Aerial Assistance for Search and Rescue

Meet the team Juncheng Zhang Karthik Ramachandran Sumit Saxena Xiaoyang Liu

Sponsor: Near Earth Autonomy

Draft Functional Requirements

The system shall

- 1. Autonomously navigate through a set of provided waypoints
- 2. Explore the surroundings around each waypoint
- 3. Collect perceptual data while navigating
- 4. Process the data to identify human signatures
- 5. Analyze the identified signatures to accurately estimate human location
- 6. Navigate to the rescue location
- 7. Drop the "rescue" package

Functional Requirements

The system shall

- 1. Autonomously navigate through a set of provided locations of interest
- 2. Complete the search within limited time
- 3. Explore the surroundings around each location of interest
- 4. Collect perceptual data while navigating
- 5. Process the data to identify human signatures
- 6. Analyze the identified signatures to accurately estimate human location
- 7. Navigate to the rescue location carrying the rescue package
- 8. Drop the rescue package

Draft Performance Requirements

The system will

- 1. Operate in a search area with dimensions 200m x 200m and no occlusion
- 2. Complete one iteration of search in less than 25 minutes
- 3. Cover areas around the waypoints with 20% tolerance
- 4. Collect perceptual data limited to 3-4 (?) types
- 5. Identify 3-4 (?) human signatures
- 6. Estimate human location with 80% confidence and +-10m tolerance
- 7. Carry a "rescue" package weighing ~100g
- 8. Drop the package at the rescue location with a tolerance of +-5m

Performance Requirements

The system will

- 1. Accurately reach the locations of interest with a tolerance of +-5m
- Complete one iteration of search in an un-occluded operating area of 200m x 200m in <25 minutes
- 3. Attain up to 80% coverage of the desired local search areas around each location of interest
- 4. Collect perceptual data limited to 3 types IR radiation, visual imagery, and sound
- 5. Identify potential human signatures with at least 80% recall and 60% precision
- 6. Estimate potential human signature location with +-5m tolerance
- 7. Carry a rescue package weighing 100g
- 8. Drop the package at the rescue location with a tolerance of +-5m

Draft Functional Architecture

Functional Architecture

Draft Cyberphysical Architecture

Revised Cyberphysical Architecture

WBS

1. Autonomous Flight System

- 1.1. Set up Matrice 100
- 1.1.1. Assembly
- 1.1.2. Test simulator
- 1.1.3. First teleoperated flight
- 1.1.4. Test basic autonomous flight

1.2. Set up Matrice 600

- 1.2.1. Assembly
- 1.2.1. Test simulator
- 1.3. Implement autonomous waypoint navigation
- 1.3.1. Software for waypoint navigation
- 1.3.2. Test on Simulator
- 1.3.3. Test on external site
- 1.3.4. Software to autonomously determine likely search locations
- 1.3.5. Revise software for waypoint navigation
- 1.3.6. Test on Simulator
- 1.3.7. Test on external site

1.4. Implement Local Search strategy

- 1.4.1. Design basic strategy
- 1.4.2. Software to implement basic strategy
- 1.4.3. Test on simulator
- 1.4.4. Test on external site
- 1.4.5. Software to plan local search with high quality sensor coverage
- 1.4.6. Software to plan rescue operation
- 1.4.7. Test on simulator
- 1.4.8. Test on external site

2. Sensing

- 2.1. Finalize sensors 2.1.1. RGB camera 2.1.2. Thermal camera 2.1.3. Sound sensor
- 2.2. Test individual sensor performance
 - 2.2.1. RGB camera
 - 2.2.2. Thermal camera
 - 2.2.3. Sound sensor
- 2.3. Software: process NEA payload data 2.4. Software: process specific sensor data
- 2.4.1. RGB camera
- 2.4.2. Thermal camera
- 2.4.3. Sound sensor
- 2.5. Design sound sensor mounting

3. Rescue assembly system

- 3.1. Mechanical structure
- 3.1.1. Design
- 3.1.2. Prototype
- 3.1.3. Fabricate

3.2. Actuation system

- 3.2.1. Finalize actuation method 3.2.2. Finalize actuators 3.2.3. Finalize electronic components needed 3.2.4. Develop actuation mechanism 3.2.4. Interface actuator with SDPD computer 3.2.5. Test drop mechanism 3.3. Integrate mechanical structure &
- actuation system

4. Signature detection and analysis

- 4.1. Finalize human signatures to detect
- 4.2. Basic visual signature detection
- 4.2.1. Literature study/Datasets
- 4.2.2. Implementation (SVR)
- 4.2.3. Debugging/Improvements (FVR)
- 4.3. Visual+Thermal signature detection
- 4.3.1. Literature study/Dataset (SVR)
- 4.3.2. Implementation (SVR)
- 4.4. Human sound detection
- 4.4.1. Literature study/Dataset (SVR)
- 4.4.2. Implementation (SVR)
- 4.5. Optimize/scale Performance

5. System Integration and Testing

5.1. Test flight

- 5.1.1. Waypoint navigation; NEA payload 5.1.2. Waypoint navigation + basic hover, no payload
- 5.2. Build SDPD payload; integrate
- 5.2.1. Schematic for PDS
- 5.2.2. Layout for PDS
- 5.2.3. PCB Fabrication for PDS
- 5.2.4. Interface sound sensor with drone and onboard computer
- 5.2.5. Form SDPD payload; integrate into the system
- 5.3. Data collection pipeline: UAV to base
- 5.4. Test end to end system
- 5.4.1. Navigation + search; NEA payload 5.4.2. Whole operation

6. Project Planning

6.1. Initial Planning

- 6.1.1. Define project scope/requirements 6.1.2. Conduct trade studies
- 6.1.3. Develop functional and cyber-physical architectures

6.2. Project Continuity

- 6.2.1. Develop and mintain project website
 6.2.2. Design Fall and Spring demo
 6.2.3. Procure RGB sensor
 6.2.4. Procure Thermal sensor
 6.2.5. Procure Sound sensor
 6.2.6. Procure Matrice 100
 6.2.7. Procure material for drop assembly
 6.2.8. Fall demo preparation
 6.2.9. Field Tests
 6.2.10. Spring demo preparation
 6.3. Project Delivery
 6.3.1. Deliver Conceptual Design Review
 6.3.2. Deliver Preliminary Design Review
- 6.3.3. Deliver Critical Design Review
- 6.3.4. Fall Demo
- 6.3.5. Spring Demo

6.4. Risk Management

- 6.4.1. Risk analysis and mitigation plans
- 6.4.2. Execute risk mitigation plans

Schedule

	Tasks	Sems	Hours	10/17/2016	10/24/2016	10/31/2016	11/7/2016	11/14/2016	11/21/2016	11/28/2016	12/5/2016	1/16/2017	1/23/2017	1/30/2017	2/6/2017	2/13/2017	2/20/2017	2/27/2017	3/6/2017	3/13/2017	3/20/2017
1	Autonomous Flight System		117																		
1.1	Matrice 100 setup	FV	17																		
1.2	.2 Matrice 600 setup																				
1.3	.3 Implement autonomous waypoint navigation																				
1.4	Implement Local Search strategy	SV	49					1													
2	Sensing		110															÷.			
2.1	Finalize sensors		20																		
2.2	Test individual sensor performance		18																		
2.3	Process NEA payload data	SV	16												-						
2.4	Process specific sensor data		48																		
2.5	Design sound sensor mounting	FV	8																		
3	Rescue assembly system		70																		
4	Signature detection and analysis		150																		
4.1	Finalize human signatures to detect	FV	10																		
4.2	Develop basic visual signatures' detection algorithm	FV	60																		
4.4	Performance optimizations/scaling (as per SVR)	SV	20																		
5	System Integration and Testing		107																		
5.1	Test flight: waypoint navigation; NEA payload	FV	10																		
5. 2	Test flight: waypoint navigation + basic hover; no payload	FV	10					3								_					
5.3	Build SDPD payload; integrate into the system		51																		
5.4	Data collection pipeline from UAV to base	SV	6																		
5.5	Test end to end system: waypoint navigation + search; NEA pay	SV	10																		
5.6	Test end to end system for the whole operation	SV	20																		

Schedule

	Plan	
Not	finished	
F		

	Tasks	Sems	Hours	/17/2016	/24/2016	/31/2016	1/7/2016	/14/2016	/21/2016
*				-	-	-	-	1	-
1.1	Matrice 100 setup	FV	17						
1.2	Matrice 600 setup	FV	5						
1.2.1	Assembly	FV	2						
1.2.1	Test simulator	FV	3						
1.3.1	Software for waypoint navigation	FV	8						
1.3.2	Test on Simulator	FV	2						
1.3.3	Test in external site	FV	4						
1.4.2	Software to implement basic strategy	FV	6						
1.4.3	Test on simulator	FV	2						
1.4.4	Test on external site	FV	4						
2.1.1	RGB camera	FV	4						
2.1.2	Thermal camera	FV	4						
2.1.3	Sound sensor	FV	12						
2.2.1	RGB camera	FV	6						
2.5	Design sound sensor mounting	FV	8						
3.1	Design mechanical system	FV	16						1
3.2	Prototype mechanical system	FV	6						
3.3	Procure mechanical/electronic components	FV	4						
4.1	Finalize human signatures to detect	FV	10						
4.2	Develop basic visual signatures' detection algorithm	FV	60						
4.2.1	Literature study/Datasets	FV	20				£		
4.2.2	Implementation (SVR)	FV	30						
4.2.3	Debugging/Improvements (FVR)	FV	10						
5.1	Test flight: waypoint navigation; NEA payload	FV	10						
5.2	Test flight: waypoint navigation + basic hover; no payload	FV	10						

Likelihood

Х

Risks and Mitigation

RISK SUMMARY									٦
Title	Unavailabilit	y of drone for frequent te	esting	Date Submitted	10/19/2016				
Owner	Karthik/Sum	it		<u>Risk Type</u>	Technical,Se	chedule	-		
Description	Sponsor req		Impa	ıct					
Consequence	Will impact a	bility to iterate quickly o	n various navigat	ion strategies/sens	sing evaluation	and rescue st	rategy		
RISK MITIGATION									
Action Date		Success criteria		Risk level					
Order dev drone	der dev drone 10/25/2016		Ability to test and run navigation strategies iteratively						
Validate using sensor payload manually to generate data 11/10/201		Ability to generate sens flight	lar to aerial	50					
Use data from flights scheduled for other projects 11/10/2016 Va		Validate if data matches	40						
Device sensor mounting strategy for dev drone	11/20/2017	Ability to use rgb and the dev drone	nermal camera fo	r sensing on	30				

litigat	ion		Likeliho	ood	X		
Inability to a detection	chieve high accuracy in	signature	Date Submitted	10/22/2010	6		—► Impact
Juncheng/Su	umit	Risk Type	Technical				
Sensor data results	especially sound might	be very noisy an	d could generate ir	accurate			
Will impact a	accuracy with which syst	em can detect s	ignatures				
Date	Success criteria			Risk level	Q.		
1/20/2017	Ability to suspend micro and fly the drone safely	ophone 10 feet b	elow the drone	1(0		
	litigat Inability to a detection Juncheng/Si Sensor data results Will impact a <u>Date</u> 1/20/2017	Itigation Inability to achieve high accuracy in detection Juncheng/Sumit Sensor data especially sound might results Will impact accuracy with which system Date Success criteria 1/20/2017 Ability to suspend microand fly the drone safely	Itigation Inability to achieve high accuracy in signature detection Juncheng/Sumit Sensor data especially sound might be very noisy an results Will impact accuracy with which system can detect signature detect and fly the drone safely Date Success criteria 1/20/2017 Ability to suspend microphone 10 feet band fly the drone safely	Itigation Likeliho Inability to achieve high accuracy in signature detection Date Submitted Juncheng/Sumit Cate Submitted Sensor data especially sound might be very noisy and could generate in results Risk Type Will impact accuracy with which system can detect signatures Image: Cate Submitted Date Success criteria Image: Cate Submitted Date Success criteria Image: Cate Submitted 1/20/2017 Ability to suspend microphone 10 feet below the drone and fly the drone safely	Itigation Likelihood Inability to achieve high accuracy in signature detection Date Submitted Juncheng/Sumit Control of the system can detect signatures Sensor data especially sound might be very noisy and could generate inaccurate results Technical Will impact accuracy with which system can detect signatures Main and the system can detect signatures Date Success criteria Risk level 1/20/2017 Ability to suspend microphone 10 feet below the drone and fly the drone safely 10/2/2017	Itigation Itikelihood Itikelihood Inability to achieve high accuracy in signature detection Date Submitted 10/22/2016 Juncheng/Sumit Risk Type Technical Juncheng/Sumit Risk Type Technical Sensor data especially sound might be very noisy and could generate inscurate results Technical Will impact accuracy with which system can detect signatures Itical Date Success criteria Risk level Date Success criteria Itical Ability to suspend microphone 10 feet below the drone and fly the drone safely 10	Itigation Itikelihood Itikelihood Inability to achieve high accuracy in signature detection Date Submitted 10/22/2016 Juncheng/Surit Control 10/22/2016 Sensor data especially sound might be very noisy and could generate inaccurate results Technical Will impact accuracy with which system can detect signatures Inability to suspend migrophone 10 feet below the drone Itical Date Success criteria Risk level Itical 1/20/2017 Ability to suspend microphone 10 feet below the drone Itical

Thank you