Team Aware – Perception System using Stereo Vision and Radar

Standards and Regulations Presentation 3/27/2017

Amit Agarwal

Harry Golash

Yihao Qian

Menghan Zhang

Zihao (Theo) Zhang

Standards and Regulations

- 1. ISO 26262 Road Vehicles Functional Safety
- 1. CA Autonomous Vehicle Testing Regulations

ISO 26262: Road vehicles – Functional safety

ISO 26262 Introduction

- •ISO 26262 is an international standard for functional safety of electrical and/or electronic systems in production automobiles
- •The objective of **functional safety** is freedom from unacceptable risk of physical injury or of damage to the health of people either directly or indirectly (through damage to property or to the environment).
- •ISO 26262 defines functional safety for automotive equipment applicable throughout the lifecycle of all automotive electronic and electrical safety-related systems

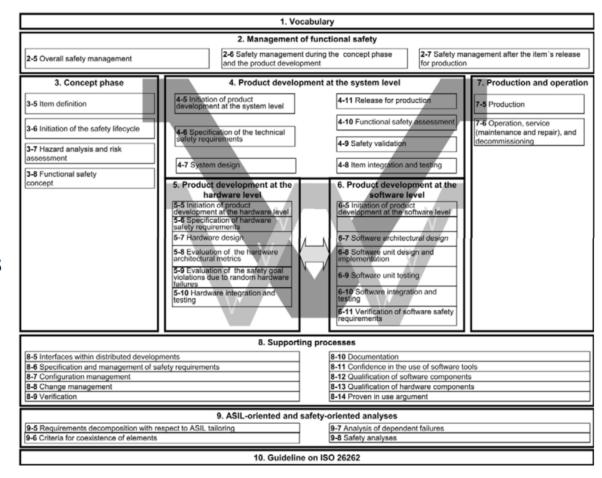
ISO 26262 Introduction

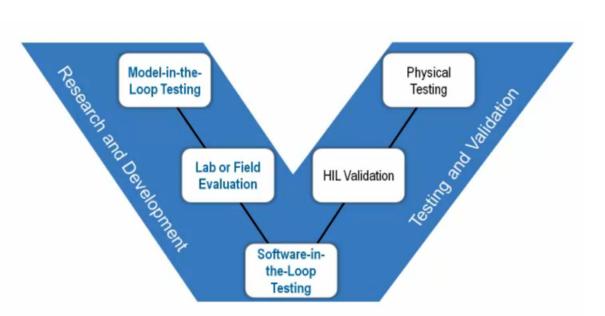
- Published on November 2011
- •Adaptation of the IEC 61508 for Automotive Electric/Electronic Systems
- Risk-based safety standard
- •Aims to address possible hazards caused by the malfunctioning behavior of electronic and electrical systems.

Goals

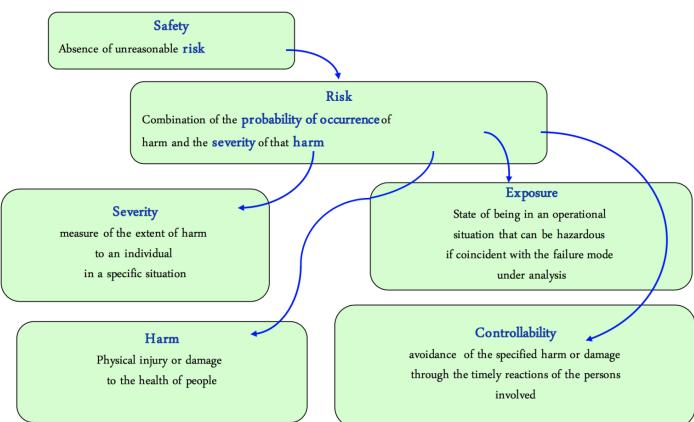
- •Provides an automotive safety lifecycle and supports tailoring the necessary activities during the lifecycle;
- •Provides an automotive specific risk-based approach to determine Automotive Safety Integrity Levels (ASILs);
- Uses ASILs for specifying the requirements for achieving an acceptable risk;
- •Provides requirements for validation and confirmation measures to ensure a sufficient and acceptable level of safety.

10 Parts

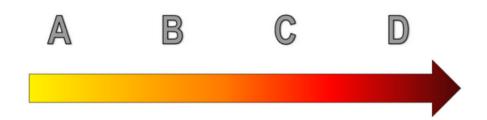

43 Chapters


100 work products

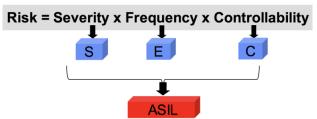
180 engineering methods


500 pages

600 requirements



Important definitions



ASIL

- •The ASIL is a crucial component of ISO 26262. The ASIL should be determined at the beginning of the development process. To estimate a risk, a combination of the probability of exposure, the possible controllability, and the possible severity is used.
- •ASIL D is defined as a combination of the highest probability of exposure (E4), the highest possible controllability (C3), and the highest severity (S3). Each single reduction in any one classification leads to a single level reduction in ASILs.

ASIL

, S0	S1	S2	S3
No injuries	Light and moderate injuries	Severe and life-threatening injuries (survival probable)	Life-threatening injuries (survival uncertain), fatal injuries

ЕО	E1	E2	E3	E4
Incredible	Very low probability	Low probability	Medium probability	High probability

C0	C1	C2	C3
Controllable in general	Simply controllable	Normally controllable	Difficult to control or uncontrollable

Calculating ASIL

		C1	C2	C ₃
S1	E1	QM	QM	QM
	E2	QM	QM	QM
	E3	QM	QM	ASIL A
	E4	QM	ASIL A	ASIL B
S2	E1	QM	QM	QM
	E2	QM	QM	ASIL A
	E3	QM	ASIL A	ASIL B
	E4	ASIL A	ASIL B	ASIL C
S3	E1	QM	QM	ASIL A
	E2	QM	ASIL A	ASIL B
	E3	ASIL A	ASIL B	ASIL C
	E4	ASIL B	ASIL C	ASIL D

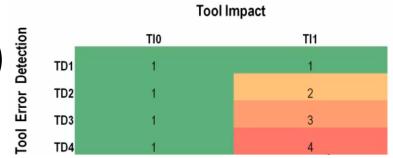
Certifying Components

Hardware

- Simple parts standard qualification
- Complex parts ASIL decomposition and testing
- Test part in variety of environmental and operational conditions

Software

- Defining functional requirements
- Resource usage
- Predicting software behavior in failure and overload situations
- Test under normal operating conditions and insert faults


"Proven in-use"

- Safety has been proven
- Same release/version as tested
- Similar application

Testing Tool Confidence

- Tools can affect the reliability of measurement
- Impacts verification and validation confidence
- Depends on what to measure
- Depends on circumstances

Tool Confidence Level (TCL)

- Tool Impact
 - TI 0 Malfunction cannot violate safety requirements
 - TI 1 Malfunction may lead to requirement violation
- Tool Error Detection
 - TD 1 Error will be detected (High confidence)
 - TD 2 Error should be detected (Medium confidence)
 - TD 3 Error may/may not be detected (Low confidence)
 - TD 4 Error is high to the point of randomization (Zero confidence)

Application to our project

- •Requirements-based test
 - Assertion
 - Perception system work in real time (delay less than 100ms)
 - User-defined targets
 - Object detection accuracy > 60%
 - Stereo vision depth accuracy >80%
- •Interface test
- •Fault injection test
 - Object tracking boxes' positions beyond the image

Application to our project

- Failure detection test
 - As soon as hardware failure is detected, a safety method to minimize its impact should be initiated
 - Software should be able to address hardware failure

CA - Testing of Autonomous

Vehicle

The California Autonomous Vehicle Testing Regulations

• The regulations "implement, interpret, and make specific" Division 16.6 (commencing with section 38750) of the Vehicle Code.

A rulebook containing all traffic **laws**.

The California Vehicle Code covers everything to do with the rules of the roads and driving, including:

- Registration and titling of vehicles.
- Anti-theft laws.
- Driver's license procedures and processes.
- Financial responsibility and car insurance.
- Rules of the road.
- Towing and loading rules and regulations.
- Transporting hazardous materials.
- Off-highway/off-road vehicles.
- Bicycle laws and rules.
- Safety regulations.

The California Autonomous Vehicle Testing Regulations

Purpose:

To provide the regulation of autonomous vehicles operated on public roads in California.

Definitions

Autonomous Vehicle:

Any vehicle equipped with *autonomous technology* that has been

integrated into that vehicle.

Technology that has the capability to drive a vehicle without the active physical control or monitoring by a human operator

Public Road:

"Highway" as defined in Vehicle Code section 360

"Offstreet public parking facility" as defined in Vehicle Code section 4000

"Street" as defined in Vehicle Code section 590

The Building Blocks of Autonomy

CONNECTIVITY

M HITACHI

RENESAS

BOSCH

Cintinental 5

DIELPHI

Cohdal\(\time\)ireless

QNX

Peloton

(intel.

TITech

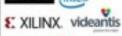
HARMAN

BOSCH

RENESAS

drive.ai

ZOOX



Level of Integration

BASELABS BAR

H HARBRICK

CLUXOFT

Getinental 4

Autoliv TOSHIBA

C Omni Ssion. ---

HARMAN FUITSU TEN

Melexis Mando Corporation

LedderTech

PEPPERL+FUCHS

Velodyne LIDAR

OSRAM

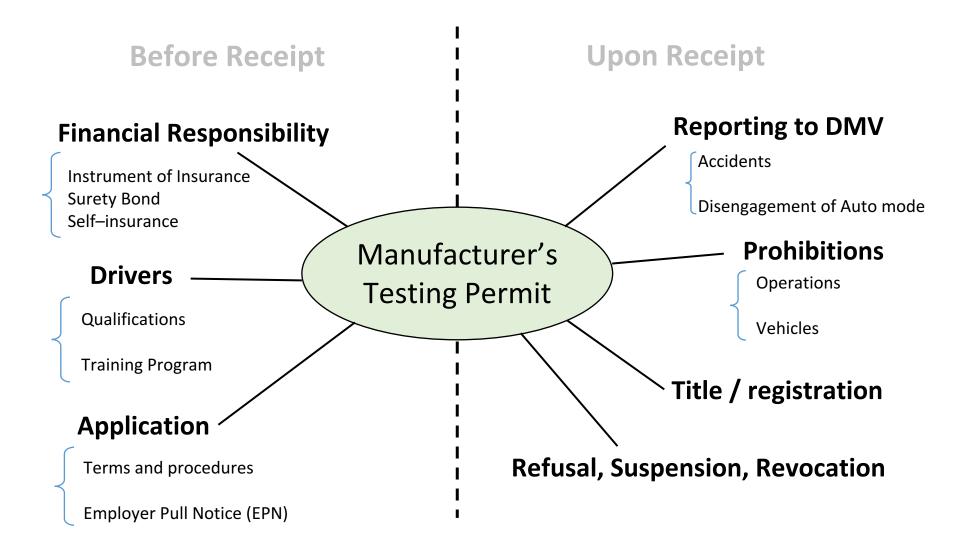
VECTOR 3

KPIT

Infineon

WIND

ETAS


Applicable products / markets

- Autonomous Driving Industry in California
- Products by manufacturers:
- 1. Who originally manufactures a vehicle (from raw materials or new basic components) and equips autonomous technology on the originally completed vehicle

2. Who modifies any vehicle by installing autonomous technology

- 1. Testing permit application
- 2. Vehicle registration
- 3. Self-driving performance review
- 4. Financial responsibility
- 5. Test-driver registration

1. Test permit application:

- Fee of \$150
- Valid for one year
- Covers up to 10 vehicles and 20 test drivers
- Extra \$50 for each additional set of vehicles and drivers
- Takes 10 days processing time

2. Vehicle registration:

- Qualitative and quantitative description of vehicle autonomous capabilities
- Brake Light Adjustment Certificate
- Health & Safety Emissions Certificate
- Some vehicles not permitted for testing:
 - Motorcycles
 - Vehicles weighing over 10,000 lbs
 - Trailers and campers

3. Self-driving performance review:

- Must record and track every instance when the autonomous driving mode failed and a human driver had to take over
- Must submit annual report

4. Financial responsibility

• Submit proof of insurance of at least \$5,000,000 in the form of a surety bond, self-insurance, or another instrument of insurance

Provide self-insurance and vehicle insurance (if applicable)

Report accidents within 10 days of occurrence

5. Test-driver registration

- Driver must be in driver's seat actively monitoring vehicle
- Driver must be an employee/contractor/designee of the manufacturer
- Driver must have a standard license for at least 3 years and a clean driving record
- Driver must have completed manufacturer's training
- Driver must register with the Employee Pull Notice Program.

Summary

- Manufacturer's Testing Permit:
 - Application/ Renewal Fee: \$ 150
 - Valid for one year
 - One permit for up to 10 vehicles and 20 test drivers (cost extra to add more)
 - Evidence of Financial Responsibility
 (\$ 5,000,000 in form of instrument of insurance/ surety bond/ self-insurance)
 - Test driver training program required by Manufacturer
 - Brake and Light Adjustment Certificate Required
 - Annual testing report/ Accident report within 10 days to DMV

Application to our project

- Delphi is licensed in CA
- Delphi already conducts testing in CA
- Project can be incorporated into future vehicle
- All relevant prescriptions will apply in future on-road testing

Questions?