
Yihao	Qian	

Team	A:	Aware	

Teammates:	Amit	Agarwal	Harry	Golash		

									Menghan	Zhang	Zihao	(Theo)	Zhang	

ILR01	

Oct.14,	2016	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



Individual	Progress	
For sensors and motors lab, I was in charge of the servo and force sensor, also 

I was in charge of integrating part of the code with teammates, moreover, I wrote the 
code and found out the transformation function of the distance sensor. The circuit for 
our system could be found in Figure 1. 

Servo and force sensor 

What I did is to let the force sensor to control the rotation of the servo motor. 
The main idea is to let the force sensor detect a force and output an analog voltage 
that can be input to the Arduino pin, then averaging the value and map the voltage to 
0~180 degree. Finally, the Arduino board sends the command in order to let the servo 
motor to rotate to the corresponding degree.  

I will introduce 3 main parts in the following report: 

Force Sensor: 

Force Sensor’s resister decrease as the force increase (almost linear). I 
designed a circuit, that series sensor, the 200 Ω resister with the 5V power.  Then read 
the analog signal from the pin, then use the map function to map the input value to the 
value used for motor. The circuit can be found in Figure 2.  

      

Mean Value:  

The input from the force sensor is vibrate, which means that the servo has to 
respond to the signal vary frequently. In order to smooth the control signal, I tried to 
average the value of input from the force sensor.  

The main idea is to create a buffer, for example the size of the buffer is around 
10 size. For each time, we are going to read the input, and abandon the oldest input. 
Then we average all the value in the buffer, providing a smooth output control signal.  

 

Servo Motor: 

Arduino has already existed libraries for servo motor, however in order to 
accurately control the servo motor, I have to fine tuning my program.  Instead of using 
the not accurate command myservo.write(val), I use the function called myservo. 
writeMicroseconds to precisely control the angle of the Servo motor. In my experiment, 
I find out when the digital command output val is 500, the servo motor’s angle is 0 
degree, when the output val is 2400, the servo motor’s angle is 180 degrees.  Mapping 
the input signal to 500-2400 would achieve a much more precise control of the servo 
motor. 

  



Integrating the force sensor and potentiometer  

The other thing I did for our project is to integrate the code Menghan with mime. 
The main idea is to use a bottom to control the system state, and switch between 
different functions. I used the knowledge I learnt from the last Arduino assignment, 
debounce the bottom. Also the code adopts a switch function, so it would be much 
easier for integrating the code from other team members. 

 

Calculating the transform function of distance sensor 

I chose to test the transform function of the distance sensor.  I would like to 
compute the relationship between the output voltage and the ground truth detect 
distance. The circuit is quite simple, the 5v voltage power, the ground, and the signal 
output that is linked to the pin on the Arduino board.  I just use the analog read to read 
the voltage and use the ruler to measure the corresponding distance. 

Challenges:	
Resister missing 

When combing the circuit with Menghan, she added a new button on the board 
in order to switch the state of the system. After I combined the code and download it 
to the board, the switch didn’t work. The system state changed almost randomly. At 
first I thought it was due to the bug of the program (maybe something wrong with the 
debouncing program), I changed two ways of debouncing, the basic one and the 
interrupt one. No matter what I tried, the bottom didn’t work. So I started to think this 
problem might be caused by the hardware and software. So I download the last 
assignment code to both the TA board and our board, the TA board works perfectly 
fine, however our board still didn’t work. It was at that time, I started to check whether 
the wire is correct or not. After thoroughly checking the board, I found out one of the 
resister that should be linked to the switch bottom is missing. After adding the resister, 
the bottom worked perfectly. 

 

Teamwork:	
Since there are 5 people in our team. We split the sensor and motor equally to 

each team mates. Amit is responsible for the DC motor, and the distance sensor. I am 
in charge of the force sensor and servo. Menghan and I combined our code together. 
I wrote the code for to test the transfer function. Zihao is responsible for the stepper 
motor and IR sensor. Menghan is responsible for Potentiometer and servo motor. 
Harry is in charge of the GUI. 

 

 



 

Figures:	

	
Figure 1. The final board 

 
Figure 2. The circuit for the force sensor 

 

 

Arduino	 Servo	Motor	Stepper	Motor	

DC	motor	

Force	sensor	

Potentiometer	



 

 

Plans:	
From now on, we are going to begin to build our own perception system.   

Harry and Amit will work on the hard-ware design, specifically, on designing the 
rigid mounting rat that can fixed our sensors.  

Zihao and Menghan is also contributing their time to test the performance of the 
camera and radar. They are going to test the performance of these sensors in different 
environment, aiming to find the strength and weakness of those sensors. 

I already know something about the stereo camera 3-D reconstruction, so it 
may help for our project. Moreover, I already read some paper about the object 
detection, a method called faster r-cnn, which would take 0.2s to detect the interest 
object in the image could be used to build the prototype of the project. Also, I am going 
to implement this network in C++ version. Combined with the high performance GPU, 
the algorithm is hopefully work fast enough to work it real time, I am trying to learn how 
to write the code in Caffe through reading the tutorials online.  

The potential challenges in the future is as follow: 

I can’t accurately estimate how much we depend on the hardware. I know how 
to do the 3-D reconstruction in the static or low speed environment, however, I am not 
so sure whether we could accurately build the 3-D map on a car with 80km/h speed. 
Moreover, 3-D reconstruction need the support from the GPU, object detection needs 
the support from the GPU, I am afraid that our hardware system can’t handle such a 
demanding task.   

 

 

 

Code: 

//Force sensor and potentiometer control the servo motor 

#include <Servo.h> 

Servo myservo;  

// create servo object to control a servo 

const int numReadings = 10; 

int potpin = A0;  // analog pin used to connect the potentiometer 

int val;    // variable to read the value from the analog pin 



int readings[numReadings];      // the readings from the analog input 

int readIndex = 0;              // the index of the current reading 

int total = 0;                  // the running total 

int average = 0; 

 

int potpinf=1; 

int valf; 

int i; 

const int numReadingsf = 10; 

int readingsf[numReadingsf];      // the readings from the analog input 

int readIndexf = 0;              // the index of the current reading 

int totalf = 0;                  // the running total 

int averagef = 0;   

 

 

//debouncing 

int buttonPin = 2;    // the number of the pushbutton pin 

 

 

// Variables will change: 

 

int buttonState;             // the current reading from the input pin 

int lastButtonState = LOW;   // the previous reading from the input pin 

 

// the following variables are unsigned long's because the time, measured in 
miliseconds, 

// will quickly become a bigger number than can be stored in an int. 

unsigned long lastDebounceTime = 0;  // the last time the output pin was toggled 

unsigned long debounceDelay = 50;    // the debounce time; increase if the output 
flickers 



int sysstate=0; 

 

 

 

void setup() { 

    //pinMode(buttonPin, INPUT); 

  myservo.attach(9);  // attaches the servo on pin 9 to the servo object 

Serial.begin(9600); 

pinMode(potpinf,INPUT); 

pinMode(buttonPin, INPUT); 

  myservo.attach(9); 

   

  for (int thisReadingf = 0; thisReadingf < numReadingsf; thisReadingf++) { 

    readingsf[thisReadingf] = 0;} 

     

 for (int thisReading = 0; thisReading < numReadings; thisReading++) { 

    readings[thisReading] = 0; 

  } 

   

} 

 

 

 

void portential() 

{ 

   

  total = total - readings[readIndex]; 

  val = analogRead(potpin);            // reads the value of the potentiometer (value 
between 0 and 1023) 



   

  readings[readIndex] = map(val, 0, 1023, 500, 2400);     // scale it to use it with the 
servo (value between 0 and 180) 

   // add the reading to the total: 

  total = total + readings[readIndex]; 

  // advance to the next position in the array: 

  readIndex = readIndex + 1; 

   if (readIndex >= numReadings) { 

    // ...wrap around to the beginning: 

    readIndex = 0; 

    Serial.println(average); 

    myservo.writeMicroseconds(average); 

  } 

 

  // calculate the average: 

  average = total / numReadings; 

  // send it to the computer as ASCII digits 

   

   

  //Serial.println(val); 

   

  //myservo.write(val);                  // sets the servo position according to the scaled value 

  delay(10);                           // waits for the servo to get there 

  } 

 

 

  void force() 

  { 

    valf=analogRead(potpinf);  



    Serial.println(map(valf, 0, 120, 0,180)); 

    valf = map(valf, 0, 120, 500, 2400); 

    totalf = totalf - readingsf[readIndexf]; 

    readingsf[readIndexf] = valf; 

    totalf = totalf + readingsf[readIndexf]; 

    readIndexf = readIndexf + 1; 

    if (readIndexf >= numReadingsf) { 

    readIndexf = 0; 

  } 

  averagef = totalf / numReadingsf; 

  myservo.writeMicroseconds(averagef);      

    

   delay(2); 

    } 

 

 

void loop() { 

 int reading = digitalRead(buttonPin); 

 

 

  // check to see if you just pressed the button 

  // (i.e. the input went from LOW to HIGH),  and you've waited 

  // long enough since the last press to ignore any noise: 

 

  // If the switch changed, due to noise or pressing: 

  if (reading != lastButtonState) { 

    // reset the debouncing timer 

    lastDebounceTime = millis(); 

  } 



 

  if ((millis() - lastDebounceTime) > debounceDelay) { 

    // whatever the reading is at, it's been there for longer 

    // than the debounce delay, so take it as the actual current state: 

 

    // if the button state has changed: 

    if (reading != buttonState) { 

      buttonState = reading; 

 

      // only toggle the LED if the new button state is HIGH 

      if (buttonState == HIGH) { 

        sysstate=(sysstate+1)%2; 

      } 

    } 

  } 

 lastButtonState = reading; 

 

switch(sysstate) 

{case 0: 

force(); 

Serial.print("force"); 

break; 

case 1: 

portential(); 

Serial.print("portential"); 

break; 

default: 

break;   

} 



delay(2); 

   

}  

 

//Test the transfer function of distance sensor 

int sensorPin = A0; 

double sensorValue = 0;  // variable to store the value coming from the sensor 

void setup() { 

Serial.begin(9600); 

} 

 

void loop() { 

sensorValue = analogRead(sensorPin); 

Serial.print(sensorValue); 

delay(2); 

} 

 

 

	


