
Individual Lab Report 10

By Clare Cui

Team B: Arcus

Clare Cui

Maitreya Naik

Angad Sidhu

Logan Wan

6 April 2017

Individual Progress

Continuing with the visualization work I did for the last progress review,
my job over the past two weeks was to get the mapping and visualization
pipelines connected. Although I had originally said that I would be working on
observation synchronizer, this role was reassigned to Logan, who had been
working more with the sensor simulations. Logan took care of getting the
colorized point cloud points from the RGB camera information, so I started out by
pulling his work from the repository and following the chain of functions that
was called from sending a point cloud to the DenseVoxelMap package.

From my previous work, I had accomplished maybe 25% of the total work
that needed to be done to visualize everything. Logan's point cloud was
immediately published inside MapUpdater, but it needed to be fed into
DenseVoxelMap. To do this, I had to create another function to handle RGB color
information using sensor_msgs::PointCloud2 that would transform the point
cloud from the LiDAR frame to the body frame of the UAV. In fact, almost every
function that was used after sending the point cloud to DenseVoxelMap needed to
be rewritten to include RGB information, so I became very familiar with changing
sensor_msgs::PointCloud function calls to their equivalents in pcl::PointCloud and
converting to and from sensor_msgs::PointCloud2. The process of visualizing the
occupied point cloud in ROS involves transforming the point cloud into the global
frame, making sure it is within the bounds of the simulated environment,
updating the occupancy status of the grid voxels, and then publishing the
occupancy grid point cloud.

The occupancy grid map colorized with the RGB camera data can be seen
in Figure 1. As the UAV explores the space, the map gets updated with cells that
are seen as occupied. Since the camera has a limited field of view, colors are
assigned for a small subsection of the voxel grid map each time it is updated.
Occupied voxels that have not been viewed by the camera are a default white
color. It appears that this simulated UAV flies conservatively, staying within a
small area and not turning around to view the whole map, so only a few voxels
ever get colored. Additionally, it can be noticed that several of the colored voxels
are not actually conforming to the contours of the pit, particularly the dark green
voxels in the center of the image. The reason for this is due to hard-coding a
fabricated camera intrinsics matrix, which transforms the points away from
where they actually are. We will update this with a yaml file that has the correct
camera intrinsic parameters when we begin integrating what we have achieved
in simulation with real bagged data.

Challenges

I experienced significant challenges this week debugging issues with the
code. The easier problems to debug were the errors that the compiler gave, which
were usually due to syntax or improper use of a function. However, when I was
first able to successfully build the simulation stack, the drone disappeared after
flying for a brief moment, and I could not visualize any of the sensor topics. I
worked with Angad to see what was wrong, and we basically depended on print
statements to see where the simulation was breaking. There were two critical
parts that were preventing the simulation from running. One was that, in
pit_exploration_planner, I had mistakenly changed a subscriber from the
incremental_pointcloud topic to the occupied_RGB topic. This was a continuation
of the line of thought that everything needed to be changed to accommodate the
RGB cloud. However, this was unnecessary as the planner was just checking for
collisions at this stage and did not need any RGB color information. Additionally,
the RGB point cloud message was not the same type as the incremental point
cloud, so this was also causing an issue. After discovering this, we were able to
corner the next major issue, which was that I had been trying to send a point
cloud to the DenseVoxelMap inside a loop that was looping over individual
points. So, essentially, I had been trying to register extremely small point clouds
that were getting bigger iteratively, instead of just sending one large point cloud

Figure 1: Occupied dense voxel map in simulation created by a LiDAR
with RGB information from camera.

with all of the points. Once this was changed, I was able to get the simulation to
work once more fairly easily. From this experience, I learned that it is important
to know exactly what it is you are changing before you do anything with it –
which has been a challenge in and of itself for me as I have been getting
familiarized with C++ – and how to debug more efficiently.

Teamwork

Logan Wan: Logan worked on reading over and understanding the observation
synchronizer, synced up the sensor messages, and helped me with some of my
simulation issues when they first started.

Angad Sidhu: Angad determined the bug with the trajectory generator to be a
time synchronization issue and helped me greatly with the simulation issues I
was experiencing.

Maitreya Naik: Maitreya brought up the sandbox on the team laptop and
continued looking through code for the motion manager, trajectory generator,
and action library.

Future Plans

In the next two weeks, I am planning to work on getting mapping in Rviz up with
real bagged data. We are also hoping to go to Lafarge Quarry to collect more data
to help prepare for SVE. If I achieve mapping with bagged data, I will also try to
work on simulating column obstacles to test the trajectory generation.

