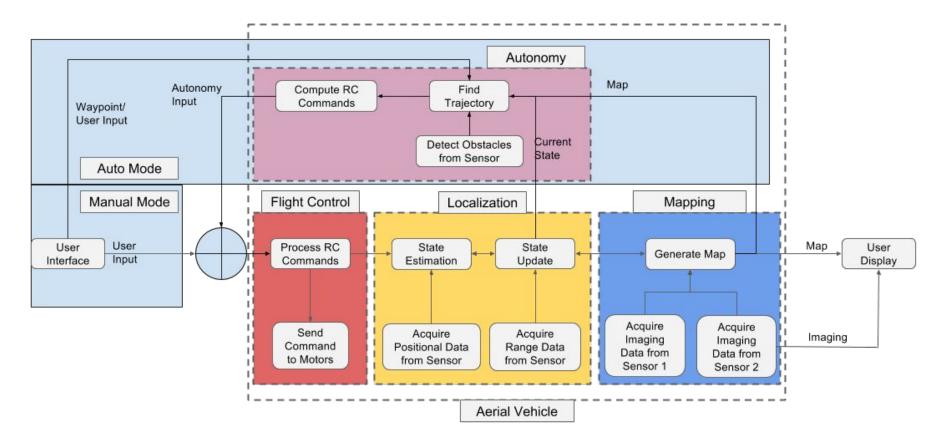

System Development Review

Team B: Arcus

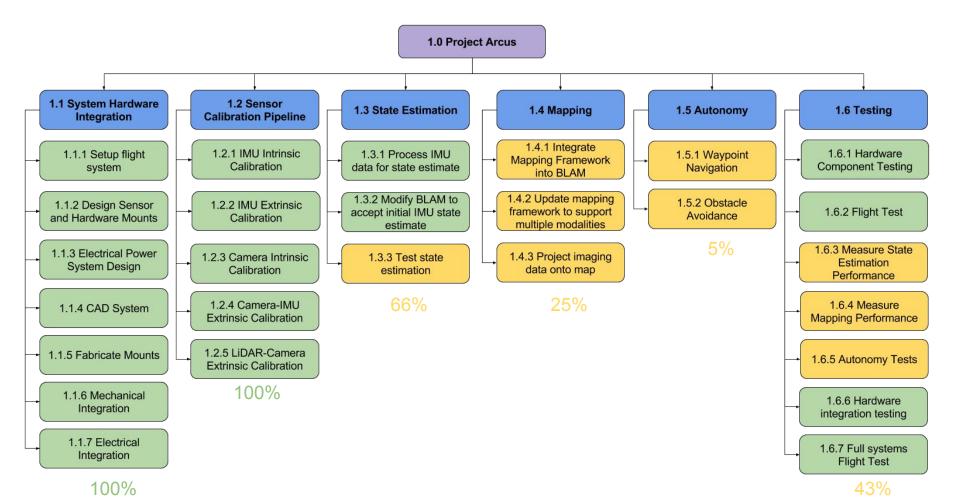
Clare Cui, Maitreya Naik, Angad Sidhu, Logan Wan

Arcus is a hexrotor aerial vehicle with multiple onboard imaging sensors that will generate multimodal 3D maps in real-time and serve as a testbed platform for autonomous mapping and exploration algorithms.

International Space Exploration Coordination Group


Concept: Extraplanetary Exploration

- Space shuttle lands on planet
- UAV deploys and autonomously maps unknown environment
- Uses sensors to further investigate points of interest

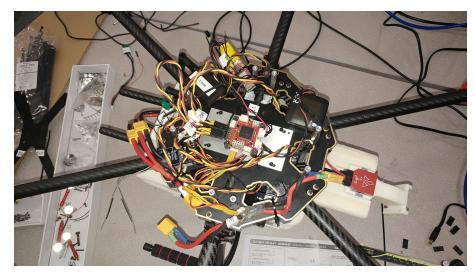

Use Case: On Earth

Researcher develops autonomous exploration algorithms Researcher selects imaging sensors Vehicle executes autonomous exploration code, researcher can optionally use RC control for development System generates map for post-experiment evaluation

Functional Architecture

Work Breakdown Structure

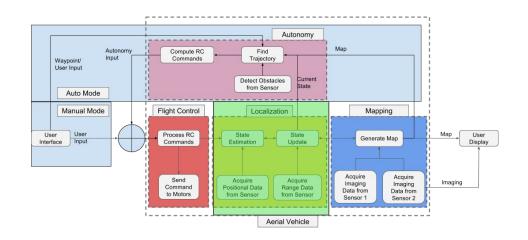
System Status

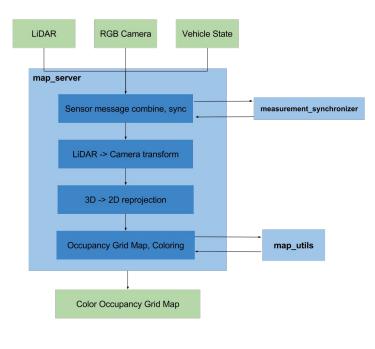

System Status: Hardware

Hardware

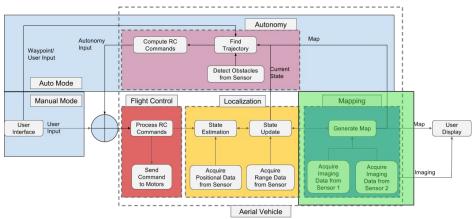
- Drone rebuild
- State of hardware
 - New ESCs with closed-loop feedforward control
 - Pixhawk replaced by Pixracer
 - Newly tuned gains

Newly ordered

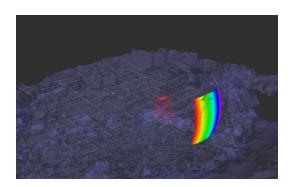

- PCB
- Spare drone chassis
- Spare propellers

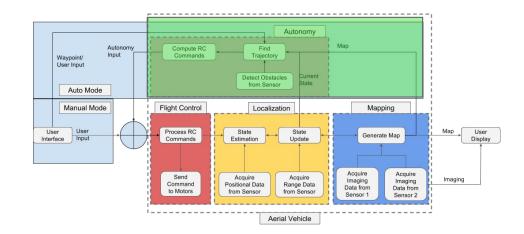


System Status: Localization


- Localization requirements met; transitioning to vehicle planning, autonomy
- Currently usable, advisor would like more robust and accurate state estimation using SCUKF from RASL

System Status: Mapping



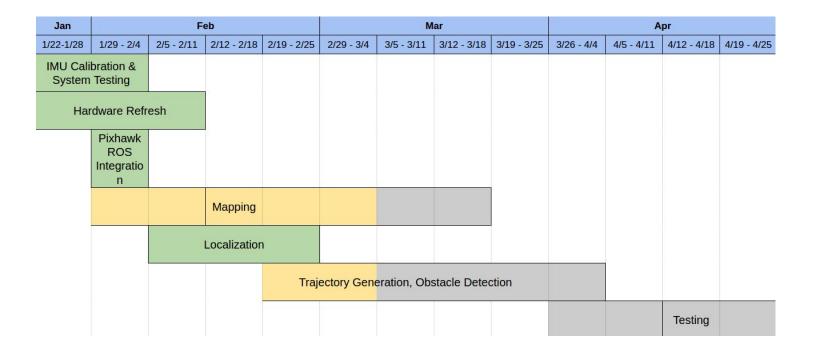

- Map_server extension:
 - Take ROS sensor messages, combine into colorized point cloud
- Map_utils
 - Take input colorized point cloud, populate a colorized occupancy grid map for autonomy planning

System Status: Autonomy

- Obstacle Detection
 - Rudimentary collision detector in package "collision detection"
- Trajectory Planning
 - Separated into a number of packages but main one is "pit-exploration-planner"
 - The packages currently implement our advisor's exploration algorithm in simulation, we would like to add in the ability to navigate waypoints in map.

Budget

- Total budget \$5000.00
- Spent: \$1194.60 (24%)
- Remaining: \$3805.40


Sponsor Contributions: Priceless

Sponsor purchases:

- 2 extra drone chassis
- 12 extra propellers
- Extra RGB cameras
- Extra computer

Schedule

Anticipated Challenges

- Schedule delay
- Mapping pushed back but will deliver for PR10
- Still need to learn about autonomy stack
- Integration difficulties
 - Moving from vehicle simulation to physical system
 - Moving from simulation data to actual sensor data

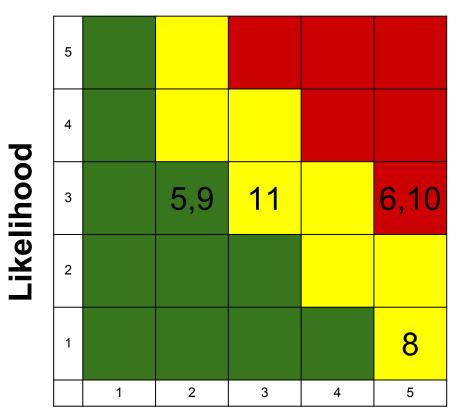
Milestones

PR 10 (3/22)	PR 11 (4/5)	PR 12 (4/17)	
Colorized dense voxel grid mapping in simulation	UAV Waypoint Navigation in Simulation	UAV Waypoint Navigation on Vehicle	
Development for trajectory planning and obstacle detection	Finish trajectory planning and obstacle detection	Test flights at Lafarge	
Drone rebuilt with new hardware integrated	Development for waypoint navigation		

Spring Validation Experiment 1

Location	LaFarge Duquesne Quarry	
Equipment	120VAC, hexrotor, base station, networking equipment	
Procedure	 Follow preflight checklist (appendix) Set up UAV on landing pad Set up the ground control station Set up camera, waypoint pad, and wooden beacon at chosen waypoint location Tele-operate vehicle and map for 5 minutes, visualize real-time map on base station monitor Visualize real-time mapping error on base station Land UAV on landing pad Replace batteries if batteries have less than 15 V Show video of previous map with comparison to ground truth FARO scan 	
Validation Requirements	SPR1: Reduce odometry error to less than 0.1m / meter traveled SPR2: Demonstrate textured mesh map SPR3: Map sent to ground control refreshes at minimum rate of 0.5 Hz SPR4: Visually inspect a generated colorized dense voxel grid map SPR5: Visually inspect loop closure occurring SPR6: Visually check that teleoperation distance is greater than 20 m	

Spring Validation Experiment 2


Location	LaFarge Duquesne Quarry
Equipment	120VAC, hexrotor, base station, networking equipment
Procedure	 Follow preflight checklist (appendix) Set up UAV on landing pad Set up the ground control station Populate navigation map with 50cm x 50cm virtual pillars Command UAV to specified distant waypoint location using the map formed in 13.1 SVE Command vehicle to return back to base Visualize voxel grid map on base station
Validation Requirements	SPR7: Vehicle is localized with less than 3 m of error from actual position SPR8: Vehicle detects obstacles of minimum map resolution size (50cm x 50cm x 50cm) SPR9: Vehicle flight path avoids obstacles by 3m

Risk Management: In Progress

No.	Risk	Туре	Description	L	С	Risk Reduction Plan
5	Asynchronous timing between Velodyne and RGB camera	Tech.	LiDAR scans at 10 Hz, RGB scans at 100 Hz (check these numbers), so pixels may be assigned incorrectly, resulting in a warped/inaccurately sensor-fused map	3	2	 delay RGB colorization until LiDAR point cloud map developed or attempt to predict the UAV's pose in the future based on current velocity/FOV & colorize immediately throw out extra RGB and synchronize with LiDAR try to trigger the cameras with the LiDAR
6	Pllot crashes UAV during flight	Tech., Sched, Budg.	Vehicle damage, bodily, property harm possible	3	5	 get extensive experience flying UAVs for all team members emergency landing procedure multiple vehicles
8	RF interference	Tech.	Operating the UAV at 2.4 GHz for RC control and at 5.0 Ghz for wifi / GPS may cause us to lose control of the UAV or online mapping goes down	1	5	 Static testing in RF noisy environments Construct a test to validate UAV communications performance Look at flight logs
	RASL's mapping framework cannot be integrated into BLAM	llecn	Mapping framework incompatible or too difficult to integrate with BLAM	3	2	 Find another framework to use Modify current framework code to make it more compatible with our purposes
10	Robot crashes while flying autonomously	Tech.	Vehicle damage, bodily, property harm possible	3	5	 testing in simulation extensive testing indoors in a safe environment
11	Lafarge Quarry inaccessible	Sched.	Cannot access the quarry or fly due to inclement weather/permissions issues	3	3	- backup flight test days - show video instead for SVE

Risk Management: Likelihood-Consequence Table

No.	Risk
5	Asynchronous timing between Velodyne and RGB camera
6	Pllot crashes UAV during flight
8	RF interference
9	PRL's mapping framework cannot be integrated into BLAM
10	Robot crashes while flying autonomously
11	Cannot access Lafarge

Consequence

Risk Management: Mitigated Risks

4 of 8 original risks have been mitigated

Risk No.	Risk	Risk Type	Mitigation Method
1	Velodyne damage	Technical, Budgeting	Fabricated a padded crash cap
2	Unable to map online	Technical	Computer (Brix) has sufficient processing power and is able to keep up with online mapping algorithms
4	Unable to form loop closures with BLAM	lechnical	Fixed loop closures while getting IMU pre-integrated
7	Unable to get Kalibr running		Found the correct setting to use when starting up Kalibr (video needed to be 8 bit grayscale)

Thank you

danačene Silebanab r<mark>oste</mark>ra_frama

Risk Management L-C Scales

Consequence

Level	Technical Performance	Safety	Schedule	Cost (\$)
1	Minimal or no consequence to performance	No bodily harm	Minimal to no impact	0 - 20
2	Minor reduction in performance, tolerable	No bodily harm	Able to meet key dates	21-100
3	Moderate reduction in performance, limited impact on final objectives	No bodily harm	Able to meet milestones	100 - 300
4	Significant degradation in performance	No bodily harm	Milestone objectives altered	300 - 1000
5	Complete loss of performance	Any bodily harm	Unable to meet milestones altogether	>1000

Likelihood

Level	Likelihood	Probability of Occurrence (%)
1	Not Likely	0 - 20
2	Low Likelihood	20 - 40
3	Likely	40 - 60
4	Highly Likely	60 - 80
5	Near Certainty	80 - 100