Team A - Perception System using Stereo Vision and Radar

Amit Agarwal
Harry Golash
Yihao Qian
Menghan Zhang
Zihao (Theo) Zhang

Project Objective

- Develop a standalone system to initially assist current autonomous vehicle sensor systems, and eventually replace existing systems.

Project Description

- Sensor Fusion:
- Stereo vision (2 Point Grey RGB cameras)
- Radar (1 Delphi ESR 2.5 Radar)
- Simultaneously perceive long and short range info
- Create a robust 3D rending of the driving environment

Use case:

- Messla Motors' autonomous car hit a large white truck
- The car had an extensive, bulky, expensive sensor array
- Small entrepreneurs scared of the autonomous car business
- Prof. Nolan at BMU is one such entrepreneur!

Use case (contd.):

- Thankfully, Prof. Nolan can use Team Aware's sensor system!
- Low cost, full-range, easy to use and maintain (LIDARs are expensive)
- Redundancy and cross-calibration allows for robustness

Use case (contd.):

- Weather-proof sensor system with no moving parts
- Overall cost is low since fewer sensors used
- Prof. Nolan and other entrepreneurs/users benefit directly!

Draft Functional Requirements

- Conduct full-range perception
- Perceive in real-time
- Use multiple sensors
- Detect and identify objects
- Classify objects (pedestrians and vehicles)
- Estimate external vehicle motion and egomotion
- Be self-contained

Mandatory Performance Requirements

The system will:
M.P1. Detect objects (pedestrians \& vehicles)up to 150 m
M.P2. Unify sensor data up to 50 m
M.P3 Acquire sensor data at up to 20 Hz
M.P4 Detect object size with an accuracy of up to 80%
M.P5 Detect object distance with an accuracy of up to 95\%
M.P6 Detect object with an accuracy of up to 80%
M.P7 Classify objects (pedestrians \& vehicles)with an accuracy of up to 70%
M.P8 Estimate vehicle motion with an accuracy of up to 90%

Note: Mandatory (M) , Performance (P)

Non-functional Requirements

The system will:
M.N1 Works in real-time
D.N1 Weather-proof
D.N2 Functions in sunlight conditions
D.N3 Is compatible with vehicle display systems

Note: Mandatory (M) or Desirable (D), as well as Performance (P) and Nonfunctional (N).

Draft Functional Architecture

Draft Cyber-physical Architecture

System/Subsystem descriptions

- Mounting Rack
- Power Source
- Sensors
- Processing Unit
- Perception Algorithms
- Synchronization
- Object Detection
- Object Classification
- Motion Estimation
- Environment Modelling

Mounting Rack

- Mounting rack to hold the 2 cameras
- Mounting rack to hold the RADAR
- No modifications to the vehicle
- Weatherproof housing for the cameras
- Basic heat sink characteristics
- Unblocked view of the road

Mounting Rack - Current Status

-3-D printed prototype for cameras in place

- Aluminum components ordered
- Final prototype will be CNC

- Base rack is a Thule 53" Aeroblade (car-independent)
- Radar mounting rack - in progress
- Weatherproofing testing - in progress

Power Source

- Unified source for all components of the system
- Portable source, usable in a car
- Cameras needs $8-24 \mathrm{~V}$ with max power draw of 4.5 W
- Radar needs 24 V with max power draw of 5 W
- CPU will need 500-1000W

Power Source-Current Status

- Voltage step-up circuit from 12 V to 24 V
- Separate PCB in development through the class
- Currently using a mini-inverter for testing
- Eventually, maybe use the power supply for the CPU to power everything

Sensors

- 2 Grasshopper3 3.2 MP USB3 Vision by PointGrey Research
- 2 Tamron 8 mm 1/1.8" C-mount lenses by PointGrey Research
- ESR 2.5 Radar by Delphi Automotive
- Cameras used for stereo vision
- Radar to augment the stereo vision

Sensors - Current Status

- Acquiring images using code from the cameras over USB
- Triggering both cameras with GPIO pulse input
- Lenses tuned for optimal focus and clarity
- Radar is working over CAN connection
- Yet to acquire sensible data from the Radar

Processing Unit

- High levels of single and multi core processing power
- Multiple threading for parallelization
- High power GPU for parallel computation
- Big and fast storage for real time read/write speeds

Processing Unit - Current Status

- A lot of other tasks to be performed before deciding specifications
- Although, quite certain that will need top of the line components

Perception

- Synchronization Algorithm

- Object Classification Algorithm
- Motion Estimation Algorithm
- Environment Modelling Algorithm

Perception - Current Status

- At current stage, no tangible work. Only research about algorithms
- Faster-CNN for object detection and classification (possibly)

Draft Work Breakdown Structure (deliverables)

Draft Schedule until CDR: Milestones

- 10/27 (PR\# 2)
- Trigger both cameras using a pulse - Complete
- Finalize rack solution - Complete
- 11/10 (PR \#3)
- Visualize radar data
- Manufacture all final sensor mounts / housings
- 11/22 (PR \#4)
- Finalize power supply (PCB)
- Working / calibrated stereo vision and radar

Draft Schedule until CDR: Milestones (contd.)

-12/01 (PR \#5)

- Object detection and tracking methods research and design
- Testing on car - Not started
-12/12 (CDR)
- Basic perception system and 3D reconstruction - Not started
(Object detection and tracking will need tuning in next semester)

Draft Schedule until CDR: Screenshot

High-Level Test Plan

Name	Deliverable Functionality	Method to Test
Progress Review 3	Camera synchronization	Use Pointgrey SDK to show and capture image
Progress Review 4	Achieve Stereo Vision	Get Stereo vision data and image Progress Review 5-6
Reliable Sensor Fusion Hardware finalization cloud data from radar and stereo		
Spring PR1	Object detection	Can detect all the object captured by sensors
Spring PR2	Object identification	Identify objects in the pictures
Spring PR3	Object classification	Give the labels of the objects detected by the sensors
Spring PR4	Can estimate own and others velocity and position	

Fall Validation Experiments

Location
Equipment
Environment

Roads around school
Car, mounting rack, cameras, radar
Sunny day with fine light

Table 1 :Hardware Validation steps

Steps	Fix the rack on the car and measure the relative position of the sensors			
	Drive around the school for about 20 minutes	$	$	Measure the relative position of the radar and
:---:				
camera again				

Table 2. Sensor Synchronization steps

Steps	Fix the sensors on the mounting rack and put them on the car
	Monitor the data collected by the stereo camera and radar and make the comparison of data's timeline
Performance	Data from stereo camera and radar should be synchronized and show for about 15 minutes in real-time (less than 100ms delay)

Spring Validation Experiments

Location

Equipment

Environment

Roads around school
Car, mounting rack, cameras, radar, GPU/CPU
More than 15 m wide road with more than 30 min traffic flow in any conditions

Table 3. Object Detection steps

Steps	Fix the sensors on the car and drive at 20 mph around the school
	Get the synchronized data from cameras and radar
	Detect the objects on the road and return the size, color, shape information
Performance	Take the data from Delphi's LIDAR as ground truth. Detect object size with an accuracy of 80%, distance with an accuracy of 95%, velocity with an accuracy of 80%

Table 11. Object Classification and Estimation steps

Steps	Following the above steps of object detection
	Use the data collected before and give the classification of the pedestrians and vehicles with labels on them
	Classify objects with an accuracy of 70% and estimate vehicle motion with an accuracy of 90%

Budget

- Total budget left: \$5000-\$1097=\$3903
- Sponsored items

Grasshopper3 3.2 MP Color USB3 Vision (GS3-U3-32S4C-C) \$975
Delphi ESR 2.5 24V Radar \$3300
Tamron M118FM08, 8mm, 1/1.8", C mount Lens \$210

- Total spent to date: $\$ 1097$

Thule 53" Aeroblade \$570
UINSTONE 150W Power Inverter \$16
Belkin 6-Outlet Surge Protector \$10
Step-Up Circuit PCB (12V to 24V) \$15
Electromagnets and chargers \$25
Kvaser CAN connecter and adapter \$380
Mounting Rack Material (McMaster-Carr) \$81

Risk Management

Risk Management

Risk Management

Questions?

