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1 Abstracts  
Team PLAID’s objective is to develop an autonomous robot that can pick various objects              

in a warehouse environment. The system was designed to pick up at least 12 items from a shelf                  
and drop them inside designated target totes, within 15 minutes. The system must also report the                
items picked.  
 

Picking is the last remaining link to be automated in an Amazon warehouse. After 2009,               
Kiva robots changed the face of Amazon warehousing, moving shelves to workers without             
human intervention. However, manpower is needed in order to pick items and to place them in                
the designated box with reference to work order. With our robot, the cost of operation in a                 
warehouse can be reduced.  

 
This project is a continuation of a previous project completed by last year’s team HARP               

which competed in the 2016 Amazon Picking Challenge. However, there is very little carryover              
in terms of reused hardware or code. This year’s competition includes items that are more               
challenging to grasp and identify. Moreover, this is the first year that Amazon is allowing               
participants to design and use their own shelving system which warranted large system             
re-designs. 
 

Throughout the project, Team PLAID focused on tackling challenges faced by           
autonomous picking system such as accuracy and speed of picking items. Functional and             
nonfunctional requirements and milestones were based on the Amazon Robotics Challenge rules.            
Major subsystems were perception, grasping, planning, and storage system. This report will            
cover system description, project management, risk and testing performance.  
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2 Project Description 
 

The system should be capable of identifying, localizing, grasping, and transporting items            
from a shelf unit to one of three desired storage totes. This system design is based off of work                   
from the Fall 2016 semester, and incorporates an actuated framing and shelf system, as well as                
multiple vision sensors, in conjunction with a robotic arm which utilizes an end effector and               
grasper. Due to the project’s reliance on the continual rollout of information for this year’s               
Amazon Robotics Challenge, the schedule for tasks have been chosen such that as much of the                
system can be completed in separate identifiable stages as possible with present information in              
mind.  

 
To meet the functional and nonfunctional requirements of the picking challenge, the team             

focused on accurate item classification, efficient motion planning, robust grasping and           
customized storage system. These are also the bottlenecks fully automate warehouse material            
handling jobs. Amazon warehouse is currently semi-automated by having Kiva Pods that bring             
shelves to people for picking items on the work orders. To automate the picking part, the robotic                 
picking system needs to handle the issues of accuracy and speed for picking wide range of items                 
in limited time.  

 
The final goal is to establish and implement the full working system with all hardware               

installed and controlled by April 26th 2017, in conjunction with the Spring Validation             
Experiment.Amazon Robotics Challenge rules for picking task was the major design requirement            
for the system. The SVE goal used the same 15 min time frame, known itemset, workcell layout,                 
hardware design restriction, work order file specified by 2017 ARC. The competition will have              
known items and unknown items which would be released 30 mins before the competition and               
was out of scope for the MRSD project.  

 
 
3 Use case  

 
Joe Schmoe is the owner of a large ecommerce corporation. He is having trouble              

competing with other companies and is looking for a way to reduce the recurring cost of his                 
warehouses. 

 
Joe decides to purchase a PLAID robot in order to reduce the cost of labor at his                 

warehouse. Joe assigns a technician to setup the robot. The technician clears the robot’s              
workspace, and Joe instructs his employees not to enter the robot’s workspace while it is               
working. The technician also makes sure that there is adequate lighting around the robot. In the                
course of about one half hour, Joe’s technician has connected the robot to the warehouse server                
and power. The robot is ready for picking and stowing. 

 
Shelves are placed in front of the robot and the warehouse server orders the robot to pick                 

or stow various items. The robot accepts this order and picks the appropriate item without any                
human intervention. For picking, the robot will search the specified bin for the desired item and                
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move items that may be occluding the desired item. Once the item is located, the robot will grasp                  
the item and place it in a tote that is mounted on the robot. After picking, the robot will update                    
the warehouse server with the new location of any item that has been moved. 

 
When Joe decides it is time for maintenance, he can instruct the robot to return to the                 

home position and execute a complete stop. 
 
The efficiency of Joe’s warehouse has been increased, which will help him save money              

and compete with other companies. 
 

The use case of automated picking system helping ecommerce owner is depicted in             
Figure 1.  

 
Figure 1. Use case  

 
 
4. System Level Requirements 
 
4.1 Performance Requirements  

The performance requirements (Table 1) for this project have been determined in            
accordance with the goal of creating a competitive pick and stow robotic system for the 2017                
Amazon Picking Challenge. Requirements relating to environment dimensions, object weight,          
picking speed and item types have been set based off the competition rules and the item list (seen                  
in Appendix A) provided by Amazon for the 2017 Challenge [1]. Video recordings of picking               
runs from the four teams who competed last year have served as a metric for competitive                
performance. The overall performance of last year’s HARP team has been reviewed as well,              
which has laid the foundation for this continuing project [3]. 

 
Table 1. Performance requirements with descriptions  

M.P.1 Interpret pick object orders with 100% accuracy 

Description Amazon provides a JSON file listing items in each bin in the starting state and the final                 
state 

 

M.P.2 Achieve at least 12 successful picks within a 15 minute time frame 
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Description This metric was developed by reviewing the scores and test run footage of the top 4 teams                 
from last year, combining with the ARC rules[1,3]. 

 

M.P.3 Drop no more than 1 item for every 6 items successfully picked inside of a test run 

D.P.3 Drop 0 items inside of a test run 

Description Similar to M.P.2 this metric comes from review of successful teams from last year’s              
challenge, and refers both to grasping failures and to any items knocked from the shelf by                
our system within a test run. 

 

M.P.4 Store and pick items from no less than 2 and no more than 10 bins, which occupy a 125cm                   
x 5000 cm2 (height x floorspace) or smaller volume 

Description These measurements are inherent to the competition environment and rules as outlined by             
Amazon[1].  

 

M.P.5 Capable of lifting items weighing up to 2kg 

Description This weight reflects the heaviest object in this year’s item list 

 

M.P.6 Generate a JSON file which reports locations for items still within the shelf bins with               
100% accuracy 

Description Amazon has placed hefty score penalties on misreporting item locations. This must be             
avoided for the outlined system in order to stay competitive. The system will not be               
expected to accurately report the location of any objects which have fallen to the floor. 

 

M.P.7 Autonomously identify 95% of non-occluded items within a shelf bin 

Description Accuracy for the identification of occluded items will drop as the amount of occlusion              
increases. 

 

M.P.8 System grasper capable of gripping and maintaining its hold on 90% of competition items 

D.P.8 System grasper capable of gripping and maintaining its hold on 100% of competition             
items 

Description It is necessary that the chosen gripper can maximize the amount of retrievable items for               
the system to choose from within a test run. 

 

M.P.9 Drop picked items into the order bin from a height of no more than .3m from the bottom                  
surface of the order bin 

Description Amazon gives points deduction for dropping items above .3m in 2016 rule [2] 
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M.P.10 Minimize path planning computation time to less than 2 seconds per path 

Description This is based on the number of items need to be picked specified by Amazon 

 
4.2 Non-functional Requirements 

The non-functional requirements (Table 2) for this project have been determined by the             
2017 Amazon Picking Challenge rules, as well as by the MRSD course requirements and by the                
logistics involved in participating in the competition. 

 
Table 2. Non-functional requirements  

M.N.1 Cost no more than $5000 

Description Requirement set by MRSD program budget. This cost excludes contributions from our            
sponsor SBPL. 

 

M.N.2 Be reliably assembled/disassembled and transportable through conventional mailing        
services to the competition location 

Description Accompanied travel by plane is unacceptable due to the likelihood of the TSA tampering              
with system components. Specialty mail services should be avoided due to budget            
constraints. 

 

M.N.3 Adapt to small variations of lighting conditions  

Description Amazon allows for team to customize the storage system this year, so we can design our                
customer lighting and shield out ambient light. However, the system still needs to be              
robust to a small range of lighting scenarios in order to account for the possibility of this                 
being a repeat issue.  

 

M.N.4 The entire system must be compact and fit within a 2.5 m x 2.5 m work area 

Description This requirement is laid out by Amazon in the competition rules. 

 

M.N.5 The system must have a reliable emergency stop 

Description This requirement is laid out in the competition rules. This is also necessary as a more                
general requirement to maintain team safety and to refrain from damaging equipment. 

 

M.N.6 Perform all requirements without damaging items 

Description This requirement is laid out in the competition rules.  
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M.N.7 The system hardware needs to be modular  

Description This allows easier fix if certain parts were damaged during shipment or test runs 

 
 
5. Functional Architecture  
 

In order to successfully meet the performance and non-functional requirements, the           
functional architecture will be composed of input handling, shelf, perception, path planning and             
grasping subsystems as shown in Figure 2.  

 
Figure 2. Functional Architecture 

 
At the beginning of a full system run, the state machine will instruct the shelf subsystem                

to execute a fold out. At the end of the run, the shelf sub system will interrupt any ongoing                   
processes to execute a fold in, in order to end the competition run in the work volume.  
 

To begin a task, the user will input a work order file containing the items to be picked. At                   
the end, of the run an item report will be generated, with the locations of all the items in the shelf                     
and cardboard boxes. The input handling system will handle all status and update commands to               
the work orders in a service format. 

 
At the same time the perception subsystem will identify and localize the items in all bins.                

The perception subsystem localizes totes and segments their contents. The subsystem then            
classifies and localizes each item in a bin. The perception subsystem offers all the              
aforementioned capabilities in a service format.  

 
Based on the confidence score from the perception subsystem, the “pickability” of the             

item and other factors, a target item is selected by the decision maker in the grasping sub                 
system. Grasps are generated for the target item, an optimal grasp selected and a path to the                 
target item will be generated. The grasping subsystem will also monitor the end effector after               
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planning to a location to ensure that the item is attached to the gripper, in order to plan to the                    
drop off location as well as monitor the seal status intermittently for fault tolerance. 
 

The end effector follows the path and moves to the grasp location on the item. Then the                 
end effector will grasp the item, move to tote, and place the item in the tote safely. The planning                   
subsystem uses prep poses as waypoints for the plans. 
 

After picking each item, the robot will check if it has finished the item list or it is the end                    
of competition time. If neither is true, the robot will repeat the process. Otherwise, the robot will                 
report to user which items it has picked.  

 
Specifics of the architecture have evolved, for example the decision maker that selects the              

target item is implemented as part of the grasping subsystem. However, the overall flow of the                
system remains the same. 
 
 
6. System-level trade studies 
 

The previous year’s team built a successful foundation using the UR5, and the UR10 is               
can be easily integratable into the existing foundational work while extending reach capabilities             
of the robot in a beneficial manner. Thus, a trade study of the robotic platform has been omitted.                  
Efforts are instead being focused on grasping, planning, and perception, the trade studies of              
which are the focus of this section. 
 
6.1 Grasping  

Two-finger grippers and suction mechanisms have been the primary methodologies used           
by past teams. Successful suction mechanisms have to date been able to handle the large majority                
of the APC’s object list, with two-finger gripper strategies being able to pick select objects that                
are difficult for suction mechanisms, such as the perforated pencil holder[x]. In last year’s              
competition three of the four top teams employed both two-finger and suction gripping strategies              
[4], with two teams using an integrated gripper and the third having separate robotic platforms               
for the suction and two-finger grippers respectively. The trade study in Table 3 shows the               
integrated gripper to be the most attractive option for this project, which if properly implemented               
should be capable of picking the entire item list. Separate robotic arms for each gripper appears                
to be equally viable from a competitive standpoint but is a harder system to implement from a                 
planning perspective and would likely be outside of the target budget to construct. Examples of               
grasping mechanisms can be seen in Appendix B [6]. 
 
Table 3. Grasping trade study  
Decision Criteria Weight Factor Suction Two-finger Separate Arms Integrated 

Weight capability 0.1 4 5 5 5 

Lifts big items 0.2 4 5 5 5 

Lifts small items 0.2 5 3 5 5 
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Lifts amorphous items 0.1 3 3 4 4 

Lifts perforated items 0.1 1 4 4 4 

Budget and 
implementation 0.2 5 4 1 3 

 Total 1.0 4.0 4.0 4.0 4.4 

 
6.2 Path Planning 

This trade study evaluates two types of bases and the addition of a prismatic joint in                
terms of how these platforms will affect planning. The three main options are a static base, a                 
mobile base with one degree of freedom, and a prismatic joint that could be added on the end of                   
the robotic arm. The most important factor in this decision is how the system will affect the                 
configuration space of the robot. The speed that each system offers in terms of planning and                
movement time is also an important factor. Other factors are the ease with which the system can                 
be built and the cost associated with building these systems. Table 4 shows how each of the                 
proposed systems compare to each other. 

 
Table 4. Path Planning Trade Study 

Criteria Weight Static Base  RTU(sliding base) Prismatic Joint 

Configuration Space 0.4 2 4.5 3.5 

Speed 0.3 3 4 4 

Ease of Construction 0.2 4 2 2 

Cost 0.1 3 2 2.5 

Total 1.0 2.8 3.5 3.2 

 
The mobile base is the best choice primarily due to the large increase in configuration               

space that it offers. The results of some preliminary tests on the effect of a mobile base reveal                  
that the increase in configuration space is significant. While no test has been performed on a                
prismatic joint yet, it seems that the additional bulkiness near the end effector may slightly               
reduce the additional configuration space that the joint brings. Further simulation can help             
determine this. 
  
6.3 Perception  

The perception system was to be based on cameras with both RGB and depth sensing               
capabilities. Three main categories of perception systems were considered, as shown in Table 5.              
The first was a single RGBD camera, which is easy to implement but has limited performance.                
The second choice was the fusion of images and point clouds from multiple views. The images                
can be taken by one single camera at different locations or multiple cameras at different               
locations. This choice offers better performance since more data is available for a single item.  
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The RGBD cameras tested were-Intel RealSense, Microsoft Kinect V2.0, and Asus Xtion            
Pro Live during various iterations of our design. The RealSense camera did not have a stable                
driver and had poor ROS support. The Kinect had stability issues and its aspect ratio was too                 
large. We chose to use the Asus Xtion Pro Live as it overcame both of these difficulties.. 

  
Table 5. Perception Trade Study 
 Weight Single Camera Fusion Multiple Camera 
Accuracy 0.5 3 3 4 

Reliability 0.2 3 4 4 

Cost 0.1 4 3 1 

Ease of Implementation 0.2 4 1 1 

Sum 1 3.3 2.8 3.1 

 
For the Object Detection algorithms, two deep learning algorithms were considered:           

Faster RCNN and Fully Convolutional Neural Network (FCN). Both networks use RGB data as              
input and are extensible to depth images. The two major metrics used for comparison were               
percentage accuracy of pixels labelled and the centroid drift of the round truth vs the predicted                
item location. These metrics are shown in Figure 3, and the comparison result was shown in                
Table 6. FCN was chosen for its higher pixelwise accuracy as well as the suitability of the output                  
as an input for the grasping pipeline. 

 

 
 Figure 3. Neural Network metric to evaluate accuracy 

 
 
Table 6. Performance comparison between Faster RCNN and FCN 

 Drift/scale 
accuracy 

Occluded 
data 

False Positive Grasping point 
cloud 
segmentation 

Faster RCNN Inaccurate Fail Less Bounding Box 

FCN High IoU Robust More Pixelwise Labeling 
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7. Cyber Physical Architecture  

The Cyberphysical Architectures in Figures 4 and 5 separate the entire system into             
mechanical and software systems as well as delineating the three most important subsystems,             
grasping, perception and motion planning. 

    
Figure 4. Mechanical System Cyberphysical Architecture 

 
 
 
 

 
Figure 5. Software System Cyberphysical Architecture 

 

 
 

11 



 

 

7.1 Perception Subsystem 
7.1.1 Hardware 
The perception subsystem uses an Asus Xtion Pro Live in order to capture RGBD data. 

 
7.1.2 Software 
The perception system allows the robot to localize bins and to determine the pose and               

type of each item in a bin. The pose of the bin is determined using AR tags as an initial estimate                     
and fine tuning the transform using ICP. All point cloud manipulation tasks were done using               
PCL in ROS.  

 
Pixelwise item classification results were generated for all items in a bin using a Fully               

Convolutional Network in Caffe and interfaced with the system through a Python node . The               
JSON provides a prior for the classification results in order to eliminate false positives. 

 
7.2 Planning Subsystem  

7.2.1 Hardware 
The planning subsystem is comprised of the UR10 manipulator, a 1-DOF revolute end             
effector and the FESTO 1-DOF slider.  

 
7.2.2 Software 
The planning subsystem consists of the Move Arm server in ROS, an arduino serial node               

for the slider, and another arduino serial node for the 1 DOF suction link. The planners used by                  
the server are LARA* for in bin planning and EGWA* for planning outside bins, both of which                 
are implemented by the Search Based Planning Lab. All planning functionality was implemented             
in ROS. 

 
7.3 Grasping Subsystem 

7.3.1 Hardware 
The grasping subsystem consists of the custom 1-DOF suction end effector mounted on             

the UR10. 
 

7.3.2 Software 
The grasping subsystem consists of a decision maker, grasp planner, and grasping node.             

All point cloud manipulation algorithms including normal and curvature estimation were done            
using PCL in ROS. The grasp planner uses the MoveIt IKFast package to do inverse kinematics                
on the grasp poses.  
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8. System Description and Evaluation  
 
8.1 System/Subsystem Descriptions/Depictions  

8.1.1 System hardware 
The robotic arm being used for the system is a UR10. The arm uses a raised 1-DOF slider                  

in order to reach all bins. The suction gripper is installed and operational, utilizing a               
construction-job style shop vac for its flow generation. The suction gripper offers an extra degree               
of freedom with 90 degree rotational functionality. The shelf, which will eventually be             
constructed of aluminum and steel, is currently fabricated from wood and operational for this              
project’s purposes. The system is using a master-slave server setup, with 2 CPU’s and 4 GPU’s                
total. The entire system setup can be seen in Figure 6. 
 

 
Figure 6. System hardware  

 
8.1.2  Perception Subsystem  

The main vision task was to develop a vision system to localize given items inside the                
storage system. High precision on item identification and shelf localization was needed for             
grasping and point cloud segmentation. 

 
The system uses a FCN Classifier for item identification and localization. FCN proved             

itself to have a high accuracy in item identification, and provides the benefit of pixel-wise               
labeling which grants valuable information when dealing with occluded cases. The network was             
trained using images which contained between 1-20 instances of the known competition items.             
There is a total of 461 images and 4809 instances of items within those images. The images were                  
hand-labeled using the free online service LabelMe. The dataset was preprocessed from LabelMe             
polygons to standard PASCAL format, and split into training, validation, and test sets.  

 
At runtime the classifier assigns a label to each pixel in an RGB image. 
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Figure 7. FCN classification output after class filtering  

 
Class filtering and diffusive lighting conditions along with shading were applied to            

increase the item classification accuracy and robustness under varying lighting conditions.           
During competition every team will have access to the JSON file that indicates what items are                
where at the beginning of the task. If FCN labels some pixels as items that does not exist in the                    
bin, these labels are overwritten as background labels to eliminate false positives. Additionally,             
diffusive lighting was added to remove shadow and reduce reflection, and shades were added to               
remove ambient lighting. Figure 8 shows a comparison with and without diffusive lighting.  
 

 
Figure 8. Diffusive lighting before and after  

 
The perception subsystem includes camera calibration, bin localization, and point cloud           

segmentation capabilities. Asus camera intrinsics (focal length etc) and extrinsics          
(transformation between depth and RGB cameras) were calibrated using ROS camera calibration            
packages. AprilTags were used to get the transformation between the camera and the bins, so               
that a point cloud transformation in the world frame could be obtained. Point clouds were then                
segmented to remove anything outside of the bin. ICP was used to align a CAD model of the bin                   
with point cloud of the bin. Figure 9 shows the point cloud projected into the RVIZ scene before                  
alignment.  
 

              
Figure 9. Point Cloud and bin before alignment  
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8.1.3 Grasping  Subsystem  
Grasping items can be broken down into two categories: deformables and rigid objects             

(non-deformables).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Grasping subsystem Interactions 
 

For deformable items the 6-DOF pose will not be available. The grasping subsystem is              
structured as a grasping node that interfaces with the decision maker in the state machine. The                
decision maker chooses the target item. The grasping node fetches the segmented point cloud of               
the target item from the vision system and requests the grasp planner for gripper poses. The                
gripper planner preprocesses the point cloud, computes grasp poses and uses a number of metrics               
to assign priority to the poses. The grasping subsystem interactions are modeled in Figure 10.               
The pipeline for deformable grasping is shown in Figure 11. 

 
Figure 11. Deformable Grasping 
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Grasp points for rigid objects will be determined on an experimental basis. Each item will               

have a library of associated valid grasp points stored within the Grasping subsystem. Grasping              
will determine the physical locations of these grasp points within the bin geometrically, through              
use of the 6-DOF information provided by PERCH.  

 
In the case that an item has multiple valid grasp surfaces as shown in Figure 12, some                 

surfaces may be more preferable than others (perhaps one surface has a sticker that has the                
potential to be removed, or provides a better suction surface than another, etc.). Grasps will be                
sampled on all surfaces and ranked as in the non-deformable case. 

 
Figure 12. Rigid Body Grasping 

 
8.1.4 Planning  Subsystem 
Planning for the system utilizes the SBPL planner and Rviz. Two primary planners have              

been employed: EGWA* and LARA*. EGWA* is experience-graph-weighted-A*, and will be           
used for for repetitive motions such as moving to pre-grasp and camera poses. This planner               
works by caching successful trajectories for planning based off of Weighted A* . Once cached,               
these plans take substantially less processing time, and are “guaranteed” in a sense if they have                
been validated by hand before being cached. The main advantage of EGWA* for our system is                
the near perfect repeatability of the planner, which makes the system robust. LARA* will be               
primarily used to generate grasping plans in order to pick up objects. Due to the dynamic                
positioning of the objects in the bins, cached trajectories would not be useful. 
 

The planning scene was used to verify hardware designs before construction. This            
includes appropriate placing of bins and any obstructing hardware, as well as arm positioning              
and mounting. The planner acts in conjunction with other ROS nodes in order to control all DOF                 
for the system, including the linear slide rail and any actuators on the grasper.  

 
8.1.6 Shelf  Subsystem  
The shelving system design consists of 4 drawers, which are each divided into two bins.               

The drawers are stacked vertically, and the second and third bins can be moved outward. An                
outside frame which is unattached to the shelf attaches and actuates in order to move the drawers                 
into their different positions. The shelving system allows for the arm to have a top-down               
approach to each bin, including the bottom bin which now has an empty cavity above it where                 
the two middle drawers originally were. The frame also has the ability to provide support for any                 
tarps or other fabric and LED strips to control system lighting. Drawer movement will be               
actuated through the use of stepper motors, chains (with attachment hardware), hooks/forks, and             
leaf springs. The drawer will slide out on telescoping sliders attached to the shelf frame or it will                  
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move across roller casters attached to both the shelf and the actuated frame. A rough model of                 
the drawer actuation system utilizing rollers can be seen in Figures 13 and 14. 

 

 
↔ 

 
 

Figure 13. Shelf subsystem in Open and Closed States 
 
 

 
 

Figure 14. Rear(Left) and Front(Right) View of roller guide implementation of drawers 
 

The sprockets will rotate the chain counter-clockwise (looking at the front view) in order              
to engage the hook or fork to a pin which will be fastened within the hollow portion of the                   
drawer. As the chain continues to rotate the drawer will be pulled out. The system will rotate                 
clockwise in order to disengage the hook, and a leaf spring opposite the hook will begin to push                  
the drawer back into its original position. When the drawer is in its original position the leaf                 
spring will begin to flex, allowing for some leeway in the precision of the stepper motor control. 
 
8.2 Modeling, Analysis, Testing  
. 8.2.1 Planning Unit Test 

The primary benchmark set for planning was that grasping plans could be generated in              
less than two seconds. To an extent this is true. Most plans took roughly one quarter of a second                   
or less to plan at the time of SVE, but there is a constant delay of about three seconds caused by                     
post-processing (path smoothing and final collision checking). In the past this delay, has been              
reduced by simplifying the planning scene. The reason this issue remained for SVE is that it does                 
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not cause system failures, so it was never a high enough priority to merit concerted effort.                
Currently, we are working with SBPL to remove the collision checking of the finalized              
trajectory, since we believe it may be redundant. 

 
Other than that issue, planning is working correctly. The constraint to prevent hose             

tangling has worked without issue for the past month. Recent changes to the code governing the                
linear slider appear to be working, and there have been no failure events since position feedback                
was implemented. 

 
Unit testing for planning has two basic phases, simulation and real world. Whenever a              

change was made to planning software or the planning scene I would validate in simulation that                
all poses of interest were still reachable in a similar amount of time. After that I would move to                   
move to a physical test, the primary purpose of which was to make sure our hardware was being                  
modeled correctly and that our low level controls were functional. Figure 15 shows the              
simulation, which is where most of the planning unit testing occurs. 

 

 
Figure 15. The final planning scene 

 
8.2.2 Vision Unit Test and Analysis  
Shelf localization was tested by showing the coordinate frames in RVIZ and see if they               

overlap. A segmented Point cloud was also projected into the shelf to see if its segmented                
correctly.  
 

The external calibration was tested by showing a point cloud in RVIZ and looking at               
depth and RGB offset. 
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Neural Network performance was evaluated using a confusion matrix and pixelwise           
accuracy. Figure 16 is the confusion matrix, where each row stands for the ground truth class for                 
one pixel, and each column stands for what class that pixel was classified as. Brighter colors                
along the diagonal cells stand for a higher number of correct classifications. Bright cells off the                
diagonal indicate a higher chance of a misclassification, such as the scissors being misclassified              
as the table cloth. The confusion matrix was useful for ranking the difficulty of identifying               
different objects, and for avoiding placing objects that are easy to confuse with one another in                
the same bins.  

 
Figure 16. FCN confusion matrix(left), sample misclassification(right) 

 
The FCN net operated very well, identifying between 56% to 96% of pixels for all items, 

even in heavily occluded environments. Figure  17 shows pixelwise accuracy for the 40 classes. 

 
Figure 17. Pixelwise classification accuracy for FCN 
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8.2.3  Grasping Unit Test  
To unit test the grasping hardware, items were grasped manually using the suction             

gripper and other modes of grasping. Results were broken down by magnetic and high and low                
confidence suction as seen in Figure 18. Low-confidence suction reflects items that are graspable              
on very few sides or have unreliable holding, while high-confidence suction items produce a              
constant hold. The percentage of items pickable with the three modes are listed as well. 
 

 

 
Figure 18. Grasping Mode Feasibility and percentage confidences 

 
 
 
 
8.3 SVE Performance Evaluation  
 

Performance for the Spring-Validation Experiment was determined by comparing the          
event to the outlined Verification Criteria and the project’s Performance and Non-Functional            
Requirements. The Verification Criteria was as follows: 
 
1. Pick up at least 12 items and drop them inside their target totes within 15 minutes, dropping no                   
more than 2 items to the floor  
 
2. Drop items into the totes from no more than .3m from the bottom of the totes 
 
3. Generate an item report in the form of a JSON for the items remaining on the shelf, with 100%                    
accuracy for item bin locations (excluding any dropped items) 
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At the SVE encore demo, we met the Verification Criteria number 2. For Criteria 1, we                
picked 1 item per bin and successfully dropped them in their target totes. Overall the system                
successfully picked 4 out of 4 items specified in a total of 6 minutes. No items were dropped to                   
floor during this process. For Criteria 3, the system accurately reported 3 out of 4 of the items in                   
the output JSON file. Evaluations of the system performance against the Performance            
requirements can be seen in Table 7. 
 
Table 7. Performance against requirements 

M.P.1 Interpret pick object orders with 100% accuracy 

Performance 
Evaluation 

This requirement was met. The system only attempted to pick items which were outlined in               
the JSON file. 

 

M.P.2 Achieve at least 12 successful picks within a 15 minute time frame 

Performance 
Evaluation 

The system was able to pick 4 items within a 6 minute time frame. A memory leak                 
prevented further picks. Extrapolating this would result in roughly 18 minutes for a 12 pick               
run. 

 

M.P.3 Drop no more than 1 item for every 6 items successfully picked inside of a test run 

Performance 
Evaluation 

For the 4 items picked the system dropped 0 items. 

 

M.P.4 Store and pick items from no less than 2 and no more than 10 bins, which occupy a 125cm                   
x 5000 cm2 (height x floorspace) or smaller volume 

Performance 
Evaluation 

The system picked from 8 bins. The bins were part of a wooden mockup resembling the                
final system design in its unfolded configuration, with the inner footprint meeting this             
metric. 

 

M.P.5 Capable of lifting items weighing up to 2kg 

Performance 
Evaluation 

Unit testing found that this was possible with our suction gripper, however none of the               
competition items which approached this weight were pickable due to other shape/form            
constraints, so this was not evaluated during the SVE demonstration. 

 

M.P.6 Generate a JSON file which reports locations for items still within the shelf bins with               
100% accuracy 

Performance 
Evaluation 

The JSON file accurately reflected 3 of the 4 picked items. The failure on the 4th item                 
was due to a faulty pressure reading on the system vacuum. 
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M.P.7 Autonomously identify 95% of non-occluded items within a shelf bin 

Performance 
Evaluation 

The system accurately identified all items within the shelf regardless of occlusion,            
correctly labeling 50% or more of each item’s pixels. 

 

M.P.8 System grasper capable of gripping and maintaining its hold on 90% of competition items 

Performance 
Evaluation 

The current suction grasper is capable of holding 77%-92% of competition items,            
depending on the available surfaces in the top-down orientation (see the Grasping            
Unit-Test section above). 

 

M.P.9 Drop picked items into the order bin from a height of no more than .3m from the bottom                  
surface of the order bin 

Performance 
Evaluation 

All items were dropped at a height lower than .3m. 

 

M.P.10 Minimize path planning computation time to less than 2 seconds per path 

Performance 
Evaluation 

Path planning computation time varied between .2 and 3 seconds, with computation time             
averaging about .5 seconds overall. 

 
The system met all mandatory non-functional requirements, with some caveats for numbers 2             
and 3, which reference ease of reassembly and invariance to lighting conditions. The anticipated              
system design will allow for ease of reassembly, being composed of mostly 80/20 struts which               
will only require an allen wrench set and a few hours of work to reconstruct. Our current system                  
does show light invariance to ambient light, but future work is needed to make our shading                
system transportable. 
8.4 Strong/weak points 

 
8.4.1 Strong points 
The planning system has demonstrated robust consistent use of experience graphs and            

path constraints. This has allowed for much faster and safer generation of pose configuration and               
path executions during testing and system runs. 
 
The perception system has demonstrated that it can accurately identify every item within heavily              
occluded configurations (20+ items), correctly labeling between 50-95% of each item’s pixels.            
This consistent high accuracy in classification has been paramount in system success. 
 
Pose generation for grasping is easily configurable, with clear layouts for weighting of features              
such as centroid, point cloud height, etc. This configurability has made testing and             
troubleshooting for system runs very fast and informative. 
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The current state machine design cleanly separates the system logic on a drawer-to-drawer and              
bin-to-bin basis. This separation allows for consistent patterned strategies for item picking and             
greatly simplifies the overall system logic. 
 

8.4.2 Weak points 
The extrinsic calibration between the RGB and Depth portions of the system camera are              

inaccurate by marginal but relevant amounts. This occasionally results in grasping pose            
generation locations on the bin walls or floors which miss the target item. 
 
The current wooden shelf system causes multiple collision and calibration issues. Small physical             
interactions between the arm and the shelf, or individuals and the shelf as they place and remove                 
items, can cause very small movements of the shelving system which then affect calibration to               
the planning scene and produce errors in collision modeling. 
 
The arm is currently sensitive to hitting hard torque limits based on the implemented end effector                
design. This is a product of the end effector weight and length. Currently the design is mostly                 
composed of aluminum, which can be replaced with lighter plastics, and is potentially 1-4 inches               
longer than it needs to be to still keep optimal system performance. 
 
The current feedback method of pressure-sensing based on measurements from the system            
vacuum has many problems. First, there is an inherent time delay required to get accurate               
readings because of the length of the vacuum hosing and the time it takes to see pressure                 
differences. Second, the readings are inconsistent and change based off of ambient conditions             
such as temperature and weather, resulting in misclassifications. 
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9. Project Management 
9.1 Schedule 

9.1.1 Project Milestones 
Project milestones for the fall and spring semesters are listed in Table 8, and were set in                 

line to accomplish the Amazon Picking Challenge requirements. The fall schedule is based on              
what each subsystem needed to achieve in order to deliver a fall validation demo. The Amazon                
Picking Challenge rule for 2017 came out in late January, so the system was originally designed                
based on last year’s rules during the fall and was adjusted to the new rules in the spring. Table 8                    
is an abbreviated version of the major milestones for Spring 2017.  

 
Table 8. Major milestones for Spring 2017 
Milestones Progress Review 

MVP (non-actuated) PR 8 

Deformable Grasping, Localization PR 9 

Systems Control Test, Non-deformable Grasping PR 10 

Gripper and JSON Tests PR 11 

System Hardware PR 12 

MVP testing SVE 

MVP for all 4 bins SVE encore 
 
 
9.1.2 Team responsibilities 
Michael Beck’s primary responsibility was team management. His secondary         

responsibilities were hardware design and fabrication for the overall project.  
 
Akshay Bhagat’s responsibilities covered camera calibration, perception, grasping and         

fabrication.  
 
Matt Lauer’s primarily responsibility was management for the planning system of the            

project as well the electronics.  
 
Che-Yen Lu was in charge of the system’s software architecture, as well as bin              

localization. 
 
Jin Zhu was in charge of training the vision systems, and assisting Michael with project               

management. 
 
9.1.3 Successes and failures in schedule  
In the Fall 2016 semester, the team wasn’t familiar enough with the tasks involved with               

this project and was weak in project management, and the schedule wasn’t followed well and we                
were behind in progress. We used the winter to catch up with the schedule and made better use                  
of our time in the Spring semester. This schedule was better planned and followed during the                
Spring 2017 semester, after all the teammates had developed better understanding of the tasks,              
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and became more prepared for their tasks after the first semester of work on the project, and                 
dedicated teammates to project management. The first three months in Spring 2017 we used              
Trello to assign tasks to individual teammates, and the last month switched to Google sheets for                
easier tracking of issue logs.  
 
9.2 Budget 

The budget was kept within the $5000 limit, excluding the sponsorship from SBPL. Also,              
Universal Robots lent us a UR10. The BOM budget is referenced in the Table 9. 
 
Table 9. Estimated Budget 

Parts Supplier Quant. Price Supplier Notes 

Grasping:Total Cost:$0 

1 Arduino Nano 2 $0 Amazon Slider, Vac Control 

2 Suction Cup 2 $0 HARP(Anver) ROC:$70 

3 ShopVac 9633400 1 $0 HARP ROC:$40 

4 Pneumatic Tubing 1 $0 McMaster ROC:$20 

6 Aluminium C Channel 1m $0 McMaster ROC:$40 

7 Shoulder Bolts, Bushes assorted $0 McMaster    ROC:$100 

8 Firgelli L16 Linear Actuator 1 $0 MRSD Lab ROC:0$ 

Planning:Total Cost:$3572 

1 UR10 1 $0 Universal Robots 
Robot Manipulator 

ROC:$60,000 

2 
FESTO 
EGC-120-1000-TB-KF-0H-GV 1 $2622 RAF Automation Linear Actuated Slider 

3 Slider Base 80/20 1 $750 INTEK Al Profile Struct, 80/20 

4 Slider Controller 1 $200 RAF Automation FESTO 

Perception:Total Cost:$300 

1 ASUS Xtion Pro Live 1 $0 MRSD  RGBD cam, ROC:$150 

2 LED Light 1 $0 Amazon ROC:$100 

3 Intel RealSense 2 $300 Intel Dev RGBD Cam 

System Control:Total Cost:$819 

1 Rosewill RSV-R4000 - 4U  1 $789 Amazon Server Rack 

2 GPUs-2x TITAN,1x980 1 $0 MRSD ROC:$6000 

3 NetGear GS105NA 1 $30 Amazon Fast Ethernet Switch 

Shelf:Total Cost:$200 

1 Water Jet Cutting 1 $200 NREC Manufacturing 

Full System Cost:Total Cost:$4891 
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Our budgeting process was dynamic. Due to the novel nature of the competition, and the               
funding from our sponsor, we continuously evaluated new additions to the system. However, we              
managed to budget initially for all of the components required as part of our SVE demonstration.                
Aspects in the scope of the competition were funded through SBPL lab as well as Prof. Dolan. 
 

Parts selection was done thoroughly before any purchases. However, there were multiple            
people handling procurement which at times made it hard to keep track of expenses. 
 
9.3 Risk management  

Major risks for the system were in the area of perception, grasping and budget. The               
details are in Table 10.  
 
Table 10. Risk Identification and Status 

Risk Title Description Consequence Risk Type Mitigation 

 
1-DOF gripper 
tested 2017 
items 

APC 2017 items are 
significantly different 
requiring novel gripper 
design and testing, not 
realizable in time window 

Use default gripper 
for Project 

Blacklisted Items 

Technical, 
schedule, project 

1. 1-DOF gripper tested 
on items 
and feasibility 
characterized 

Generic Item 
List 

Scope of generic items too 
large to implement 

Blacklist generic 
items 

Not competitive in 
APC 2017 

Technical, 
schedule, cost, 

project 

1. Get MSCV team on 
board 

System Cost 
Over MRSD 
Budget 

System cost to be 
competitive in APC 
requires custom shelf 
design 

Not competitive in 
APC 2017 

Technical, 
schedule, cost, 

project 

1. Cut Cost: Make 
passive shelf system 
2. Funding from SBPL, 
Prof. Dolan 

PERCH 
Integration with 
the system 

PERCH is being modified 
by the SBPL lab to fit the 
needs of this competition. 
This may not be 
accomplished in time. 

Heavy reliance on 
depth image 

CNN for unknown 
items 

Technical, 
schedule, cost, 

project 

1. Integrate PERCH with 
help from SBPL 

Aluminum shelf 
fabrication 

Fabrication of the shelf not 
feasible in time window 

Use non actuated 
shelf 

Not Competitive 
APC 2017 

Technical, 
schedule, cost, 

project 

1. Use the bottom and 
top drawers 

Intel 
RealSense 
ROS driver 

Unstable ROS driver, poor 
point Cloud quality Change of sensor 

Technical, 
schedule, cost, 

project 

1. Run earlier version of 
pipeline 
using Kinect V2.0 
2. Pivot to Asus Xtion 
Pro Live for 
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smaller aspect ratio 

Platform 
Availability 

No platform available for 
project Project Failure 

Technical, 
schedule, cost, 

project 

1. Request UR5 from 
NREC 
2. Request sponsorship 
from UR10 

Unpickable 
Items using 
1-DOF 
Gripper 

Substantial number of 
APC 2017 
items have low suction 
confidence 

Blacklisted items 
Not Competitive in 

APC 2017 

Technical, 
schedule, cost, 

project 

1. Add other gripping 
modalities like magnetic 
2. Add swap out gripper 
mechanism 

 
 
 
10. Conclusions 
10.1 Lessons learned 

10.1.1 Technical  
One lesson learned was to prototype first and then refine. For example, the mounting for               

the end effector was 3D printed with high filling at first, and it turned out to have a scale error. It                     
would have saved more time and material to 3D print with low filling first and make sure the                  
prototype fits before doing it with a high filling.  
 

Maintaining proper use of Github and version control on code is also an important lesson               
we learned. There were many times that code wasn’t backed up and we spent extra time to                 
rewrite the code. We also had a computer failure this semester and had to reinstall everything on                 
the computer, but luckily the hard drive was still accessible.  
 

Taking the time to develop robust easy user interfaces and create good documentation for              
code was helpful when running a system with code written and maintained by so many people.                
To do a system run, around 10 commands had to be run for various features including turning on                  
the camera, arm planning, engaging suction, engaging the slider, etc. Tmux was used to simplify               
this process, so that everything could be launched using one script, which gave greater              
accessibility to all team members to perform full system runs. 
 

Having backup hardware devices was also important. For example, the slider controller            
was broken because the power wasn’t wired in a proper way. Since we didn’t have a backup at                  
that time, we had to wait until the controller shipped to us before the slider could work again and                   
lost valuable time. 
 

Also, unit testing is helpful but not fully indicative of a success until the subsystem can                
be fully verified through system integration. For example, we didn’t know that planning had a               
detrimental memory leak until doing the full system integration because planning unit tests             
require many less executions. Without full system integration, it can be very difficult to tell what                
latent issues exist. 
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10.1.2 Project management 
Having a dedicated team member for program management helped the team be more on              

schedule this semester compared with last semester, and gave more priority to having a thorough               
schedule and planning for contingencies. 
 

Last semester there were system failures when we did last minute changes on the system               
in attempts to create improvements. Thus, this semester we stopped doing last minute changes.              
For example, we had the perception trained on whitened images to be more robust under varying                
lighting conditions, but since training finished one day before the SVE encore, we didn’t switch               
to the new model in order to focus on testing and improvement of the current system.  
 

We also learned that it is important to coordinate team resources. For example, running              
training models for perception consumes a large amount of GPU resources, which would slow              
down the system. Thus, it was important to allocate separate time for training perception models               
apart from system integration and testing as this sharing of resources could slow down both tasks                
and create conflicts. 
 
10.2 Future work  

A driving motivation for this project has always been to compete in the Amazon Robotics               
Challenge. For technical issues, the competition goals align well with what would be necessary              
for a startup company. With that in mind, there is quite a bit of future work that will need to be                     
accomplished in the coming months. 
 

The most critical issue right now is to complete the construction of the fully actuated               
shelf. At this time we have a contingency plan if the shelf is not actuated, but in general, our                   
performance quality is highly dependent on having a shelf that can fold and unfold. As of this                 
report’s submission, the shelf design is complete and parts have been ordered, but have not               
arrived. We anticipate that the shelf should be fully functional by the end of May. 
 

In parallel with the shelf, we will also be developing new hardware to integrate a two                
finger gripper into our end effector. If the integration is successful, this will allow us to pick all                  
of the items that are currently listed, and likely most of the unknown items. 
 

Once the hardware is complete for the new end effector, new grasping strategies must be               
developed and tested, which should take the better part of the June. 
 

Also during May, we will be performing exhaustive testing to determine the primary             
modes of failure for the system. It is our intent to have a full status report by May 19th to                    
identify the most critical issues, both in terms of lost time and total system failure. Once this                 
priority list is established, issues will be tackled one by one until July 17, the day our system will                   
begin being shipped to Japan. 
 

As of this report’s submission known issues include: 
○ An improperly cached trajectory for the experience graph planner 
○ A memory leak in the SBPL planning library 
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○ Intermittent over torquing during fast motion on the wrist joints of the arm 
○ Intermittent bumping of the shelf and ‘close shaves’ in general 
○ Lack of fine tuning for the random forest used in unknown item identification 
○ No actuated shelf 
○ Lack of tactile feedback on the suction head 

 
Some of these issues may or may not disappear as changes are made to the end effector                 

and shelf, but in general it is unlikely that these changes will reduce the total number of issues                  
until some serious integration work is done. As new issues arrived, their priority will be assessed. 
 

After the competition, we will begin to work on cleaning up the code base and writing a                 
post mortem report on the competition. Any unresolved issues will at least have a suggested plan                
for being resolved and systemic errors will be noted as a warning for the future. The work done                  
in August will facilitate a clean hand off to any team that wishes to participate in next year’s                  
competition. 
 

If this project were to spin out as a company, it would be critical to perform well at the                   
picking challenge. After that point, our next step would be to use that publicity boost to seek out                  
partners to develop the product further. 
 

The business plan we laid out in Fall is still relevant and likely the best option for a start                   
up company. The basic concept behind this idea was to seek a partnership with UPMC and                
develop a robotic system that can create and deliver care packages for patients who are staying in                 
long term care. We believe that the nature of the job almost perfectly aligns with the scope of the                   
project, and that since UPMC is already using robots, they would be receptive to further robot                
integration. 
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12. Appendix  
Appendix A. Amazon robotics challenge items  

 
 
 
 
 

Appendix B. Grasping systems 
B1. Team NIMBRO’s 1DOF suction grasping system  
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B2. Team MIT’s integrated grasping system 
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B3. Team PFN’s separate robotic arm grasping system 
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