perform a safe landing with minimal damage to the rotorcraft or the ship.

10

This algorithm has only undergone initial development at this time, since the deck was static

for the fall semester. Some basic state estimation and Kalman filtering has been done on false

data for a simple harmonic system to familiarize ourselves with the implementation of Kalman

filters in code. The bulk of the prediction algorithm will be developed and tested next semester

when the deck is in motion.

6.2.6. Trajectory Generation Algorithm Subsystem Status

The trajectory generation system is for generating a trajectory from initial state to a target

position [14]. The trajectory planning algorithm will produce that ideal trajectory based on the

predicted movement of the deck. The planned trajectory should allow for the rotorcraft to

seamlessly adjust its velocity during flight to meet with the deck at the proper time and position.

This algorithm has two separate stages. The first stage occurs outside the prediction distance,

where the localization algorithm computes relative pose between the rotorcraft and the deck, and

sends this information to the trajectory algorithm. The trajectory algorithm uses this information

with desired state to compute a thrust and rotation matrix to send to the flight controller. The

desired state in this stage is to minimize the relative distance. This allows for the rotorcraft to

simply fly in the direction of the deck, reducing the distance and increasing the vision system’s

ability to distinguish the individual beacons to get an accurate position and pose of the deck. The

second stage of trajectory generation occurs within the prediction distance. In this stage, the

trajectory algorithm not only takes the information from the localization algorithm, but also from

the prediction algorithm. The prediction algorithm predicts the dynamics of the deck, and sends

the predicted pose of the deck over time to the trajectory algorithm. The trajectory planning

algorithm analyzes the deck motion over time to identify acceptable landing times, and identifies

the ideal landing time based on the rotorcraft’s distance from the deck. The trajectory algorithm

will then generate an ideal trajectory to land on the deck at the specified “ideal” time. The

trajectory planning algorithm will take this ideal trajectory, and convert it into aircraft roll, pitch,

yaw, and thrust commands. These commands will be fed to the flight control microcontroller,

which will in turn control the motors on the mobile platform.

6.2.7. Trajectory Following Algorithm Subsystem Status

The trajectory following algorithm subsystem is responsible for detecting errors in our

current flightpath and making the corresponding course corrections to put the rotorcraft back on

the target trajectory generated by the trajectory generation algorithm.

Currently, the trajectory following algorithm is a PID controller used to keep the rotorcraft at

its current waypoint based upon feedback from the vision system and the IMU. This subsystem

requires further development due to the coupling between X-Y and Z position.

11

6.2.8. Flight Control Subsystem Status

The flight control subsystem is responsible for converting the commands output from

trajectory generation in terms of roll, pitch, yaw, and thrust to the necessary stick commands to

emulate to the flight controller onboard the rotorcraft. Additionally, this subsystem toggles

between manual flight of the rotorcraft by remote control and autonomous flight. Autonomous

flight is achieved by emulating manual flight commands from the “remote control” generated by

the trajectory generation and trajectory following algorithms. Control can be returned to the

human safety pilot through the use of an extra channel on the remote control.

6.2.9. Power Distribution Subsystem Status

The power distribution subsystem is responsible for the distribution of power from the

standard rotorcraft battery to all onboard subsystems, as well as the addition of the ability to

hotswap batteries with only the actual rotorcraft motors needing to be powered down. Due to

errors in design during the fall, the board and design will need to be reworked and refabricated in

spring to achieve full functionality. In its current state, the power output is noisy but usable for

all subsystems. However, the hotswap feature is inoperable and power consumption is higher

than designed.

6.2.10. Rotorcraft Subsystem Status

The rotorcraft is responsible for executing the command sent from the single board computer

such as flying, landing, and flight mode switching. The rotorcraft consists of flight avionics,

actuators, radio transmitter and receiver, vehicle frames, and battery. Flight Avionics is the brain

of the system; it consists of a processor, sensors, and input/output (I/O) pins. The basic sensor a

rotorcraft requires is the gyroscopes, which provides the angular information of the rotorcraft.

However, without the accelerometer, the user needs to manually control the orientation of the

rotorcraft. Typically, most flight controllers apply proportional-integral-derivative (PID) control

for stabilization of the rotorcraft. The I/O pins are responsible for providing connections of

actuators and command receiver to the processor. In this work, there are two inputs responsible

Figure 4: Flight Control Subsystem Depiction

12

for the dynamic movement of the rotorcraft. One is the trajectory command send by single board

computer while the other one is from radio transmitter in case of emergency. For actuators,

brushless dc motors are used; each of the motors is driven by electronic speed controller. The

thrust of the vehicle is provided by attaching propellers on the motors [13].

In the ideal situation, the rotorcraft should autonomously follow the exact planned trajectory

under the influence of natural disturbance and in EMCON condition. Therefore, dynamic

stability of the rotorcraft is the primary concern in this work since any disturbance to the

rotorcraft could result in bias to the sensors. In the scope of rotorcraft platform trade study, the

disturbance includes wind, payload, and etc. The rotorcraft should provide enough

maneuverability and stability with the installation of single board computer, sensors and battery.

Moreover, the landing gear should withstand multiple tests; so the cost can be minimized and the

components can be protected. Finally, the application programming interface (API) and

community support of the rotorcraft platform can be great sources to reduce development time.

6.3. Modeling, Analysis, and Testing

Figure 5: Camera field of view testing results.

13

Figure 6: Payload testing results.

Additional testing was conducted prior to the FVE for the purpose of tuning the PID

controller for trajectory following.

6.4. Performance evaluation against the Fall Validation Experiment (FVE)

Table 1: Requirements and test items for FVE.

Functional Requirements Test item Result

 Rotorcraft shall sense position of deck

in relation to the rotorcraft.

Heading detection at minimum 50m

distance
Check ✔

10m distance : Orientation and position

of deck can be seen
Check ✔

 Rotorcraft shall land on stationary

deck.

Rotorcraft shall land within 50cm of

center of the deck, as measured from the

center of the rotorcraft.

Fail ✖

Non-Functional Requirements Test item Result

 Operation of autonomous landing

mode shall be possible without radio

commands and in GPS-denied

conditions.

Does the system operate in GPS-denied

condition?
Check ✔

 Autonomous landing sequence shall

execute after a single user "go"

command.

Is the user interface very simple? Check ✔

 System shall operate without damage

to rotorcraft or deck.

Is the system still perfect? Check ✔

14

Five requirements were needed in the fall semester. Two of them are functional

requirements, and the rest of them are non-functional requirements.

The first functional requirement is for verifying the localization algorithm, and there are two

test items in this part. First, at long distances (50m) the localization algorithm should detect the

heading toward the deck. In this test item, the algorithm not only detects the correct direction but

also provides the accurate position information. Next, the localization algorithm should provide

relative position and orientation between the quadrotor and the deck at distance below 10m. We

demonstrated a video and an image at the FVE to show that the algorithm can provide accurate

data.

For the second functional requirement, we need to demonstrate the quadrotor landing on a

stationary deck autonomously. We did not accomplish this goal, but instead demonstrated

autonomous hovering. Though the position and orientation data provided by localization

algorithm are accurate, we still cannot get the correct transform between coordinate frames.

Also, the vision field of view range for detecting the beacons is limited. For these reasons, we

were not able to land on the stationary deck.

Our system satisfies all of the non-functional requirements. It can operate in GPS-denied

conditions, the user interface in our system is very simple, and our system operates without any

damage.

According to the result mentioned above, we completed most of the requirements in FVE,

and still need to work on the localization subsystem. Once we have correct feedback data, we can

start to fine tune our controllers and move forward with landing the quadrotor.

6.5. Strong Points

6.5.1. Designed and built mechanical parts and power distribution board

In this semester, we have built the mechanical parts to mount all of the components on the

quadrotor including the power distribution board, the IMU, the signal switch board, and the

single board computer. Also, we have designed and built the power distribution board to apply a

5V and 11V voltage source to all of the components. Both of them work very well and reduce

the difficulty to do experiments and testing. Though we might change some designs in spring, we

can still leverage on this experience.

6.5.2. Implemented the baseline of algorithm for most of subsystems including

We implemented most of the subsystems in this semester and did the unit test on each of

them. Every algorithm met their baseline requirements. All of us became familiar with ROS, so

we are in a good position to modify or implement new algorithms next semester.

15

6.5.3. Integrated the system including mechanical parts, power distribution board,

single board computer, and software algorithms

We have already integrated most of our subsystems on a single board computer. Though we

still have a mismatch between the single board computer and the camera driver, it can be fixed

by either changing components or finding another driver. Once we solve this issue, we will have

a complete system. Then we can focus on developing software algorithms.

6.5.4. Built simulation environment to simulate the motion of the quadrotor

We have implemented a simulator in Gazebo for simulating the motion of the quadrotor.

Base on this experience, we can easily extend the functionality to help test algorithms in

simulation before implementing them on the physical system. This simulator will be very useful

in the next semester.

6.6. Weak Points

6.6.1. Need more stable localization data for the trajectory following

Our localization algorithm now can provide very accurate position information while the

quadrotor does not rotate. If the quadrotor does rotate, the position information is not accurate

anymore. This is because the transform matrix between the frame of the deck and the frame of

the quadrotor has proven to be difficult to determine. Another issue is that once the localization

algorithm loses the view to the beacons, the information feedback is wrong. We plan to

implement a tracking algorithm to help with this in the spring.

6.6.2. Need to fine tuning the PID controllers

We have implemented three PID controllers for position control in the x, y, and z directions.

In the spring, we will fine tune the controller gains of each PID controller.

6.6.3. Camera does not work on the single board computer

Our cameras work very well on the laptop. However, they do not work on our single board

computer. To solve this issue we plan to either change the camera or change the Odroid if we

cannot find a suitable driver.

6.6.4. Gimbal does not work

We planned to use Gimbal to maintain the angle of the camera. However, the cable is very

stiff and tends to retain its shape, and the motor on the Gimbal does not provide enough power to

adjust the Gimbal. To solve this issue, we will build our own Gimbal or fix-mount the cameras.

16

7. Project Management

7.1. Work Breakdown Structure

Spring
Tasks

Printed Circuit
Board

Identify all
supported

components

Design board

Acquire PCB

Assemble

Test PCB

Motorized Camera
Mount

Trade study

Purchase motor

Mechanical
interface

Motor testing

Initialization/
calibration

Motor control
node

Node testing

Cameras

Acquire parts

Download drivers

Initialization
settings

Integration with
localization

Position test with
flat quad

Localization Filter

Incorporate roll

Test
transformation

Flight Control

PID tuning for
hover

Deck move test

Trajectory test

Height Sensor

Trade study

Acquire sensor

Install sensor
driver

Sensor mount

Accuracy testing

Filtering and
transformation

Roll and pitch test

Kalman filter

Motion test

Deck Motion

Concept proof

ROS node

Stationary quad
test

Flying test

Prediction

Characterize past
motion

Concept proof

ROS node for
testing

Single sensor test

Edit code for w/
deck motion node

Stationary quad
test

Flying test

Future prediction

Concept proof

ROS node

Integrate with
past motion

Stationary quad
test

Integrate with
trajectory planner

Flying test

Master Node

Updates for added
nodes

Launch Files

Updates for added
nodes

17

7.2. Schedule

The table below shows task breakout by category and the corresponding due dates for each task.

Task

ID Category Task Sub-Task

Estimated

Hours

Predicate

Task IDs Due Date

5

Motorized Camera

Mount Trade Study for Motor 2
 - 11-Jan-16

10 Purchase Motor 0.5 5 11-Jan-16

20 Design Mechanical Interface CAD draft 8 5 11-Jan-16

25 CAD updates for actual part 1 10, 20 PR 8

30 3D Print 1 25 PR 8

40 CAD updates 2 30 PR 8

50 Machine parts 4 40 PR 8

60 Motor Testing Camera load testing 2 50 PR 8

70 Encoder Accuracy 1 60 PR 9

80 Initialization/calibration 8 70 PR 9

90 Write motor Control Node 4 80 PR 9

100 Node testing 1 90 PR 9

110 Cameras Contact Point Grey about 32bit architecture 4 - 23-Dec-15

120 Spec new parts - trade study 2 110 4-Jan-16

130 Acquire parts 0.5 120 11-Jan-16

140 Download drivers 2 130 PR 8

150 Determine initialization settings 2 140 PR 8

160 Integration with localization 2 150 PR 8

170 Position test with flat quad 1 160 PR 8

180 Localization Filter Fix calculation to incorporate quad roll 4 - 11-Jan-16

190 Test transformation 1 180 PR 7

200 Flight Control Change PID node to fix subscription timing 8 - PR 7

205 Test still hover 2 200 PR 7

210 Test deck movement effects on hover 1 210 PR 7

220 PID test with a short trajectory 4 220 PR 8

230 Height Sensor Trade study 2 - 3-Jan-16

240 Acquire sensor 0.5 230 11-Jan-16

18

Task

ID Category Task Sub-Task

Estimated

Hours

Predicate

Task IDs Due Date

250 Install sensor driver 2 250, 130 PR 7

260 Sensor Mount 4 240 PR 8

270 Accuracy testing 2 250 PR 7

280 Filtering and IMU orientation transformation 4 270 PR 8

290 Roll and pitch testing 2 260, 280 PR 8

300 Kalman filter integration with camera data 8 290 PR 9

310 Motion test 1 300 PR 9

320 Deck Motion Concept Proof in Matlab 4 - 11-Jan-16

330 Build Node in ROS 4 320 PR 9

340 Test with stationary quad and known deck motion 2 330, 300 PR 9

350 Test with flying quad and known deck motion 2 340 PR 10

360 Prediction Past Motion Characterization Concept Proof in Matlab 4 - 11-Jan-16

370 Write ROS node to test sensor data 4 360 PR 8

380 Test with single sensor data 2 370 PR 8

390

Edit code for use with deck motion

node 4
380, 330 PR 9

400

Test with stationary quad and

known deck motion 2
390 PR 10

410

Test with flying quad and known

deck motion 2
400 PR 10

420 Future Prediction Concept Proof in Matlab 4 - 11-Jan-16

430 Write ROS node 4 420 PR 8

440 Test with single sensor data 4 430 PR 8

450

Integrate with past motion

characterization 2
440, 380 PR 8

460

Test with stationary quad and

known slow deck motion 2
450, 390 PR 9

470

Test with flight and progressively

faster deck motions 4
460 PR 11

480 Integrate with trajectory planning 8 470 PR 12

490 Master Node Updates for new nodes 8 (ongoing) (ongoing)

500 Launch files Updates for new nodes 4 (ongoing) (ongoing)

19

7.3. Test Plan

7.3.1. Progress Review Capability Milestones

Progress Review 7 Localization node gives correct relative position and rotation at all tilt angles

Late January Quad can hover in place using camera information about the deck

 Quad maintains relative position to deck when deck is translated along the ground

 Accuracy and limitation testing of height sensor

Progress Review 8 Quad can execute a short trajectory using camera information to orient itself

Mid-February Past motion characterization can be done with data from one sensor

 Height sensor gives correct height during roll and pitch

 Cameras and localization work on single board computer

Progress Review 9 Functionality of ROS control of motor for camera mount

Late February Printed Circuit Board Rev C assembled and functional

 Functionality of height sensor on single board computer

 Landing possible on stationary deck

Progress Review 10
Functionality of motor mount control node - response to movement of deck in
camera frame

Mid-March Deck motions are accurately calculated

Progress Review 11 Past motion characterization can be done for deck motions

Early April Future ideal landing times can be predicted

Progress Review 12
Trajectories are generated to meet correct location at correct landing time

Mid-April

7.3.2. Spring Validation Experiment

A. Objective: Execute an autonomous landing of a quadcopter on a dynamic mock ship deck

with three degrees of freedom (roll, pitch, swell).

B. Elements to be tested:

 Vision/localization subsystem

Prediction subsystem

Autonomous landing

Safety features

C. Requirements of relevance/significance to the test:

Functional Requirements

Rotorcraft shall sense position of deck in relation to the rotorcraft with accuracy as function of distance as

follows:

1. Detection at minimum 100m distance

2. <100m distance : 25cm + 0.4cm/m allowable error for each meter away

20

Rotorcraft shall land on dynamic deck moving in swell.

Rotorcraft shall land within 1 foot of center of the deck, as measured from the center of the rotorcraft.

Non-Functional Requirements

Operation of autonomous landing mode shall be possible without radio commands and in GPS-denied conditions.

Autonomous landing sequence shall execute after a single user "go" command.

System shall operate without damage to rotorcraft or deck.

D. Methods

Rotorcraft shall sense position of the deck:

1. Power on all beacons on the mock deck

2. Power on the on-board computer on the DJI and all sensors

3. Plug in a laptop running sensor testing framework

4. Without turning on the DJI motors, hold the DJI with the camera facing the deck

5. Starting at 100m away from the deck, carry DJI towards deck

6. Show on the laptop that the cameras are detecting the deck from 100m away, with at

least 0.4cm accuracy per meter distance

Rotorcraft shall land on dynamically moving deck:

1. Power on all beacons on the mock deck

2. Power on actuation of mock deck

3. Power on the on-board computer on the DJI and all sensors

4. Power on the DJI motors and controller

5. Manually operate the DJI to optimal starting position relative to the deck

6. Send “go” command

7. Rotorcraft will then autonomously fly to the deck and land on it

8. Safety operator will be standing by to take back manual control of the DJI if

conditions become unsafe for any people or equipment

Rotorcraft shall land within 1 foot of the center of the deck:

1. Once completing the previous portion of the test, the rotorcraft will have landed on

the deck

2. There will be a circle of radius 1 foot painted on the deck. Ensure that the center of

the rotorcraft is within this circle by inspection

Demonstrate Prediction Algorithm:

21

1. Display graphs of pre-recorded data showing that the results of the prediction

algorithm over time

E. Logistics of testing

Date: 03 December 2015

Location: NSH Level B

Equipment and supplies:

 Rotorcraft

 Sensor Suite

 Deck

 Spare Battery & Hot Swap Port

 Laptop

7.4. Budget

Table 2 below shows a summary of the budget for the project. To date, we have spent about

two thirds of the total MRSD budget. The big ticket items that remain are a new single board

computer, a rework of our power distribution board, and potentially an actuated camera mount.

Table 2: Budget summary for project.

 MRSD Budget Sponsor Budget

TOTAL

BUDGET

Initial $ 4,000.00 $ 5,000.00 $ 9,000.00

Quadrotor (with spares) $ (700.00) $ (800.00)

Optics $ (1,230.00)

Computation $ (378.00)

Other $ (543.58)

Spent to Date $ (2,851.58) $ (800.00) $ (3,651.58)

Remaining to Date $ 1,148.42 $ 4,200.00 $ 5,348.42

Antipicated Additional Spend:

Computation $ (500.00)

PCB $ (250.00)

Actuated Camera Mount $ (200.00)

Actuated Deck $ (500.00)

Total Additional Spend $ (950.00) $ (500.00) $ (1,450.00)

TOTAL ANTICIPATED REMAINING $ 198.42 $ 3,700.00 $ 3,898.42

22

7.5. Risk Management

Risk

Risk Type Description L
ik

el
ih

o
o

d

C
o

n
se

q
u

e
n

ce

Likelihood Reduction Plan Consequence Reduction Plan

1 Unstable

Autonomous Flight

Technical,

Schedule,

Budget

Autonomous landing mode does not control flight

adequately/correctly, causing DJI to maneuver in

unsafe ways.

4 2 RC switch for manual override Order extras of cheaper parts

2 Light interference in

vision system

Technical Vision system identifies non-beacon source of

light as beacon, causing localization to give

inaccurate positions causing erratic flight

behavior.

5 4 Infrared pass filter, testing indoors RC switch for manual override

3 Inadequate near

vision

Technical Vision system field of view cannot detect deck

location/orientation at short distances

2 4 Off-center location of beacons

with compact orientation

Feed-forward landing tests

Additional sensors

4 Asynchronous

timing

Technical Algorithms do not correctly interpret timing of

signals

2 5 Create publish rate dependencies

on subscribing nodes

Early implementation for

troubleshooting

5 Test location

unavailable

Schedule Testing is unable to be done at the planned

location due to distance, access limitations,

timing, or weather conditions.

2 3 Early coordination with sponsor Construction of small test

platform to be modular with

large test platform

6 Payload too heavy Technical Weight of sensors and circuitry is too heavy for

DJI to perform flight maneuvers effectively

1 5 Weight tracking of components

and payload testing

Identify and limit unnecessary

weight

7 Printed circuit board

nonfunctional

Schedule,

technical

Printed circuit board not designed correctly,

resulting in rework, unpowered parts, or damaged

components

4 4 Perform all component planning

prior to ordering board

Define and order needed parts

early

Get board reviewed by TA or

professor

8 Inaccurate

prediction

Technical System is unable to predict an appropriate and

executable landing time

2 4 Early development of prediction

algorithm to detect knowledge

gaps and technical issues

Manual override to prevent

system from draining battery

Identify alternative prediction

model

9 Microcontroller dies

during flight

Technical Microcontroller for forwarding flight commands

loses functionality during flight, causing DJI to

crash

2 5 Robust testing in controlled

environment

Order spare parts

10 Incompatibility

between single

board computer and

ROS architecture

Technical Software drivers for hardware components are not

compatible with single board computer

5 4 Investigate OS requirements of

hardware prior to purchasing and

development

Reserve budget for acquiring

alternative sensor or SBC

23

Figure 7: Consequence/likelihood risk chart.

8. Conclusions

8.1. Key Fall semester lessons learned

The first lesson we learned from this project is the underestimation of the workload. With our

limited experiences, we were not able to accurately estimate the task length and workload.

Uneven workload distribution results in blocking actions and delay schedules.

After the project definition with our sponsor and MRSD advisors, we only have one month

left to finish our task. However, we promised to finish a prototype that can land on a static deck

in Fall semester. We should have a more realistic goal. Instead of promising to have all

subsystems integrated together, we should define our requirements on each individual subsystem

first.

Most of our team members don’t have enough knowledge in software development. We

spent a great amount of time learning ROS, github, and single board computer. In the perspective

of learning, we did a great job. In the perspective of the project development, this results in delay

of the development and a great burden on the software person in our team. In addition, we should

have start our version control before any software development, especially syncing all the results

with our single board computer. Due to the delay arrival of our single board computer, the

24

compatibility issues between our laptops and the single board computer already pile up by the

time we integrate our codes into it.

A majority of our work has already been done in this field. Our sensors and algorithms are all

well developed. Yet we didn’t ask for help often enough. We have a great sponsor that can

provide us technical support but we only report our progress during weekly meeting. By the time

we realized we need help, it was already too late to make any changes due to the deadline of

FVE.

We made our schedule too tight to account for any unexpected problems. There are many

tasks that is hard to foresee. Our management needs to be more agile to meet our goals. For

example, we promised to demonstrate the quadrotor flying using the integration results of the

trajectory generation and flight control subsystems at the 4th progress review. To meet this goal,

we not only need the software to work with each other, but also need the single board computer,

the power distribution system, and the sensor mount to be ready to use. However, we didn’t plan

these tasks in our schedule. Our solution to this problem was to plan a mini schedule for each

member to work on these unscheduled tasks. The results were pretty successful. We need to

employ this method more frequently.

Although we have team meetings very frequently and we all know the progress of each

subsystem. But when one subsystem goes wrong, we still need that person to fix it. We initially

assigned two people responsible to one subsystem but we didn’t implement it. This results in

unnecessary delay to our schedule. This problem should be avoided in the next semester.

8.2. Key Spring semester activities

The first thing we need to do for the next semester is to reevaluate our choice of the camera

and the single board computer. If the camera driver is still not compatible with the single board

computer, we might need to make some corresponding changes. After this problem is fixed, we

need to change the design of the power distribution system. In addition, since we are using USB

hub to provide more ports for our sensors and microcontrollers, we also need to consider using a

powered hub and design a corresponding power outlet from our power distribution system.

For the software development part, we need to integrate our code more often and install all

required software and libraries on everyone’s laptop and the single board computer.

Most of our subsystems need to upgrade for future challenges. Navigation strategy needs to

account for the possibility of losing sight of the beacons. Prediction algorithm needs to be

employed to give better state estimation and sensing results. The performance of the vision

subsystem will be improved by fusing with inertial navigation techniques.

25

9. References

[1] http://www.webdesignschoolsguide.com/library/10-things-we-couldnt-do-without- robots.html

[2] https://upload.wikimedia.org/wikipedia/commons/7/74/US_Navy_091031-N-1251W-

009_An_SH-60B_Seahawk_helicopter_assigned_to_Helicopter_Anti-

Submarine_Squadron_Light_(HSL)_51_approaches_the_guided-

missile_destroyer_USS_Lassen_(DDG_82)_during_deck_landing_qualifications.jpg

http://www.webdesignschoolsguide.com/library/10-things-we-couldnt-do-without-%20robots.html

