

ILR11: Progress Review 12

Maitreya Naik

Team B: Arcus

Teammates: Logan Wan, Clare Cui, Angad Sidhu

ILR10

Apr. 18, 2016

1. Individual Progress
Since the last progress review, I was responsible for developing and testing a Rapidly-exploring

Random Tree [1] Planner with straight line trajectories for autonomous navigation.

1.1. High-level RRT Planner placement

The first step to programming a planner in an existing code base was to figure out what types of

inputs to send, what the backbone structure would look like and how it would interface with

the system. For our case, this high-level structure is shown in Figure 1. For reference, our

system functional architecture is shown in Figure 2. The RRT Planner sits in the “Find

Trajectory” part of the Autonomy block.

Figure 1: High-level RRT planning architecture

Figure 2: Arcus Functional Architecture

As displayed, the planner should take the current state of the drone as the starting point, get

the obstacle point cloud or occupancy grid from the map generator and the goal to plan toward

from the Ground Control Station UI. The importance of this was to understand how to interface

it in the 40+ package code base from RASL. Having this high-level architecture in place, I could

move on to the backbone development for RRT Planning.

1.2. RRT Backbone

The RRT backbone in C++ comprises of using a structure to define the RRT Tree – consisting of

the state of the robot, a KD tree of states – each representing a vertex, a dynamic array of

vertice, and a dictionary of edges. The actual planning then expands this RRT Tree starting from

the start robot state to the goal state, while avoiding obstacles by referring to the obstacle

point cloud or occupancy grid.

The state of the robot is defined by the x, y, z, and yaw of the drone, and 2 orders of

differentiations of each of these. However, I only plan for the first 3 dimensions and keep the

other values zero by default. I used a state structure from one of the existing packages,

‘control_arch_utils’ in the RASL [2] code base, developed by Vishnu Desaraju [3]. I forked and

appended the package to enable initialization with zero (through a constructor), and basic

arithmetic and comparison operations with objects of the same structure type or with a

standard C++ data type like int, float or double. The structure of the RRT Planner and RRT Tree

is shown in Figure 3.

Figure 3: RRT Planner Description

Once the backbone was in place, it was simple to apply the RRT algorithm using the RRT Planner

class and its member functions. We use the RRTPlanner::GetWaypoints function to do a sanity

check on the start and goal state provided before beginning to plan. If the plan succeeds, we

receive a vector of waypoints to reach the goal from the start. If the plan fails, we just get a

one-element vector with the start state as a member.

If the plan succeeds, we can reduce the generated vector of states by using the

RRTPlanner::ShortenPath function. Once the path is shortened, we visualize the trajectory in

simulation and send the waypoint one after the other to the flight controller. We send a new

waypoint if the drone is in hover mode and hasn’t reached the goal state or if a new goal is

assigned while the drone is in tracking or hover mode. A video of the planner working in

simulation can be found at: https://goo.gl/J6tH3D

Some images of the simulation are attached in Figure 4.

Figure 4: Snapshots of the simulation with the goal defined by the green sphere, and the drone

in red

2. Challenges
The biggest challenge was scouring the RASL codebase for an existing structure to define the

state of the robot, followed by making decisions on using existing tools for purposes like

searching for the nearest vertex. As is noticeable, the RRT Tree and the occupancy data

structure are both K-D trees. This is because K-D trees are best for searching algorithms with

time complexity O(log n) rather than sequential sampling search or binary search which is O(n).

This enables RRT planning, waypoint generation and shortening in less than a second

(depending on planning and shortening time limits) for a volume of 15x15x2m.

3. Teamwork
Clare and Logan finished the colorization of the occupancy grid with assistance from Angad.

Logan added virtual obstacles to the map (currently cylinders) and continued valuable project

management. Angad took care of camera intrinsic calibration and made comparisons between

BLAM mapping and Vicon state estimate integrated mapping.

4. Plan
I will be focusing on testing the navigation pipe on the small quadrotor, followed by testing

basic line tracking, and finally tracking RRT waypoints. Upon accomplishing these, I will be

interfacing the big hexrotor with the working trajectory generation code and finish additions to

the autonomy stack.

References

[1] S. Lavalle, "Rapidly-Exploring Random Trees: A New Tool for Path Planning," Department of

Computer Science, Iowa State University, Ames, 1998.

https://goo.gl/J6tH3D

[2] C. Robust Adaptive Systems Lab, "Robust Adaptive Systems Lab, CMU," [Online]. Available:

http://rasl.ri.cmu.edu/.

[3] V. Desaraju. [Online]. Available: http://www.cs.cmu.edu/~vdesaraj/.

[4] "Moses Bangura," [Online]. Available:

http://www.ri.cmu.edu/person.html?person_id=4504.

[5] H. C. Ltd, "Hard Kernel ODroid," [Online]. Available:

http://www.hardkernel.com/main/main.php.

