
Vision Subsystem Description  
Base System 
(Excludes Features for “Unknown” Competition Objects) 

 
The proposed base configuration for the vision system will utilize 4 sensors. 

Three sensors will be mounted above three of the system bins, while the fourth will be 
eye-in-hand on the robotic arm. Each sensor will be controlled by a separate CPU as 
outlined in Figure 1. 

 
Figure 1: Vision System Hardware Diagram 

 
Each CPU will be connected to one another via a switch. One CPU will act as the 

Master while the others act as Slaves, with the Master CPU dictating communication 
within between the CPUs via the state machine. The Master CPU and one Slave CPU 
will include GPUs in order to support the ability to run two separate CNNs 
simultaneously. No streaming data from the sensors will be passed between CPUs in 
order to reduce communication time and complexity, and instead each CPU will process 
the relevant sensor feed into a set of usable matrices. Those matrices will include raw 
RGB data and correlating segmented depth images. The segmented depth images will 
be created through the use of sensor calibration data and PCL (PassThrough Filter). 
The raw RGB data will be passed to relevant CNNs for processing (in the base 
configuration this will be Faster-RCNN). The output of the RGB CNN will be an object 
classification matrix which will correlate to the segmented depth images. Both of these 
matrices will then be fed as inputs to PERCH, along with the target object to be 
picked/stowed and a library of the object models. The input/output diagram for PERCH 
can be seen in Figure 2. 



 

 
Figure 2: PERCH Input/Output Diagram 

 
PERCH will use the inputs in order to output 6-DOF poses for either the target 

object, or the target object and surrounding objects based on its configuration. These 
6-DOF poses will then be passed to Grasping. In the case of a target object which is 
deformable PERCH will simply pass the point cloud of the object to the next stage in the 
pipeline (again PERCH may also pass the 6-DOF of any rigid objects surrounding the 
deformable item if it is so configured). In the event of a target object which is deformable 
the point cloud will then be passed to a PCL function which will attempt to identify 
surface normals on the object, and the points of those surface normals will then be 
passed to Grasping. The overall software diagram can be seen in Figure 3. 
 

 
Figure 3. Vision Software Diagram 

 
 



Potential System Improvements 
 

Future RGB CNNs may be run in parallel with Faster-RCNN to see if there are 
any performance gains of one over the other. Sensor fusion may also be employed in 
order to acquire higher definition point clouds as input data. 
 
Unknown Items 
 

Approaches for unknown items are still being considered. A point cloud CNN 
may be employed for unknown items, and would exist within the system diagram 
between the PCL PassThrough Filter and PERCH. In the event that a point cloud CNN 
is employed the second GPU will be utilized for it once the appropriate RGB CNN 
choice has been finalized (once an RGB CNN choice has been made there is no longer 
a need to use two GPUs for CNN comparisons). 
 
Localization 
 

April tags will be employed for bin localization. A strip of tags will be placed on 
the back/top of the shelves for each static Kinect, while another strip of tags will be on 
the bottom/front of each shelf to localize the eye-in-hand Kinect. The april tag 
placements can be seen as the checkerboard pattern in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Bin april tag placements 



ROS Architecture 

Figure 5. ROS Nodes and Interfaces 
 

The perception pipeline begins with the BIN#Perception nodes. These nodes will 
perform any sensor fusion for their respective bins, as well as any image and/or point 
cloud pre-processing (such as segmenting the bin edges out of the point cloud). The 
vision system will proceed in the following order for each bin: 
 

1. The SystemControl node will call the CNN command ROS service, passing the 
desired bin number and the updated bin item list to the CNN. 

2. The CNN node will call the appropriate BIN#Perception ROS service in order to 
obtain the RGB image of the bin. It will then process the image and label each 
pixel with the appropriate item. 

3. When the CNN has finished processing the image the SystemControl node will 
call the PERCH command service, passing PERCH the bin number, target item, 
and item list. 

4. PERCH will call the appropriate BIN#Perception ROS service in order to obtain 
the segmented point cloud or depth image and the camera transform. It will then 
process the point cloud in order to determine the 6-DOF for each non-deformable 
item (deformable items will be left as their original point clouds) 

5. The 6-DOF for the items will then be available for the Grasping Subsystem 
through a service call. 


