
	

Sensors	and	Motor	Control	Lab	
Individual	lab	report	#1			October	16,	2015	

																																												
	Menghan	Zhang	

	
	

																																					TeamA	
Amit	Agarwal	
Harry	Golash	
Yihao	Qian	
Zihao		Zhang	

	
	

	 	



Individual	progress		
	

a) Used	potentiometer	to	motive	the	servo	motor	,	
b) Controlled	the	position	of		servo	motor	by	rotating	the	potentiometer	to	get	

the	max	and	min	degree	of	servo:	
i. I	searched	online	and	then	found	that	there	are	tutorials	and	library	

for	potentiometer	and	servo	motor.	After	learned	about	that	then	
change	the	certain	pin	and	to	satisfy	teams	arrange.	

ii. To	increase	the	control	accuracy,	I	choose	to	use		
writeMicroseconds()	to	instead	of	write.	

iii. To	smooth	and	decrease	the	impact	of	noise	,	I	made	an	average	
every	100ms	then	export	one	result	to	control	the	motor		

c) Combined	the	potentiometer	with	force	resistance	sensor	using	button	to	
change	the	state	then	control	the	servo	motor	to	rotate	to	a	certain	position.	
Because	of	needing	further	integration	with	other’s	sensors	and	codes,	so	I	
discuss	with	the	team	member	first	about	which	pin	they	used	for	their	
sensors	and	define	the	variable	in	understandable	and	specific	name	to	avoid	
using	same	pin	and	same	name	for	variable,	try	to	encapsulate	the	function	
of	sensors	in	a	function	and	use	switch	to	change	the	state		

Challenges		
a) The	problem	when	I	design	the	circuit	and	test	for	the	results	is	that	the	

servo	motor	keep	spinning	in	a	certain	degree	and	can	not	be	controlled	by	
the	potentiometer,	then	I	go	over	the	circuit		again	and	change	the	position	
of	the	potentiometer	on	bread	board	then	it	works.	The	reason	must	be	the	
problem	with	the	bread	board,	they	supposed	be	connected	but	actually	the	
connection	is	broken.	

b) There	was	also	a	problem	when	I	combine	the	circuit	with	Yihao’s	force	
sensor,	we	use	the	button	to	change	the	state	and	because	of	the	several	
mistakes	and	problem	of	hardware,	it	took	us	long	time	to	get	the	correct	
results.	

c) The	problem	here	is	the	button	can	not	work	decently,	at	first	we	thought	it’s	
because	of	the	debouncing	did	not	work,	then	we	go	over	several	methods	to	
debounce	but	still	had	no	effect.	Then	we	tested	the	voltage	of	the	button	
and	find	out		it	have	some	problem	here.	Then	I	realized	that’s	because	I	
forgot	the	10k	ohm	pull	down	resistor.	After	I	add	the	resistor	it	can	work	
decently.	

d) Challenge	in	the	future	
The	problem	is	that	I	need	to	be	more	careful	about	the	circuit,	I	thought	I	was	
finished	the	circuit	after	being	interrupted	by	something	else	but	actually,	I	need	
double	check	the	circuit	before	I	start	coding	and	debug.	

Teamwork		
a) Combined	the	circuit	and	code	with	Yihao.(Appendix)	



b) Measured	and	calculated	the	transfer	function	of	the	Infrared	Proximity	
Sensor	with	Zihao	and		Yihao	

Figures	

	
Figure1	:	circut	

	
Figure2	Skematic	
		



	
Figure	3	Final	version	of	the	circuit	
	

	
	
Plans		

a) From	this	sensors	and	motors	lab,	I	realized	that	my	knowledge	about	the	motor	and	
circuit	is	limited,	lacking	of	the	ability	to	find	the	problem	in	the	short	time,	so	from	now	

0

20

40

60

80

100

120

140

160

0.00 0.50 1.00 1.50 2.00 2.50

Ph
ys
ic
al
	O
ut
pu

t	(
Di
st
an
ce
	in
	cm

)

Electrical	Input	(volts)

Team	A:	Transfer	function	plot	for	SHARP	2Y0A02	IR	
sensor



on	I	need	to	review	the	knowledge	were	learned		in	undergraduate	school	and	make	
more	practice	about	that.	

b) For	object	detection,	I	need	to	learn	some	basic	method	for	machine	learning	first,	then	
try	to	understand	how	Faster	R-CNN	work	so	that	I	can	implement	that	in	the	future.	

c) For	coding	ability,	I	need	to		learn	Python	and	C++	again,	practice	more	and	understand	
the	truly	meaning	behind		class	and	Inherit	in	C++.	

	
	 	



	
Appendix	:	Code	combined	potentiometer	and	force	resistor	
	
#include	<Servo.h>	
	
Servo	myservo;		
	
	
//	create	servo	object	to	control	a	servo	
const	int	numReadings	=	10;	
int	potpin	=	A0;		//	analog	pin	used	to	connect	the	potentiometer	
int	val;				//	variable	to	read	the	value	from	the	analog	pin	
int	readings[numReadings];						//	the	readings	from	the	analog	input	
int	readIndex	=	0;														//	the	index	of	the	current	reading	
int	total	=	0;																		//	the	running	total	
int	average	=	0;	
	
int	potpinf=1;	
int	valf;	
int	i;	
const	int	numReadingsf	=	10;	
int	readingsf[numReadingsf];						//	the	readings	from	the	analog	input	
int	readIndexf	=	0;														//	the	index	of	the	current	reading	
int	totalf	=	0;																		//	the	running	total	
int	averagef	=	0;			
	
	
//debouncing	
int	buttonPin	=	2;				//	the	number	of	the	pushbutton	pin	
	
	
//	Variables	will	change:	
	
int	buttonState;													//	the	current	reading	from	the	input	pin	
int	lastButtonState	=	LOW;			//	the	previous	reading	from	the	input	pin	
	
//	the	following	variables	are	unsigned	long's	because	the	time,	measured	in	miliseconds,	
//	will	quickly	become	a	bigger	number	than	can	be	stored	in	an	int.	
unsigned	long	lastDebounceTime	=	0;		//	the	last	time	the	output	pin	was	toggled	
unsigned	long	debounceDelay	=	50;				//	the	debounce	time;	increase	if	the	output	flickers	
int	sysstate=0;	



	
	
	
void	setup()	{	
				//pinMode(buttonPin,	INPUT);	
		myservo.attach(9);		//	attaches	the	servo	on	pin	9	to	the	servo	object	
Serial.begin(9600);	
pinMode(potpinf,INPUT);	
pinMode(buttonPin,	INPUT);	
		myservo.attach(9);	
			
		for	(int	thisReadingf	=	0;	thisReadingf	<	numReadingsf;	thisReadingf++)	{	
				readingsf[thisReadingf]	=	0;}	
					
	for	(int	thisReading	=	0;	thisReading	<	numReadings;	thisReading++)	{	
				readings[thisReading]	=	0;	
		}	
			
}	
	
	
	
void	portential()	
{	
			
		total	=	total	-	readings[readIndex];	
		val	=	analogRead(potpin);												//	reads	the	value	of	the	potentiometer	(value	between	0	and	
1023)	
			
		readings[readIndex]	=	map(val,	0,	1023,	500,	2400);					//	scale	it	to	use	it	with	the	servo	(value	
between	0	and	180)	
			//	add	the	reading	to	the	total:	
		total	=	total	+	readings[readIndex];	
		//	advance	to	the	next	position	in	the	array:	
		readIndex	=	readIndex	+	1;	
			if	(readIndex	>=	numReadings)	{	
				//	...wrap	around	to	the	beginning:	
				readIndex	=	0;	
				Serial.println(average);	
				myservo.writeMicroseconds(average);	
		}	



	
		//	calculate	the	average:	
		average	=	total	/	numReadings;	
		//	send	it	to	the	computer	as	ASCII	digits	
			
			
		//Serial.println(val);	
			
		//myservo.write(val);																		//	sets	the	servo	position	according	to	the	scaled	value	
		delay(10);																											//	waits	for	the	servo	to	get	there	
		}	
	
	
		void	force()	
		{	
				valf=analogRead(potpinf);		
				Serial.println(map(valf,	0,	120,	0,180));	
				valf	=	map(valf,	0,	120,	500,	2400);	
				totalf	=	totalf	-	readingsf[readIndexf];	
				readingsf[readIndexf]	=	valf;	
				totalf	=	totalf	+	readingsf[readIndexf];	
				readIndexf	=	readIndexf	+	1;	
				if	(readIndexf	>=	numReadingsf)	{	
				readIndexf	=	0;	
		}	
		averagef	=	totalf	/	numReadingsf;	
		myservo.writeMicroseconds(averagef);						
				
			delay(2);	
				}	
	
	
void	loop()	{	
	int	reading	=	digitalRead(buttonPin);	
	
	
		//	check	to	see	if	you	just	pressed	the	button	
		//	(i.e.	the	input	went	from	LOW	to	HIGH),		and	you've	waited	
		//	long	enough	since	the	last	press	to	ignore	any	noise:	
	
		//	If	the	switch	changed,	due	to	noise	or	pressing:	



		if	(reading	!=	lastButtonState)	{	
				//	reset	the	debouncing	timer	
				lastDebounceTime	=	millis();	
		}	
	
		if	((millis()	-	lastDebounceTime)	>	debounceDelay)	{	
				//	whatever	the	reading	is	at,	it's	been	there	for	longer	
				//	than	the	debounce	delay,	so	take	it	as	the	actual	current	state:	
	
				//	if	the	button	state	has	changed:	
				if	(reading	!=	buttonState)	{	
						buttonState	=	reading;	
	
						//	only	toggle	the	LED	if	the	new	button	state	is	HIGH	
						if	(buttonState	==	HIGH)	{	
								sysstate=(sysstate+1)%2;	
						}	
				}	
		}	
	lastButtonState	=	reading;	
	
switch(sysstate)	
{case	0:	
force();	
Serial.print("force");	
break;	
case	1:	
portential();	
Serial.print("portential");	
break;	
default:	
break;			
}	
delay(2);	
			
}	


