
Angad Sidhu
Team B Arcus
Logan Wan, Maitreya Naik, Clare Cui
ILR 6
Feb 2 2017

Individual Progress
Over the past few weeks we had started with many project management tasks

like scheduling and prioritizing tasks. Since completing those I have focused on
researching and implementing a more robust and effective integration of IMU
measurements into our state estimation pipeline. The implementation is being built on
the library GTSAM which implements iSAM2[1]. Our implementation of SLAM used
GTSAM by adding incremental odometry estimates as factors in GTSAM’s library.
GTSAM would then use those factors to generate a state estimate based on all
previously estimated factors. The addition of IMU measurements essentially adds both
another estimate of position, velocity and orientation as factors into GTSAM. Because
GTSAM keeps track of all previous factors in a Bayes net structure and constantly uses
them to estimate position, the addition of a lot of factors can really have a large impact
on performance. Therefore in order to reduce this impact, we can take a large amount
of IMU data and integrate it before adding it as a factor[2]. Fortunately, GTSAM also
provides a library which performs these calculations as well as calculates covariances
and etc.

Figure 1. Represents an example of a factor graph(or tree) as generated by

iSAM2. Referenced from [1].
 I also helped everyone get our software (i.e. drivers and SLAM code) installed

and running on everyone’s computers. I also walked everyone through a high-level

overview of the packages as the first step to prepare everyone for diving into the code. I
also worked on creating a separate, self-contained repo for all of our ROS packages.
This does violate ROS best practices in terms of code management however it is
justified by the time it saves in our workflow. Because we have a lot of small packages
(which was the structure of the BLAM package we selected) it can be cumbersome and
error prone to commit and manage different branches for all the packages. By
combining everything into a single repo, it simplifies the version management process
significantly.
 One problem we had last semester was a very low frame rate transfer of RGB
images from our hex-rotor to our base station. This was being throttled by Wifi
bandwidth and because the images were being transferred as full-size RGB images. I
investigated various options in the ROS image_transport package which can help us
encode our camera image stream as a video stream[3]. By using the Theora video
encoder transport, we dropped bandwidth requirements from MB/s to a few kilobytes
per second.

Challenges
I specifically have been struggling with implementation details and, more

specifically, compiling and debugging issues. After following some example code
provided by our advisor I’ve run into an issue while compiling the code base after
integrating GTSAM. I’m still in the middle of debugging the precise issue but as of now
all I know is that it is throwing an std::bad_alloc message. I have looked at my code that
calls a GTSAM function and I am not totally sure why it is throwing this error yet. The
steps that I am going to take to debug this issue will be to compile both GTSAM and
Eigen in Debug configuration so that I can dig through the stack trace. This will aid in
figuring out exactly what it is going wrong.

Teamwork
Maitreya and Clare have been looking into the flight controller replacement. This

involved looking into how it would mechanically be mounted as well as how it would be
electrically connected. Maitreya worked on updating the electrical design of the
hex-rotor by routing power directly from the batteries to the PDB rather than behind the
3DR power unit of the Pixhawk. Clare has also worked on mounting the new GPS
antenna and other CAD tasks related to the Delrin plates. Logan has been working on
project management tasks like coming up with the schedule. He also has been working
on CAD cleanup for the robot and completing some left over CAD tasks.

Plans
The beginning of this semester we focused on project management in

rescheduling tasks. There is also a lot of unknown in some of the new tasks (like
autonomy) that we have planned on picking up which requires research. I am going to
investigate various algorithms and requirements that autonomy and exploration
algorithms are going to require of us and our software stack. This will help inform
decisions further when working on state estimation and map generation. I am also
hoping to have IMU preintegration done within another week or two so that we can test
the effect it has on our localization estimates. I’m also hoping to get everyone
familiarized with the code so that they aren’t blocked when working on their own
individual tasks.

References
[1] iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree
(http://frc.ri.cmu.edu/~kaess/pub/Kaess12ijrr.pdf)
[2] IMU preintegration on manifold for efficient visual-inertial maximum-a-posteriori
estimation
(https://aragorn.library.gatech.edu/bitstream/handle/1853/55417/IMU%20Preintegration%20on
%20Manifold%20for%20Efficient.pdf?sequence=1&isAllowed=y)
[3] ROS Image Transport Reference (http://wiki.ros.org/image_transport)

http://frc.ri.cmu.edu/~kaess/pub/Kaess12ijrr.pdf
https://aragorn.library.gatech.edu/bitstream/handle/1853/55417/IMU%20Preintegration%20on%20Manifold%20for%20Efficient.pdf?sequence=1&isAllowed=y
https://aragorn.library.gatech.edu/bitstream/handle/1853/55417/IMU%20Preintegration%20on%20Manifold%20for%20Efficient.pdf?sequence=1&isAllowed=y
http://wiki.ros.org/image_transport

