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Abstract 
 

This report describes and summarizes the progress made by our team (Team A) while              
working on our Master of Science in Robotics Systems Development capstone project at             
Carnegie Mellon University - “Perception System for Autonomous Driving”. We developed and            
tested a standalone perception system for autonomous cars using a pair of cameras and a radar                
sensor. Through the fusion of stereo vision and radar sensors, our system identifies objects in               
most conditions, while still being relatively inexpensive, compact, and efficient. 

 
We use a pair of identical PointGrey cameras and a Delphi radar unit. Vision-based object               

detection and classification is done using the SSD algorithm, and the stereo-vision depth-map is              
calculated using the SGBM algorithm. Radar detection-level data are processed through a            
Kalman filter based on the constant velocity assumption. Sensor fusion is then achieved with              
position-based Multiple Hypothesis Tracking (MHT). We use rviz in ROS to display the live              
camera feed and a grid showing the identified objects by colored markers. This GUI updates               
information at 20 Hz. 

 
Our unified system simultaneously detects near- and far-range objects. Stereo vision reliably            

detects and classifies vehicles and pedestrians (> 70% accuracy) up to ~30 meters away, but it                
gives unreliable depth estimates (< 30% error). Meanwhile, radar depth and velocity calculations             
are very accurate (< 5% and < 15% error, respectively) up to 120 meters, but the radar may                  
ignore pedestrians occasionally. We thus use position-based MHT for sensor fusion, and so             
improve our total vehicle-detection accuracy by over 10%. 
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1. Project description 
 
1.1 Background Information 

  
Current self-driving cars such as those used by Google and Uber have many limitations in               

their perception systems. As can be seen in Fig.1. below, existing sensor racks are bulky,               
expensive, and hard to maintain. This is due to the large number of redundant sensors used by                 
such systems in order to avoid misreading the environment under various driving conditions. 
 

   
Fig. 1. Current sensor racks used by Google (left) and Uber (right) autonomous cars  

 
Another issue with existing automotive perception systems is that these systems do not             

adequately apply sensor fusion of complementary sensor systems. Consequently, even an           
advanced autonomous vehicle can fail if all its sensors are blinded by a single stimulus. For                
example, consider Tesla’s self-driving car crash that occurred when the test car’s LIDAR and              
vision sensors were overpowered and compromised by sunlight reflected from a crossing truck. 

  
In comparison, Fig. 2. below shows the self-driving car developed by our sponsors, Delphi              

Automotive. This was one of the first autonomous vehicles to drive cross-country across the US.               
In this case, the sensors have been installed on the vehicle while preserving its form and                
aesthetics. This was possible by using fewer sensors (meaning less redundancy) through smarter             
programming and sensor fusion, which all makers of autonomous vehicles seek to achieve. 

 

 
Fig. 2. Delphi’s self-driving SUV has integrated sensors 

 
  



1.2   Project Information 
 

In the last section, we identified the user needs of autonomous vehicle developers to have an                
inexpensive, reliable, and minimalistic automotive perception system that is easy to integrate and             
test. Developers desire a system with intelligent sensor fusion both to reduce the number of total                
sensors used and to minimize the risk of misreading the environment. In this project, we               
combine the input from multiple sensors to create an improved perception system that can be               
installed in any car for autonomous driving purposes. Our minimalistic system uses fewer             
sensors, making it less expensive and easier to integrate compared existing solutions. 

 
We know that stereo vision and radar are typically used for short-range and long-range              

perception, respectively. The result of our project is therefore a standalone perception system             
that combines these two sensor systems to create a system that can simultaneously perceive in               
both the long and short range. Using rviz in ROS, the user can view the detected vehicles and                  
pedestrians in the driving environment along with their positions and velocities in real-time. We              
found that the radar and the vision subsystems complement each other well for object detection.               
The vision system identifies pedestrians and vehicles accurately while the radar subsystem            
determines object positions and velocities accurately. By unifying these subsystems through           
sensor fusion, we improved object detection accuracy by over 10% (compared to vision alone).              
Additionally, we found that the radar and vision subsystems have different failure cases, which              
makes our unified system more robust (sunlight does not affect the radar, for example). 

 
Based on our results, we successfully developed a solution to meet the aforementioned user              

needs by creating a custom standalone perception system that can function independently or in              
tandem with an existing system. Through the sensor fusion of stereo vision and radar              
technologies, our system identifies objects in most driving conditions, while still being            
inexpensive, compact, and efficient relative to current solutions. 

 
Clearly, the motivation for this project stemmed from the desire to improve automotive             

perception for autonomous driving. To do so, we explored the use of complementary             
stereo-vision and radar sensor technologies to increase the accuracy and reliability of identifying             
objects in the driving environment. 

  



2. Use case 
 

 
Fig. 3. Use case scenario images 

 
Messla Motors Inc. recently lost one of their autonomous cars even though it was equipped               

with multiple redundant cameras and LIDAR sensors. This car crashed into a white truck when               
the sunlight reflected off the truck’s side compromised the car’s sensor system (top-left image in               
Fig. 3.). When Messla Motors’ stock fell sharply, the CEO of the company, Mr. Dusk, was faced                 
with scrapping their expensive sensor rack project and starting over. Moreover, recent consumer             
reports had shown that the bulkiness and the difficulty of maintenance were major downsides of               
the Messla Motors sensor array. The Messla Motors crash scared away many small entrepreneurs              
and aspiring researchers from venturing into the autonomous vehicle development field. They            
felt that if a big company like Messla Motors had failed to design a foolproof perception system,                 
then there was no way for them to do so on their limited budget. Consequently, interest and                 
progress in the autonomous vehicle research and development industry started to fall. What             
could be done about this? 

 
Enter the SeeAll system from Team Aware! Our perception system uses a radar to              

simultaneously perceive long and short range objects (bottom-left image in Fig. 3). By             
combining radar and stereo vision technology, our unified system performs in cases where             
existing vision-based systems might fail, such as in bright sunlight. Our radar system detects all               
metal objects (vehicles, lamp posts, lane dividers etc.) up to 120 meters away and is unaffected                
by ambient lighting conditions. Additionally, our radar unit is about 8 times cheaper than a               



LIDAR unit with similar range and rate capabilities. Under favorable conditions, the stereo             
vision system accurately identifies vehicles, pedestrians, and obstacles up to 30 meters away.             
The combined system can thus accurately detect and classify objects using vision and then track               
their positions and velocities using radar. Our system thus uses sensor fusion to increase our               
object detection accuracy and overall robustness. Since our perception system uses just three             
primary sensors, it significantly cheaper than systems like Mr. Dusk’s. Our system is designed              
to be standalone, and the form factor of our design makes for an adaptable perception system that                 
could be used by any manufacturer of autonomous vehicles. 

 
Mr. Dusk proceeded to scrap his old perception system and try out the SeeAll system from                

Team Aware instead. He easily installed the sensors into his test vehicle (as depicted in the                
top-right image in Fig. 3.) within minutes, and then connected the computer system to the car’s                
display and control systems. He then eagerly entered the car to see our system perform! As the                 
car drove around the city, the SeeAll system accurately identified and located objects of interest.               
A live video feed and with a grid showing object types, locations and velocities were displayed                
side-by-side on the infotainment screen (as shown in the bottom-right image in Fig. 3). The car’s                
control system designed by Messla Motors easily read the relevant parameters from our             
perception system and maneuvered the car accordingly. During testing, it started to rain. This              
was not a problem for our system - the cameras were installed within the car’s cabin and the                  
radar is weatherproof. Later, the sun came out and shone brightly into the cameras. This too was                 
not an issue for the SeeAll system, since the radar was unaffected. Just as the car turned back                  
towards to the testing facility, a crazy pedestrian dashed across the road in front of the car.                 
Thanks to our real-time performance and our dual modes of perception, the pedestrian was              
detected, and the brakes were applied perfectly. Mr. Dusk was completely impressed. 

 
Following Mr. Dusk’s example, smaller entrepreneurs and researchers were emboldened to           

use the SeeAll sensor system for their projects and autonomous vehicles. Some chose to              
completely replace their existing system with the SeeAll, while others chose to augment their              
existing system by integrating our system into theirs. The stereo cameras and the radar work               
hand-in-hand to create a sensor system that is full-range and real-time. By using stereo vision for                
object detection and classification and then radar for velocity and position monitoring, we             
avoiding using expensive components such as LIDARs. This means that our system is low-cost              
and can therefore be used with minimal risk by even small-scale  research and development labs. 

 
  



3. System requirements 
 
Our system-level requirements were modified and updated during the progress of the project             

to be more realistic given our constraints and our initial results. A key change was the de-scoping                 
of object tracking using stereo-vision. Our requirements are categorized into Performance (P) or             
Non-functional (N) requirements. Each requirement is further categorized as Mandatory (M) or            
Desirable (D) according to our project goals. The performance requirements and non-functional            
requirements can be found in the tables sections 3.3 and 3.4, respectively. 

 
The four subsystems that make up our system can be listed as follows: the sensor mounting                

subsystem, the power supply subsystem, the sensor fusion subsystem, and the perception            
subsystem (as shown in Fig. 4). The target parameters and performance of each system and               
subsystem requirement are described below, followed by a summary of the changes in             
requirements we made over the course of the project. 
 
3.1    Subsystem requirements 
 

 
Fig. 4. The subsystems breakdown of our perception system 

3.1.1    Sensor mounting subsystem 

Radar mount: The Delphi electronically scanning radar (ESR) unit requires to be installed in              
the car such that the center of the radar sensor is between 30 cm and 86 cm above the road                    
surface [3]. The mounting structure should be firmly attached to the test vehicle and should be                
robust in resisting the vibrations of the car. Additionally, the radar mounting solution must not               
obscure the view in front of the radar with any metal or non-uniform material. 

 
 
  



Stereo camera rack: The two cameras need to be fixed at a constant known distance for                
stereo vision. The stereo pair should be firmly fixed inside the car using a rigid, lightweight                
mounting bar, at a baseline of 50~60 cm. This baseline for the stereo camera pair (including the                 
relative pitch, yaw, and translation) should not change after driving for an extended period over               
varying road conditions. Additionally, the position and orientation of the cameras should not             
change relative to the radar sensor unit or the car’s chassis. Obviously, this custom stereo setup                
will require that the entire field of view in front of the cameras is unobscured and clear once it is                    
installed in the car. 

 3.1.2    Power Subsystem 

Voltage regulator: A car battery’s voltage output can vary from 12 to 15 VDC during               
driving. In order to prevent any sudden voltage changes from affecting our expensive sensors, it               
is required that our power subsystem use voltage regulators. To power both cameras, a 12 VDC                
regulator capable of 2 A (24 W) continuous is required. This voltage regulator should be efficient                
and compact so that it can be easily installed into the car.  

 
DC-DC step-up converter: A DC-DC step-up converter module is required to boost the input              

from a car battery to a stable 24 VDC at at least 10 W to power the radar sensor unit. The power                      
booster should take the 12 to 15 VDC car battery input and then convert and regulate it at 24                   
VDC for the radar to perform optimally. 

 
Power inverter: The power inverter subsystem is required to power the computer. The output              

power must be at least 180 W to power our computer, since it has a high performance core i7                   
CPU and a Titan X GPU. The power inverter thus is required to connect to the car battery and                   
convert it to 110 VAC at 60 Hz with at least 180 W continuous operation capability.  

 3.1.3    Sensor Fusion Subsystem 

The sensor fusion subsystem is the software setup that must meaningfully combine the data              
from the radar and the stereo vision inputs. This subsystem must acquire object information data               
such as category, velocity, and position from the radar and stereo vision sensors. It must then                
synchronize, filter, and compile the data in order to create a global depth map that shows the                 
positions and velocities of the surrounding objects relative to the test vehicle. It is required that                
the system synchronize the sensors, update calculations, and display the fused output to the user               
at a rate of at least 5 Hz for real-time performance. The sensor fusion subsystem should take its                  
input from the perception subsystem and output the final processed result to a visualization that               
can be understood by the user (as shown in Fig. 5). The sensor-fused processed data should be in                  
a format that can be read and integrated easily into an existing autonomous vehicle’s control or                
perception system. 



 

 

Fig. 5. The Perception and Sensor Fusion subsystems working together  

3.1.4    Perception Subsystem 

Object detection & classification: The object detection and classification subsystem must           
categorize the detected objects of interest into vehicles or pedestrians. This subsystem must take              
as input the images captured from the stereo vision system and then use efficient object detection                
and a depth-map-calculating algorithms to perceive the environment. It must also acquire the             
filtered detection-level data from the radar subsystem. The outputs of this subsystem to the              
sensor fusion subsystem should be the positions, classifications, and confidence scores of the             
detected objects. This subsystem should be robust in a variety of weather conditions (rain, fog,               
snow etc.) and different lighting environments (direct sunlight, headlights, night traffic etc.).            
Additionally, this subsystem must achieve at least 60% object detection accuracy, at least 80%              
object classification accuracy, and at least 80% object position estimation accuracy for objects up              
to 30 meters away. 

 
Stereo vision: The stereo vision subsystem should take images captured from both cameras             

simultaneously as input. The cameras must be triggered at the same time using either a software                
or hardware trigger method. This subsystem should capture images from the camera at a              
frequency that matches our throughput rate / update rate of 5 Hz (so as to not waste memory),                  
and then output those images to the object detection and classification subsystem. The cameras              
should both be configured to have the same settings (exposure, shutter speed, resolution etc.) so               
that the pictures taken have similar photographic properties. This will allow for optimum             
accuracy and speed in calculating the depth math and classifying the detected objects. 

 



Radar: The radar subsystem must detect and provide full-range, accurate position           
information for all vehicles up to 120 meters away [1][2]. The radar subsystem should output the                
filtered and clustered detection-level data of the objects to the object detection and classification              
subsystem. The radar subsystem should acquire the data at 20 Hz or greater and should complete                
filtering and clustering at ~20 Hz. This subsystem should use a Kalman filter for noise reduction                
and clustering of data-points. This will provide accurate position (depth) and velocity            
information for the objects found by the radar.  

 
Object tracking: The tracking subsystem must determine the velocities and positions of the             

detected objects relative to the test vehicle. It should acquire the vehicle’s velocity and position               
from the GPS subsystem, and then use that information to track the vehicles and pedestrians by                
using the radar subsystem data as well as the sensor-fused data. This subsystem takes the output                
from the object detection and radar subsystems as its input. The system should be robust to                
object occlusion, and the accuracy of the calculated object positions and velocities should be              
over 80%. 
 
3.2    Updates on system requirements 

 
Reduced object detection and classification accuracy: Through experimentation, we         

determined that the state-of-the-art Single Shot MultiBox Detector (SSD) algorithm was our best             
choice overall for detecting and classifying vehicles and pedestrians using our stereo vision             
subsystem. However, even with this algorithm, the final object detection accuracy was only             
around 70% for our setup. Additionally, the SSD algorithm is known to perform poorly on small                
objects. According its author, this is an unsolved issue and so it could lead to decreased                
performance in our final setup. We therefore realized that our previously desired accuracy of              
80% was unrealistic. Instead, we sought to consistently achieve an object detection and             
classification accuracy above 60% in our final system (>60% using only vision, >70% using              
sensor fusion). 

 
Descoped determining object sizes: We found that it was hard to reliably differentiate             

between the sizes of objects based on the size of their bounding boxes provided by the stereo                 
vision subsystem. Technically, the radar would have the ability to determine relative size of              
objects based on the amplitude of detection. However, it could not be well verified through the                
limited testing that the team had conducted towards the end of the project. We thus decided that                 
accurately finding the sizes of detected objects was not within the scope of this project. Our                
perception system instead focuses on accurately determining object types, positions, and           
velocities. 

 
Descoped tracking capabilities: Even without the implementation of a vision-based tracking           

method, the stereo vision update rate hovers just above 5 Hz. We tested some fast multi-object                
tracking algorithms for stereo vision, but our system slowed down too much to be considered               
real-time. Since it is crucial that our system achieves real-time perception, we decided to descope               
vision-based tracking. Instead, we decided to use the radar subsystem for tracking object             
positions and velocities, since we found that the radar subsystem outperformed the stereo vision              
subsystem both in terms of accuracy and speed. Additionally, we descoped the implementation             



of predictive tracking capabilities (interpolation of the car’s path in the immediate future) in our               
perception system due to time constraints. 

  
3.3    Performance requirements 

 
Our system’s performance requirements are categorized as Mandatory (M) or Desirable (D)            

according to our project definition and goals (Table 1). These requirements have been updated              
since the start of the project. As mentioned in the earlier sections, we had to slightly reduce the                  
scope of the project and therefore realistically reassess our performance requirements. Fusion of             
stereo vision and radar data should work in the short range, up to ~30 meters away. Objects in                  
this proximity should be detected by both sensor subsystems, while full-range detection and             
tracking of vehicles should be done by the radar subsystem. To allow for real-time performance,               
the data from all the sensors must be synchronized with each other. 

Table 1. Performance requirement details 

ID Description 

M.P1 The system shall detect and classify pedestrians within at least 20 meters 

M.P2 The system shall detect and classify vehicles within at least 50 meters 

M.P3 The system shall acquire raw data from all sensors at 5 Hz or higher 

M.P4 The system shall detect objects with an accuracy of at least 50% 

M.P5 The system shall classify objects with an accuracy of at least 60% 

M.P6 The system shall synchronize the sensors to acquire inputs within 20 ms of each other. 

D.P6 The system shall find the position and velocity of the test car with an accuracy of at least  80% 

D.P7 The system shall find positions and velocities of objects with an accuracy of at least 80% 

 
  



3.4    Non-functional requirements 
 
The non-functional requirements of our perception system are also categorized as Mandatory            

(M) or Desirable (D), as shown below in Table 2. These requirements have been updated since                
the start of the project, although there have not been significant changes to them. 

Table 2. Non-functional requirements details 

ID Description 

M.N1 The system will work in real-time 

D.N1 The system will not be destroyed by adverse weather conditions (rain, fog, snow etc.) 

D.N2 The system will perform in all human-drivable lighting conditions 

D.N3 The system will be concealable within the vehicle body 

D.N4 The system can be integrated into existing vehicle display and infotainment systems 

 

  



4. Functional Architecture 

 

Fig. 6. Functional Architecture 

The basic structure of our functional architecture has not changed significantly over the             
course of this project. A slight change was made to the format of the input data from the radar.                   
The advanced built-in DSP firmware in the Delphi ESR 2.5 radar unit pre-clusters detected              
points into tracking targets. However, we found that the in-built clustering method was             
unreliable and not useful for real-world object tracking [3]. Instead, we choose to obtain              
detection-level data points from the radar directly and then process them using a Kalman-based              
filter for object tracking. We found that this method of determining object positions and              
velocities is more reliable and accurate. 

 
A diagram illustrating the updated functional architecture of our system is shown in Fig. 6               

above. Raw data from all our sensors are processed and then used to perceive the vehicle’s                
surroundings. This process is mainly composed of two steps: data processing, and perception.             
These steps are explained below.  
 
4.1    Data processing 

 
Our custom stereo vision system uses two identical cameras which are mounted on an              

aluminum beam at a known baseline distance. We decided to build our own stereo vision setup                
since we felt that the existing solutions that we could afford did not have the required range or                  
resolution. Our two single-lens, global-shutter CCD cameras are synchronized through the use of             
either a software or hardware trigger method. 

  
We found that both hardware and software triggering mechanisms work equally well as long              

as the code runs consistently and without hiccups. When the cameras are triggered, they capture               
a pair of images taken simultaneously. The streams of data from the radar and the GPS sensors                 
are first parsed to extract the relevant variables and then formatted into a readable,              



understandable format. The different sets of data need to be synchronized with each other with               
respect to time. This is crucial, since specific applications of our system have shown us the                
importance of using real-time data for reliability. Processed data from the stereo camera and the               
radar are fused to improve the performance of object detection within 30 meters.  
 
4.2    Perception  

 
In the perception module, tasks can be roughly divided into four categories: detection,             

classification, tracking, and motion estimation of the test vehicle. Using the processed data as              
input, these tasks will be executed in the perception module as demonstrated in Fig. 6. The order                 
of the tasks is determined based on their dependencies and prerequisites.  

 
The first task is to detect objects of interest in the scene using the stereo vision data. Second,                  

the detected objects are classified as either vehicles or pedestrians. The system distinguishes             
between vehicles and pedestrians by extracting features from images. Vehicles are further            
classified by type - car, bus, truck etc. Labels of these classified objects are displayed in the                 
bounding box video output of our perception system.  

 
Third, objects that are detected by the stereo vision and radar subsystems are correlated. We               

use a GPS module to determine our test vehicle’s position and velocity. Matching objects that are                
found in both subsystems can then have their positions and velocities calculated accurately from              
the radar and GPS data. By using Multiple Hypothesis Tracking for sensor fusion of the objects                
detected by both radar and vision, we improve the overall object detection accuracy. We had               
initially planned to also include object size calculation and predictive tracking of objects in this               
project; however, we later descoped these features due to time constraints. 

 
The final task involves visualizing the processed and sensor-fused data from our perception             

system. We display the results from the previous tasks in a meaningful way to the user by                 
showing the detected objects in a 2-D grid that represents the driving plane (see bottom-right               
image of Fig. 3). In addition to displaying the detected objects and their properties, this task                
involves calculating and presenting the position and velocity of our test car as well (using the                
processed GPS data).  

 
In summary, raw input data from all the sensors are processed first and synchronized, then a                

2-D virtual environment (grid) is recreated based on the combined real-world data. In this              
environment, objects are detected and classified with labels. Their kinematic and spatial            
parameters of the objects and the test vehicle are also included. The representation of the driving                
environment created using the processed and unified data is the final output of our perception               
system. All the variables can also be used as input by an onboard computer to control the vehicle                  
or to display custom information through the vehicle’s user interface. 
  



5. System-level trade studies 
 
Over the course of this project, our team had to make a number of informed decisions in                 

order to select optimal sensors, hardware components, and algorithms for our perception system.             
Often, a clear “best solution” was not readily apparent. In each case, we found that conducting a                 
trade study about our options can be a highly effective and logical method of quantitatively               
assessing the pros and cons of each available option. We find that our trade studies fall into three                  
categories based on the subsystems they affect. The trade studies in the following subsections of               
this report concern the vision subsystem, the radar subsystem, and the computing subsystem.             
These three subsystems make up the foundation of our perception system, and so decisions made               
regarding these subsystems directly affected the final outcome of the project. This further             
emphasizes the importance of conducting trade studies during the decision-making process. 

 
5.1    Vision subsystem 

 
We chose between cameras that use global shutters, cameras that use rolling shutters, and              

RGB-D cameras. RGB-D cameras typically have rolling shutters, but we considered them            
separately due to their valuable ability to sense depth in addition to picture. The trade study in                 
Table 3 considers six attributes for these types of cameras that vary in importance on a scale of 1                   
to 5 based on our desired system attributes. 

Table 3. Camera trade study details 

Attribute Importance 
(1-5) 

Global 
shutter 

Rolling 
shutter 

RGB-D 

Cost 4 2 5 3 

Performance at high speed 5 5 2 3 

Ease of use 3 4 3 2 

Stereo performance 5 5 3 1 

Field of view 4 3 2 5 

Noise rejection 5 4 2 1 

Total  102 72 63 



 

 

Fig. 7. Rolling shutter vs. global shutter 

Although global shutter cameras are expensive, they capture the scene instantly. This            
prevents warping and edge distortions like the ones shown in Fig. 7. Such artifacts occur in                
rolling shutter cameras at high speeds. RGB-D cameras may allow for a wider field of view, but                 
are limited by their range of depth sensing. Additionally, stereo RGB-D is challenging to              
implement due to IR interference between the two camera systems. Based on the trade study in                
Table 3, we chose to build our own stereo-vision system using two identical global shutter               
cameras. Our final system uses two 3.2 MP Color Grasshopper 3 cameras from PointGrey. This               
camera uses a global shutter and has an appealing performance-to-price ratio. 

 
 

5.2    Radar subsystem 
 
This trade study compares the pros and cons of various perception technologies. To sense              

depth independently of stereo vision, we chose between radar, lidar, and ultrasonic (sonar) sensor              
systems as shown in the trade study in Table 4 on the next page. 

  



 

Table 4. Depth sensor trade study details 

Attribute Importance (1-5) Radar Sonar Lidar 

Cost 5 3 5 2 

Light sensitivity 5 5 5 3 

Dust/fog sensitivity 5 4 3 2 

Ease of maintenance 4 5 4 3 

Rate of sensing 4 3 1 5 

Field of view 4 2 3 5 

Size of sensor 3 4 4 3 

Ease of use 3 4 2 3 

Range 5 4 1 5 

Total  144 120 130 

  

For the same levels of performance, lidars are more expensive than radars (by almost a factor                
of 8) and large lidar units can be hard to maintain due to moving parts. Additionally, they are                  
harder to conceal within the car’s body due to their method of operation and their typically larger                 
form factor. On the other hand, lidar sensors can detect shape information while radar can only                
detect position. Sonar is a lot slower than both radar and lidar, and hence would not be a wise                   
choice for an autonomous vehicle. Our radar system can function effectively in various lighting              
conditions, it has no moving parts, and it has a small form factor. However, it has a narrower                  
field of view and a slightly shorter range compared to some lidar sensors. In the end, we chose to                   
use a radar system in conjunction with a custom-built stereo vision system. We determined that               
this was the optimal solution given our needs and requirements. 



 
5.3    Computing subsystem 

 
The computing subsystem consists of the processing hardware and software. We used our             

budget to buy a powerful desktop computer so that our system’s computational speed would not               
be an issue down the line. We did not want slow processing power to prevent our system from                  
perceiving the environment in real-time. We found that the algorithm that takes the longest time               
to compute for each new set of data was the depth-map calculation algorithm in the stereo-vision                
subsystem. It was thus imperative for us to carefully choose an algorithm that could perform in                
real-time without sacrificing on the quality of the stereo-vision depth-map. Table 5 covers the              
trade study we conducted between the SGBM (Semi-Global Block Matching) and ELAS            
(Efficient Large-Scale Stereo Matching) algorithms for stereo matching. 
 

Table 5. Stereo-vision algorithm trade study details 

Attribute Importance (1-5) SGBM ELAS 

Speed (fps) 5 5 1 

Ease of integration 3 3 3 

Quality of map (density) 2 2 4 

Complexity 2 2 2 

Available support 5 5 2 

Total   67 36 

 
In general, the SGBM algorithm performs much faster than ELAS. During our tests on a               

conventional laptop, ELAS ran about 1 fps while SGBM could run up to 5 fps (both on ROS).                  
This is mainly because that ELAS is implemented on a single thread. However, according to our                
experiments, ELAS could provide a denser disparity map. With all things considered, we decided              
to use SGBM in our stereo vision subsystem, aiming to achieve the higher processing speed by                
paying the cost of lower quality of the disparity map. The specific attributes that supported our                
reasoning and helped us make the final decision is listed in the Table 5 above. 

 
 
  



 
6. Cyberphysical architecture 

 
There are two major parts to the cyber-physical architecture: the hardware part and the              

software part. The cyberphysical architecture of our system is outlined in Fig. 8 below. Due to                
our project’s focus on building a perception system, we gave most of our attention to the                
software aspect. All the black arrows in the figure represent information flow between sensors              
and software modules. The arrow from power subsystem represents the flow of energy. In our               
project, the input is the raw data from our sensors, and the output is a virtual reconstruction of                  
the driving environment around our test vehicle based on our processed data. 

 
 

 

Fig. 8. Cyber-physical Architecture 

6.1    Hardware 
 
The hardware section, represented on the left in Fig. 8, contains the power source, the sensors                

and the computer. The power source supplies DC power to the sensors and AC power to the                 
computer (using a DC-AC power inverter). Different power sources were used during the course              
of the project. For indoor testing, we relied on a 30 V, 5 A DC power generator connected to the                    
AC mains power supply. For testing the sensors on-board our car, we initially connected a small,                
150-watt DC-AC inverter to a cigarette lighter socket of the car. Our power requirements grew               
when we decided to use a power computer for this project, and so the cigarette lighter socket was                  
not a viable option (it could supply at most 120 W of power) later on in the project. We                   
eventually decided to use a 1100 W DC-AC inverter connected to the car’s battery to power the                 
computer. A 12 VDC voltage regulator and a 24 VDC step-up converter were also connected to                
the battery to power the cameras and the radar, respectively. 

 



There are three sensor subsystems that make up our final system. We mounted a Delphi ESR                
2.5 radar unit to the front of our car. We built a custom stereo vision subsystem composed of two                   
identical cameras (PointGrey Grasshopper 3), which are mounted in the testing vehicle at a fixed               
baseline distance. Lastly, we use an Adafruit Ultimate GPS sensor connected to the computer via               
an Arduino Micro. In addition to providing our system with GPS data, the Arduino module also                
enables hardware triggering of the cameras via their GPIO pins. These three sensor subsystems              
together collect information about detected objects in the vehicle’s environment in real-time. All             
the raw data acquired is passed to the software perception module, where filtering,             
synchronization, and interpretation tasks take place. The processing unit essentially serves as the             
center of all communication for our standalone perception system. 

 
6.2    Software 

 
The software section, represented on the right in Fig. 8, contains the algorithms and methods               

used to collect, store, and process the data flowing in and out of our system. The CPU of our                   
computer is programmed to run all our calculations except for the stereo-vision object detection              
and classification. The SGBM algorithm runs on the CPU and is used to calculate the               
stereo-vision depth-map. Stereo-vision-based object detection and classification is done by          
running the SSD algorithm (Single Shot MultiBox Detector) on our Titan X GPU using CUDA.               
Our various algorithms yield processed data that together contain all the information needed to              
create the virtual environment. Object positions and velocities are computed independently by            
the vision subsystem and the radar subsystem. These values are correlated between subsystems             
(and sensor fusion is thus achieved) by using Multiple Hypothesis Tracking (MHT) on the              
detected points, based on position.  

 
For object detection and classification, we use the state-of-the-art Single Shot MultiBox            

Detector (SSD) algorithm on the left camera image. The SSD algorithm involves the use of a                
deep neural network, which is why it achieves both object detection as well as object               
classification at high speeds with high accuracy. Based on experimentation, we found this             
algorithm to have a relatively good balance between performance (detection rate and accuracy)             
and speed (number of frames processed per second).  

 
Aspects of the cyber-physical architecture have been updated many times since the start of              

the project to reflect new system developments and key decisions. For example, we decided to               
use a GPS sensor unit for our position and velocity ground truth. Initially we had considered                
reading that data from the car’s OBD port or from an IMU sensor instead. As mentioned earlier,                 
we found that the pre-clustered targeting data that obtained from the radar directly was too noisy                
to be useable. Instead, we chose to use our own Kalman-based filter on the detection-level object                
positions obtained from the radar, because we found that this was a much more reliable method                
for detecting and tracking objects using the radar. Lastly, we found that although our              
stereo-vision subsystem could reliably identify objects within ~30 meters, it could not accurately             
determine their positions or their velocities. We thus included a position-based Multiple            
Hypothesis Tracking (MHT) algorithm for sensor fusion. This algorithm uses the filtered radar             
data to improve overall object detection accuracy by over 10% (compared to solely vision-based              
object detection). 



 
7. System description and evaluation 

 
In this section of the report, we describe and discuss the details of our system and its                 

subsystems. We look at how the system evolved during the course of the project, and we reflect                 
on the final features and test results of the perception system that we developed. 

 
7.1   Subsystem descriptions 

  
Our system can be broken down into three essential subsystems: the vision subsystem, the               

radar subsystem, and the computing subsystem. Each of these subsystems can further be divided              
into their hardware and software components. Through the linking and collaboration of these             
subsystems, data from all the sensors are processed and combined. 

 
7.1.1   Vision subsystem 

  
This subsystem includes the two 3.2 MP Color CCD PointGrey Grasshopper 3 cameras used              

for our stereo-vision setup. It also includes the mounting solution for the cameras. This consists               
of the 8020 aluminum beam onto which the cameras are mounted, the 3D-printed camera              
housings, and the modified sun-visor mounts using which the rack is installed in the car (all this                 
can be seen in the images in Fig. 9 below).  

 

     

Fig. 9. The vision subsystem consists of the cameras and their mounting solution 

We can consider the Arduino module to be part of this subsystem as well. This is because the                  
Arduino module consists of an in-line 12 VDC voltage regulator that also regulates the power to                
the cameras. Moreover, in addition to the voltage regulation for the cameras, this module can do                
two things: 1. hardware trigger the cameras, and 2. communicate GPS data to the computer.               
The improved camera wiring can be seen in Fig. 10 below, which includes the addition of a                 
voltage regulator and an Arduino Micro onto the same power circuit as the cameras. The               
Arduino Micro reads GPS data from the Adafruit Ultimate GPS sensor module at a rate of 5 Hz                  
and sends it via serial port to the computer for processing. The Adafruit GPS sensor has a high                  



sensitivity of -165 dBm and it supports 66 channels. It updates at a rate of up to 10 Hz while                    
consuming very low power, making it apt for use in our project.  

 

    
Fig. 10. (Left) The Arduino Module box includes a 12 VDC voltage regulator and an Arduino Micro. The 

plug on the left connects  to the camera GPIO pins; the one on the right is an HXT connector for the battery. 
(Right) The Adafruit Ultimate GPS sensor and its antenna are designed to work with Arduino boards. 

 
Results: The camera mounting solution proved to be robust and reliable, since the cameras              

were found to not move any measurable distance relative to each other and relative to the car,                 
even after testing on uneven roads. The hardware trigger method using the Arduino module              
works well to synchronize the cameras, and this was tested by taking pictures of a stopwatch.                
The voltage regulator performed well, and the cameras never lost power or overheated during              
testing. The quality of the GPS data acquired was significantly improved by connecting the              
matching external antenna to the Adafruit GPS sensor. Despite this, we found that the GPS-based               
values obtained for the vehicle angle and velocity were unreliable and sometimes noisy. Another              
downside of this system is the ineffective shielding of the cameras from reflections off the               
dashboard. This could potentially result in reduced performance. 
 

  
7.1.2   Radar subsystem 

  
This subsystem includes the Delphi ESR 2.5 radar unit and our mounting solution for              

installing it onto the test car (left image in Fig. 10). It also includes the DC-to-DC step-up                 
converter that provides a stable 24 VDC to power the radar unit, using the car battery as a source                   
(right image in Fig. 10). The ESR 2.5 radar unit has been used successfully by Delphi for                 
automotive perception and autonomous driving applications. This radar sensor simultaneously          
detects close range and long range objects in the driving environment at a rate of 20 Hz, as                  
shown in Fig. 11. We can connect to the radar sensor using either CAN bus or ethernet. As                  
mentioned earlier, the radar sends tracking-level data via the CAN bus and it sends              
detection-level (raw) data via ethernet. 

  
Results: The final radar mounting solution that we developed is shown in Fig. 12 below. The                

radar unit is designed by Delphi to be weatherproof, so we directly mounted it onto the grille of                  
the car using 3D-printed mounts. We were careful not to obstruct the sensor with any metal or                 
non-uniform surface. After failing to power our sensors in the car using our power distribution               
PCB, we switched to an off-the-shelf converter. This converter proved to be robust and it was                



able to consistently power the radar unit without overheating or voltage jumps. Unfortunately,             
we found that the data from the CAN bus (the tracking data computed by the radar’s built-in                 
clustering method) proved to be futile for tracking purposes due to high noise and error. We later                 
found a Kalman-based filtering method for the detection-level data points acquired via ethernet.             
This allowed us to accurately determine the positions and velocities of detected targets. 

 

   
Fig. 10. (Left) The radar unit attaches to the plastic grille of the car using 3D-printed mounts we made. 

(Right) The step-up converter on the left and the voltage regulator IC on the right. 
 

 
Fig. 11. Performance specifications of Delphi’s ESR 2.5 radar sensor unit 

 

 
Fig. 12. The radar is mounted on the grille, while the stereo-vision setup is installed inside the car cabin. 



7.1.3   Computing subsystem 
  
This is the most important subsystem, as it is the one that is responsible for determining the                 

properties of the driving environment by processing data from all the sensors. This system              
consists of the computer and its hardware components, but more importantly it consists of all the                
algorithms and software methods used to make our system perform.  

 
Hardware: We used a large part of our budget to invest in a desktop computer for this                 

project. Despite using advanced optimized algorithms to increase processing speed, we still            
needed a computer with a powerful CPU and GPU for our system to update the reconstructed                
virtual driving environment in real-time. Hence, we ordered a computer equipped with a             
powerful Intel i7 CPU and the Nvidia Titan X GPU. 
 

Software: Even though we had acquired a powerful computer, we needed to be thoughtful              
when choosing algorithms for our system. Without selecting fast algorithms, there was no way              
we could achieve real-time performance. The software aspect of our computing subsystem            
therefore depends on these key modules and algorithms: 

 
1. The SGBM algorithm: This algorithm runs on the CPU and is used to calculated the               

disparity map using the stereo-vision image pairs. This algorithm runs the slowest            
relative to the others, and it therefore limits the overall system speed. An example              
disparity map calculated by this algorithm is shown in Fig. 13 below, with a reference               
image taken from one of the cameras. 

 

 
Fig. 13. (Left) Reference image from one of the cameras. (Right) The disparity map computed by SGBM. 

 
2. The SSD algorithm: This algorithm runs on the GPU using CUDA. It is used for object                

detection and classification. Through the use of a deep neural network, detection as well              
as classification of objects are computed efficiently and quickly. The output of this             
algorithm is the original image plus bounding boxes and labels for the objects identified.              
By correlating the output of this algorithm with the disparity map obtained by the SGBM               
algorithm, object positions can be determined using stereo-vision. We can see an example             
output of this algorithm in Fig. 14 below. 



    
Fig. 14. (Left) Raw image from one of the cameras. (Right) Objects detected by the SSD algorithm. 

 
3. Kalman-based filtering for radar: In order to get useful radar sensor data, we had to               

implement a Kalman-based filtering method on the detection-level data points. This           
filtering is based on a constant velocity model. It enables us to accurately determine the               
position of objects (especially vehicles and other metal objects) in real-time, and it also              
enables us to calculate object velocities. Thanks to this filtering method, our dependence             
on the undecipherable radar tracking data from the CAN bus is negated (that tracking              
data is automatically calculated by the radar using Delphi’s own methods). Moreover,            
this Kalman filtering method reduces the risk of losing track of a detected object due to                
temporary occlusion.  

 

 
Fig. 15. The recreated virtual environment with sensor-fusion between radar and stereo vision. 

 



4. Multiple Hypothesis Tracking (MHT): In order to correlate the parameters of objects            
detected by both stereo vision and radar, we implement position-based MHT. Thanks to             
the radar’s ability to accurately detect and locate vehicles (and other metal objects), we              
can use sensor fusion done using MHT to boost the system’s overall object detection              
accuracy. We found that, on average, sensor fusion using position-based MHT resulted in             
at least a 10% increase in object detection accuracy relative to solely vision-based object              
detection. This figure is higher when only vehicles are considered. 

 
5. Synchronization and display: Our system uses ROS as the framework for synchronizing            

sensor data and processing and displaying it. Since our sensors provide data at varying              
frequencies with varying time lags, we match timestamps in order to synchronize data             
with respect to time. Our final output of a virtual environment is displayed using rviz in                
ROS, as shown in Fig. 15 above. The architecture of our ROS setup is explained by the                 
depiction in Fig. 16 below. 

 

Fig. 16. The ROS setup that our software platform is based on. 
 
  



 
7.2   Modeling, Analysis, and Testing 

  
This section summarizes some of the modeling, analysis, and testing of system components              

and software modules over the course of the project. The following tasks are of importance: 

1. All the components of our sensor mounting solutions for our perception system have been              
modeled using the Computer Aided Design software (SolidWorks). The camera housings and the             
radar mounts were modeled by carefully examining the dimensions of the sensors and the space               
available within the testing vehicle. The CAD models were then fabricated by 3D-printing and              
tested for form and function in the vehicle. After much experimentation, the final versions were               
3D-printed and used to mount the two cameras and the radar onto the testing vehicle. The final                 
CAD models are shown in Fig. 17 below. 

 
Fig. 17. The finalized CAD models for the camera housings and the radar mounting brackets. 

2. The baseline for our stereo vision system was determined through calculation and            
experiments. These experiments were conducted in the corridor outside the lab. The two cameras              
were mounted at an appropriate, fixed height and orientation, similar to how they are mounted in                
the testing vehicle. According to our requirements, our stereo vision system should be able to               
detect objects of interest up to about 30 meters in front of the vehicle. Therefore, a checkerboard                 
of appropriate size was placed at 30 meters in front of the vehicle as the target. In each                  
experiment, the two cameras were fixed at a known baseline and the stereo vision system was                
calibrated using the Stereo Vision Toolbox in MATLAB. Then, the depth of the target              
(checkerboard) was calculated using the triangulation method, and the accuracy of the stereo             
depth calculation is determined. The data collected from all the experiments were then compared              
and analyzed. The final result suggested a baseline of 60 to 80 centimeters in order to achieve                 
~80% accuracy in the position estimation of objects within 30 meters. 

3. Several on-road tests were conducted to verify effectiveness of mounting design and basic             
sensor functionalities. After installing and setting up all the sensors in the car, we measured their                
distances from each other and parts of the car’s chassis. We then tested the basic functionality of                 
the sensors by recording data as we drove our test vehicle around town. The testing weather                
conditions included light snow, moderate rain, sunset (when sunlight falls directly on the             
camera's lens), and nighttime. We found that the cameras were able to capture high-resolution              



pictures that could be used to for object detection in most of the cases, despite the unideal                 
weather conditions. The radar was unaffected by the different environment conditions and was             
able to collect data in real-time. After real-world testing was complete, the relative positions of               
the sensors was measured again. We found that the sensors had not moved by any measureable                
amount, thus verifying the quality of our mounting methods. 

4. Performance of the object detection and classification was analyzed using the testing            
data. After testing basic sensor functionality and verifying that our mounting methods are robust,              
we collected multiple datasets to test our system’s object detection and depth calculation             
capabilities. We found that we could achieve an object detection and classification accuracy of              
over 60% using the pictures captured by the cameras. These results satisfy the performance              
requirements of our stereo vision system. The radar was tested as well and it was found to                 
determine object positions with an accuracy of over 80% (using a Kalman-based filter on the               
detection-level radar data).  

5. Performance of the power distribution PCB was analyzed and an off-the-shelf solution            
was chosen instead. We tried to test our PDS PCB under small loads of up to 2 A at 24 W.                     
However, after numerous failures, including the PCB getting burnt, we decided to use a              
proprietary solution instead. We arrived at this decision so as to prevent damage to our expensive                
sensors. The final power distribution circuit utilized a 12 VDC 5 A voltage regulator and a 24                 
VDC 10 A step-up converter connected to the car’s battery to power all the sensors. The                
computer was powered using a high-power DC to AC inverter connected to the battery. 

6. Various solutions were tested to reduce the amount of light reflected into the cameras. In               
some scenarios, the images captured by the cameras were found to have reflection artifacts in               
them. We found that bright overhead lighting, dust on the inside of the windshield, and a smooth                 
or shiny car dashboard were leading causes of this. To reduce the risk of confusing our                
stereo-vision subsystem with reflections, we moved the cameras farther back into their housings,             
and we placed a fuzzy blanket on the dashboard to diffuse the incident light. 

7. Camera synchronization was tested using a stopwatch. To test the reliability of our             
hardware and software trigger methods, we pointed our stereo-vision sensor rack towards a             
laptop screen that was running a stopwatch and then triggered the cameras simultaneously to see               
if the same times were captured in the corresponding image pairs taken by the cameras. In every                 
pair of images, matching times were displayed on the screen. We thus determined that both               
hardware and software triggering of the cameras work well for the purposes of synchronization.              
However, we noted that software triggering is only as reliable as the execution of the code is.                 
Given the complexity of our system’s software, we feel it is safer to rely on a hardware trigger                  
method that is independent of the processing setup. 

 
 
  



7.3   SVE Performance evaluation 
  
Although we were able to successfully complete most of the planned tasks we had set out to                 

do by the SVE (see Table 6), we were unable to meet all the criteria. In the SVE, we did not                     
include the velocities for the detected objects. This was due to simple oversight; we did have the                 
system capabilities to calculate and display the velocities at the time. For the SVE Encore, we                
were more careful about presenting all the features of our perception system, and so we made                
sure to demonstrate them. 

 
Even though we can claim that we have working implementations for a variety of advanced               

perception methods, many of our implementations need further work and tuning in order to              
perform consistently. We need to modify the algorithms and methods we currently use to be               
better suited to our system and applications. 

Table 6. SVE performance checklist 

Success Criteria SVE SVE Encore 

Tracking ID of each object displayed in GUI No Yes 

Relative position of each object displayed in GUI Yes Yes 

Velocity of each object displayed in GUI No Yes 

Classification of each object displayed in GUI Yes Yes 

Absolute position (Lat. & Long. ) of host vehicle in GUI Yes Yes 

Absolute velocity of host vehicle in GUI Yes Yes 

Accuracy of filtered depth value of objects > 70% No Yes 

Accuracy of detection and classification by vision > 60% Yes Yes 

Accuracy of detection by integrated system > 70% No Yes 

 
 
  



7.4  Strong and weak points 
 
The following strengths and weaknesses of our perception system were noted by our team              

over the course of this project. The strong points are what we depend on for our system’s                 
performance, whereas weak points are potential issues we might be able to fix in the future. 

 
Strong points: 
 
● Robustness of sensor mounts - Our sensor mounting system is robust. After repeated             

outdoor driving tests in various road and weather conditions, we noted that the positions              
of the sensors stayed the same. The effectiveness of our mounting solutions provide a              
strong foundation for the on-road performance of our perception functions. 

● Object classification accuracy - The object classification accuracy is above 80% for            
detected objects, which exceeds our expectations. 

● Radar position estimation accuracy - Our radar system provides depth information for            
objects of interest with an error rate of less than 5%. We use sensor fusion to thus bolster                  
the performance of our stereo-vision subsystem. 

● Powerful computer: We selected high-end components for our project computer. As a            
result, it can perform calculations very fast and allow us to perceive the environment in               
real time. 

 
Weak points: 
 
● Noisy tracking-level data from the radar - The radar gives us terribly noisy data when we                

try to acquire tracking data via the CAN bus. This is the case even if the testing                 
environment is an empty garage. For now, we have our own tracking and filtering method               
that works well. However, in the future we would like to try and use these automatically                
calculated tracking points, provided we can extract useful information. 

● Stereo vision disparity map - Calculating the stereo-vision disparity map takes longer            
than we would like. Right now, we run the SGBM algorithm on our computer’s CPU for                
a refresh rate of ~5 Hz. In order to improve our real-time performance we should plan to                 
run this algorithm on the computer’s high-performance GPU to increase speed. 

● Unimpressive stereo-vision range - In real-world testing, we found that our stereo-vision            
subsystem does not work very well if the objects are farther than 40 meters away. This is                 
especially problematic for identifying pedestrians. In the future, we could work on            
adjusting the camera settings automatically depending on the type of environment and            
conditions detected by our system. This could improve performance at medium-range. 

 
 
  



 
8. Project Management 

 
The team’s project management style has evolved continuously and significantly over the            

course of the project based on the effectiveness of certain techniques and the ineffectiveness of               
certain others. This section of the report contains a detailed evaluation of scheduling and task               
assignment approaches taken, the methodology behind the expenditure of the budget provided            
for the project, as well as an examination of the risk management and mitigation strategies used.  

 
8.1   Schedule 

 
The team faced multiple issues with meeting deadlines all the way from the start of the                

project to the very end due to a variety of reasons within the team’s control and a few not                   
explicitly under the team’s control.  

 
The major issue plaguing the team, specially at the start of the previous semester, was the                

lack of communication between team members. This led to widespread misunderstandings           
within the team and no clear sense of not only what a particular task entailed, but also to what                   
extent one task affected the rest of the team’s workflow. The establishment of a concise and                
succinct work breakdown structure seemed to be the solution to such problems. Contrary to the               
team’s expectations, but reasonably so, the persisting issue was not caused by a lack of               
organization or clarity in how the tasks comprising the project were inter-dependent but due to a                
lack of consistency between members’ understanding of exactly what each task meant. This was              
mainly caused by team members working independently on every task they were assigned,             
instead of collaborating and keeping checks on other team members.  

 
The above issue wreaked more of a havoc in the second semester as the integration of                

subsystems is something that, by definition, cannot possibly be accomplished without the good             
faith effort of the team to work in a cohesive manner. This was evident with the fact that the                   
team was unable to complete 100% of the goals for any of the progress reviews in the spring                  
semester. Eventually, significant progress was made between the last progress review and the             
Spring Validation Experiments because of the team’s collaboration and willingness to work with             
each other. This was further helped by a notable betterment in the team dynamics, which was                
perhaps caused by the last minute alignment of a common goal of showcasing a successful SVE                
demo. It was the introspection of each member’s own contributions and the issues they faced that                
led the team to a stage where each teammate was willing to let go of their apprehension and                  
skepticism of fellow teammates’ competence and work towards a common goal.  

 
Issues like these could have been averted had they been addressed in the initial stages of the                 

project to create better interpersonal dynamics and a common understanding of what the project              
demanded of each teammate. This would have led to significantly more progress made by the               
team and would have avoided the stress that the team faced in final stages of the project. 
  



8.2   Budget 
 
The majority of the burden of the budget was alleviated by our sponsor, Delphi Automotive,               

providing the team with the two cameras, the lenses to go with them, and the radar unit. The                  
majority of the team’s budget was spent on the purchase of a high performance desktop               
computer with a state-of-the-art GPU, as planned. The remaining budget was spent in purchasing              
low-cost supporting material and devices like a step-up circuit PCB and the Adafruit Ultimate              
GPS. Table 7 lists the detailed breakdown of the expenditure by the team.  

Table 7. Budget and expenditure breakdown 

No. Description Cost Quantity Sponsored Total 

1 Grasshopper3 3.2 MP Color USB3 Vision 
(GS3-U3-32S4C-C) $ 975 2 Yes $0 ($ 

1950) 

2 Delphi ESR 2.5 24V Radar $ 3300  1 Yes $0 ($ 
3300) 

3 Tamron M118FM08, 8mm, 1/1.8", C mount 
Lens $ 210 2 Yes $0 ($ 420) 

4 Foneso 328ft Digital Handheld Rangefinder, 
Laser Distance Measurer $50 1 No $ 50 

5 Belkin 6-Outlet Surge Protector $ 10 1 No $ 10 

6 LM2587 Booster Converter Voltage Regulator 
(12V to 24V) $ 5 2 No $ 10 

7 Adafruit Ultimate GPS Breakout  $ 43 1 No $ 43 

8 GPS external antenna and adapter cable $ 17 1 No $ 17 

9 Kvaser CAN connector and adapter $ 380 1 No $ 380 

10 Rectangle Glass 36” x 48”  $ 108 1 No $ 108 

11 CyberPower Uninterruptible Power Supply 
(UPS) 1350VA 815W $ 123 1 No $ 123 

12 KRIEGER 1100W 12V  Power Inverter $ 85 1 No $ 85 

13 High Performance Desktop $ 3363 1 No $ 3363 

Total budget left  $ 5000 - $ 4189 = $ 811 

 
 
  



 
The budget was spent as planned for the intended SVE demo. Components like the 1100W               

Power Inverter and the 815W Uninterrupted Power Supply were not used due to the unexpected               
breakdown of the team’s test vehicle, a Volvo S60, a few days before the SVE. This caused                 
approximately $200 of the spent budget to not be utilized. The other major failure was the                
purchase of the Kvaser CAN Adapter in the first semester. It was bought on recommendation               
from our sponsor, Delphi Automotive. In the second semester, Delphi suggested that the team              
should use the ethernet port instead of the CAN port from the ESR 2.5 to obtain detection-level                 
data. This led to a loss of $380 from the team’s budget. Although, we do not believe that that                   
purchase could have been avoided based on the trust we placed on our sponsor. The best return                 
on investment was noted for the high-performance desktop computer as it became integral to the               
success of the project. It has a high potential, further beyond what is currently being utilized by                 
the project, and would be beneficial in case of any future work performed on the project.  
 
 
8.3   Risk Management  

 
The risk management and mitigation approach taken by the team was not sufficient, as              

witnessed by the helplessness and panic caused by the sudden and unexpected breakdown of the               
project’s test vehicle, the Volvo S60. This is not a risk that was predicted or planned for by the                   
team. The team needed approximately $800 to fix the issue that caused the breakdown, but the                
team had already spent the majority of the budget on other essential components. An emergency               
or a contingency budget of at least $1000 should have been maintained to address the realization                
of such a risk.  

 
Majority of the risks were identified and characterized accurately by the team, including, but              

not limited to, the inability to obtain data from the radar and the minimal dynamic range of the                  
camera. Although, the steps taken to mitigate such risks were not enough or well thought out.                
One evident success of taking steps to mitigate risks was anticipating that the stereo-vision              
algorithm to compute the depth map could perhaps have a significantly high compute time. This               
risk was partially mitigated by down-sampling the images used to create the depth map. This was                
instrumental in achieving an acceptable frame rate for the depth map calculations. The next step               
in mitigating this risk was to parallelize the computation by using a GPU but that was not                 
achieved in time for the final SVE demo. The project could have benefitted from more effective                
risk mitigation strategies.  

 
  



 
9. Conclusions 

 
Through the course of the project the team has learnt a lot and has gained vital technical                 

competence and interpersonal experience. This section highlights some of the lessons that were             
learnt while working on this project and some suggestions for future work to further improve the                
project.  

 
9.1   Lessons learnt 

 
The following are some of the most important lessons that were learnt during the two               

semesters spent working on this project: 
● For the success of any project a deep understanding between the teammates is essential              

and team collaboration is indispensable.  
● Any experimental system is liable to breakdown no matter how well-tested. Thus,            

maintaining a contingency plan as well as keeping spare parts should not be overlooked.  
● The probability of success of a project can be vastly improved by applying project              

management and systems engineering techniques.  
● The work breakdown structure as well as planning the tasks should be dictated by the               

requirements. 
● Unfiltered data for even an expensive sensor might look nonsensical but trying different             

filtering methods will almost always yield significantly better results.  
● The integration of subsystems as well as 3rd party libraries may not always work as               

expected. So, allotting extra time for integration is a wise decision to make. 
● Quantitative validation with proper metrics should always be preferred over qualitative           

judgment.  
 

9.2   Future work 
 
The following are avenues that might yield fruitful results if pursued in the future:  
● Multiple Hypothesis Tracking by incorporating not only the position but also the            

velocity.  
● Using an Unscented or Extended Kalman Filter with a polar coordinate system which is              

based on a constant acceleration model. In case of the radar, incorporating amplitude in              
the filter will significantly improve accuracy.  

● Porting the code to use multi-threading in ROS instead of running on a single thread.  
● The computation of the depth map should be parallelized to run on a GPU.  
● Once high frame rates are achieved, implementing stereo-vision based tracking should           

show promising results.  
● Radar can be trained to differentiate between vehicles, pedestrians and other obstacles            

with metallic content.  
● Stereo Vision can be trained to mark drivable vs undrivable area.  
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