Autonomous Aerial Assistance for Search and Rescue

Progress Review March 22, 2017

Team F

Tasks

- Data collection: RGB, Thermal, and Sound
- Test human detection on new data
- Test other signature detection on new data
- Functionality to log flight data
- Test signature GPS location reporting algorithm
- Code migration to Python

Data Collection

- ~15 flights: collected RGB, thermal, and sound data
- Tested various configurations of:
 - Microphone
 - Camera
- Tested various flight parameters
- Included multiple signatures and human poses

Thermal and RGB algorithm integration

- Modification
 - Combine ROIs from both algorithms
 - Classify all ROIs by both RGB and thermal classifiers
 - Choose those bounding boxes classified as humans by both of the algorithms
- Output
 - Information of human bounding boxes in each frame
 - Timestamps which are in accordance with the bounding boxes
 - \circ ~ Images with human bounding boxes $\underline{\mbox{Video}}$

	1	2	3	4	
1	164	1	17	32	11:44:33.100
2	163	1	20	38	11:44:33.200
3	160	1	23	46	11:44:33.300
4	158	1	27	54	11:44:33.400
5	159	4	25	54	11:44:33.500
6	159	11	25	54	11:44:33.600
7	159	11	25	54	11:44:33.700
8	159	17	26	56	11:44:33.800
9	159	24	26	56	11:44:33.900
10	158	31	26	57	11:44:34.000

Bright regions detection

- HSV thresholding
 - \circ Value threshold = 0.9
 - Saturation threshold = 0.3
- Suitable to detect tents, air mattresses

Video

Hot regions detection

- Intensity thresholding
- First step to detect other thermal signatures
- Reduce false positives in human signature detection

Video

Signature GPS location reporting algorithm (1/3)

- Input: [628, 530, '11:45:27.689655']
- Locations:
 - Drone: 40.472267, -79.966124
 - Mattress(cal): 40.472320339270574,
 -79.96603301939723
 - Mattress(actual): 40.47232217624828,
 -79.96601281695064
- Distances between locations:
 - Drone-Mattress(cal): 9 meters NE (52°)
 - Drone-Mattress(actual): 11 meters NE (56°)
 - Mattress(cal)-Mattress(actual): 1 meters
 E (83°)

Signature GPS location reporting algorithm (2/3)

- Input: [847, 439, '11:45:01.793103']
- Locations:
 - Drone: 40.472196, -79.966329
 - Human(cal): 40.47210993039628,
 -79.9663917235796
 - Human(actual): 40.47232230197682,
 -79.96626913554962
- Distances:
 - Drone-Human(cal): 10 meters SW (209°)
 - Drone-Human(actual): 14 meters N (19°)
 - Human(cal)-Human(actual): 25 meters NE (23°)

Signature GPS location reporting algorithm (3/3)

- Input: [1421, 472, '11:45:45.000000']
- Locations:
 - Drone: 40.472284, -79.966083
 - Mattress(cal): 40.47231216286925,
 -79.96596290714584
 - Mattress(actual): 40.47237301249101,
 -79.96585213586684
- Distances:
 - Drone-Mattress(cal): 9 meters NE (52°)
 - Drone-Mattress(actual): 10 meters E (72°)
 - Mattress(cal)-Mattress(actual): 11 meters NE (54°)

Sound Signature

Code migration to Python

• Default settings for skimage.feature and sklearn.svm

In [31]: run test-object-detector Calculating the descriptors for the positive samples and saving them Positive features saved in ../data/features/pos Calculating the descriptors for the negative samples and saving them Negative features saved in ../data/features/neg Completed calculating features from training images Training a Linear SVM Classifier Classifier saved to ../data/models/svm.model Testing our classifier on positive images 0.830588235294 Testing our classifier on negative images 0.832075471698

- Adjust parameters for hog
- [n [1]: run test-object-detector

Calculating the descriptors for the positive samples and saving them Positive features saved in ../data/features/pos Calculating the descriptors for the negative samples and saving them Negative features saved in ../data/features/neg Completed calculating features from training images Training a Linear SVM Classifier Classifier saved to ../data/models/svm.model Testing our classifier on positive images 0.894117647059 Testing our classifier on negative images 0.868867924528

Parameters for hog

[hog] min_wdw_sz: [32, 64] step_size: [10, 10] orientations: 9 pixels_per_cell: [8, 8] cells_per_block: [2, 2] visualize: False normalize: True

[nms] threshold: .3

[paths]

pos_feat_ph: ../data/features/pos neg_feat_ph: ../data/features/neg model_path: ../data/models/svm.model Thanks!