
Individual Lab Report 11

By Clare Cui

Team B: Arcus

Clare Cui

Maitreya Naik

Angad Sidhu

Logan Wan

18 April 2017

Individual Progress

Last ILR, I had mentioned that I was hoping to get mapping and
visualization with bagged data and working on obstacles. After discussing with
the team a little more, Logan decided to take on the obstacle construction because
he had finished his efforts with observation synchronizer and was ready to work
on a new aspect of mapping. Ricky took on integrating real data with our
sandbox as there was actually a lot more involved in getting the data integrated
that I had originally thought. This change was for the best because, while I was
able to colorize voxels, there were still some issues with mapping to work
through and troubleshoot.

After initially getting the colored occupancy grid map visualized, it was
noted that a lot of white voxels were showing up erroneously and, additionally,
the colorized grid was not aligning with the contours of the actual map. Logan
had also hard-coded fake values for the camera intrinsics matrix and
transformation matrix. To begin, I used a parameter_utils package to extract the
camera intrinsics as well as the transformations for the camera and Velodyne to
the body frame from yaml files in the map_server package. I found a bug where
we were transforming from the Velodyne frame to the RGB frame but never
transforming back to the Velodyne frame, which was what the rest of the
mapping pipeline expected in order to transform the points into the world frame.

After finding these issues, there was also the issue where some random
white voxels would appear in the colorized set. Angad helped me realize that
there were some issues in map_utils, where I had forgotten to set the type of a
variable to be a float. Originally, it referenced a type that was “typedef'd” to a
float, which I modified to typedef to a struct instead. Interestingly enough, this
bug did not have any issues compiling, which was part of the reason it was
difficult to catch. After resolving this, we discovered that the Velodyne point
cloud was not transforming correctly to the camera frame. This was probably the
toughest item to debug since we were convinced that our math was right. This is
more fully documented in the next section, Challenges. After this, however, we
were finally able to visualize the colorized occupancy voxel map. The final map
can be seen in Figure 1 on the next page.

Challenges

A major challenge that I faced this week was the last few steps of getting
the Velodyne points properly transformed into the RGB camera frame, and I
worked with Angad to debug it. For awhile, we played around with the
transformations as well as the limits on the image frame. I was taking the inverse
of the Velodyne-body transformation and right-multiplying the camera-body
transformation to get a Velodyne point to the body frame and then to the camera
frame. I was also playing with the limits on the image plane, as it appeared that
the image plane was not properly centered or it was clipped for certain limits. To
get a better visualization, I made the Velodyne simulator projected point cloud
much more dense, so that I could see the exact pixel values that were being seen
by the camera and transformed from the Velodyne frame. An example of this is
seen in Figure 2 below. This definitely helped us make some more educated
guesses to troubleshoot the bug as we were able to exactly correlate the image
with the map itself, seeing how the points needed to be rotated or flipped and
approximately how much they were being displaced by.

Figure 1: Current state of the visualization pipeline. RGB voxels are accurately being
displayed in the occupancy grid map.

Eventually, Angad discovered that the transformation matrices were not being
multiplied correctly by looking at Wennie's (our PhD advisor) code for a similar
transformation. The transformation should have a left multiplication of the
inverse camera-body matrix to the velodyne-body matrix. Addiionally, we did
have to adjust the limits of the image frame, so some of the assumptions Logan
had made earlier were not correct. The rectified point cloud can be seen in Figure
3 overlaying the cave that is depicted in the image sent through the RGB camera
topic.

Figure 2: An incorrectly transformed Velodyne point cloud. The point cloud is
flipped across the lateral dimension and is rotated 90 degrees clockwise.
Making the point cloud denser helped us to see these differences clearly.

Figure 3: Corrected point cloud transform with corrected sensor limits.
This matches the RGB camera output.

Teamwork

Logan Wan: Logan worked on the obstacle simulations – columns that we can
import into our mapping for the navigation pipeline – and worked on getting the
UAV running with the sandbox.

Angad Sidhu: Angad helped me debug some of the mapping errors and worked
on integrating bagged data with the sandbox using OpenCV. He also integrated
the SLAM pipeline into sandbox and wrote a test script to visualize mapping with
the ground truth compared to SLAM odometry.

Maitreya Naik: Maitreya worked on the trajectory planner and wrote the RRT
planner using utilities from the RASL code base, tested it in the sandbox, and
covered most edge cases. He also wrote test script for a dummy example for
reviewing by our advisor.

Future Plans

For SVE, I plan on resolving any last issues with the mapping. There are some
extraneous black voxels that do not belong in the map, so those need to be
removed, possibly by modifying and implementing a preexisting Velodyne
trimming function. Additionally, I need to publish a point cloud that only shows
occupied voxels that are also colored. Currently, the pipeline does not distinguish
between the two, and, once the cell is shown as occupied, it turns white, which
ruins the corrupts the true visualization.

