
Individual Lab Report 9

By Clare Cui

Team B: Arcus

Clare Cui

Maitreya Naik

Angad Sidhu

Logan Wan

23 March 2017

Individual Progress
For the past two weeks, I worked primarily on the visualization stack. My

goal was to understand the different packages and enable the occupancy grid
map to accept RGB data. To be able to do this, I first worked on understanding the
dense_voxel_map package and documented summaries of the functions
implemented. The dense_voxel_map package essentially processes queued point
clouds and creates an occupancy grid map based on the locations of the points.
Since visualization must occur with either a sensor_msgs::PointCloud2 type or
pcl::PointCloud type, voxels are determined to be occupied, free, or unknown
from the original point clouds and are returned as these same types for
visualization. However, the difference here is that the “point cloud” is in the form
of evenly spaced points in the center of each voxel instead of scattered based on
individual LiDAR scans. Once the point clouds are processed and the grid cell
states have been determined, the grid is visualized.

I also took some time to understand the map_utils package, which made a
lot of calls to the log_odds probability of each cell associated with a point cloud
point. We wanted to convert what was originally a vector of float values into a
vector of structs that contained both the log-odds float values and uint8_t RGB
information. Since Logan and my pipelines have not yet been connected, I wrote
a constructor that would automatically set the color of any new instance that was
created. After creating this and trying to compile, I then discovered a lot of places
where there were issues with the new struct in place.

A lot of the modifications I made were based on the error output, mainly
making sure that any function that tried to access a log-odds was accessing it
correctly in the struct. There was also some small issues converting from
sensor_msgs::PointCloud to pcl::PointCloud, and the reason we went with the pcl
library was because it was able to handle RGB and was more user-friendly than
sensor_msgs::PointCloud2. Converting between the two was not a trivial task; the
structure of pcl::PointCloud was slightly different, requiring me to include some
new libraries to handle the sensor_msgs header and removing any references to
“channels,” which did not exist for the pcl::PointCloud type. Additionally, using
pcl briefly introduced me to templating, where I learned pcl::PointCloud used a
templating paramater, struct PointXYZRGB, that determined what type of point it
held. The struct had an RGB member that needed to be of type uint32_t, so this
also required conversion from uint8_t.

In the end, I ended up making changes to header files in three different
packages: dense_voxel_map for initializing an RGB occupancy grid publisher
node and visualizing it; map_utils for the new struct, point cloud type
conversions, and log-odds accessibilility; and the information_utils package
which also accessed log-odds probabilities of cells. The output of this
visualization can be seen in Figure 1 below. All the cells are colorized randomly

so as to show that the cells are capable of taking on any color. A video of the
occupancy grid map populating the simulation environment can be found at:
https://youtu.be/RK0FCifyR44.

Challenges

The challenges this week were all related to learning and understanding
the code. For example, originally, I did not understand the purpose of creating
different functions for different point clouds, such the functions toPointCloud,
toUnknownPointCloud, and toIncrementalPointCloud. I also was not sure how to
handle resizing of a struct and got stuck trying to interpret the documentation
when I looked it up. There were also issues with using new libraries, where I had
to modify the CMakeLists and package.xml files. Luckily, I was able to get help
from Angad and my PhD advisor, Wennie Tabib, in resolving a lot of these issues.
In addition to their help with the exact problem, I tried to understand the issue as
much as I could by asking them additional questions so that I know what to do
and look for in the future if I ever encountered similar problems.

Teamwork

Logan Wan: Logan worked on bringing up the map_server so that it was capable
of using the RGB camera in simulation to extract color information corresponding
to points in the Velodyne point cloud.

Figure 1: Occupancy grid map with RGB-colored voxels.

https://youtu.be/RK0FCifyR44

Angad Sidhu: Angad worked on understanding the motion planning and
trajectory generation.

Maitreya Naik: Maitreya tuned the flight controller and worked on
understanding the motion planning and trajectory generation's architecture at a
high level.

Future Plans

I plan on working with Logan to combine our two pipelines and provide a
complete visualization of the simulated cave in correctly colorized voxel grid
map form. Afterwards, I will be working towards synchronizing the sensor
output – I paused on this because I was reassigned to work on map_utils.
Eventually I hope to work with Logan on visualization of a colorized dense voxel
map with previously bagged data from Lafarge.

