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Individual Progress 
 Developed a Feedforward Neural Network in MATLAB. 

 Test on the revised RGB-based human detection algorithms. 

 

Developed a Feedforward Neural Network in MATLAB 

 

1) Initialization     

In the initialization process, I used the normalized initialization. The reason why I choose 

to use it is listed as below  

 The standard initialization that we have used  

 

gives rise to variance with the following property:  

 

where n is the layer number. This will cause the variance of the back-propagated 

gradient to be dependent on the layer (and decreasing).   

 The normalization factor may therefore be important when initializing deep 

networks because of the multiplicative effect through layers, and we suggest the 

following initialization procedure to approximately satisfy our objectives of 

maintaining activation variances and back-propagated gradients variance as one 

moves up or down the network. We call it the normalized initialization: 

 



 

Figure.1 The Feedforward Neural Network 

 

 

2) Using SGD for training the backpropagation 

In terms of number of epochs, SGD is faster to be trained if we don’t need to go through 

all samples in the sample set, otherwise the training time is almost the same. In terms of 

number of iterations, SGD is faster to be trained, because in each iteration, only one 

sample should be used to update the parameters in SGD compared to BGD which needs 

to use all samples in one iteration.  

 

3) Using ReLu for training the backpropagation 

With the extracted features, I plan to build a basic feedforward neural network next. I did 

some research on the activation functions, and finally choose to use ReLU.  

The reason is that there are two major benefits of ReLUs. First of all, it has a sparsity and 

a reduced likelihood of vanishing gradient. The definition of a ReLU is 

h=max(0,a)h=max(0,a) where a=Wx+ba=Wx+b. So, 

 The reduced likelihood of the gradient to vanish. This arises when a>0a>0. In this 

regime, the gradient has a constant value. In contrast, the gradient of sigmoid 

becomes increasingly small as the absolute value of x increases. The constant gradient 

of ReLU results in faster learning. 

 Sparsity arises when a≤0a≤0. The more such units that exist in a layer the sparser 

the resulting representation. Sigmoid on the other hand are always likely to generate 



some non-zero value resulting in dense representations. Sparse representations seem 

to be more beneficial than dense representations.   

 

4) Configuration settings 

 

 Learning rate 0.001 

 

Figure.2  The confusion matrix of test images before and after the modification 
 

As you can see in figure.2, with the same number of epoch time, the training loss with a 

learning rate of 0.001 is decreasing continuously. However even if the training accuracy 

corresponding with a learning rate of the is 0.01 is extremely high(nearly 100%), the loss 

of its validation set is increasing very fast after 10 epochs. 

 

 Layers: [288 200 150 2] 

 Training epochs: 50 



 

Test on the revised RGB-based human detection algorithms.   

1) Test on FNN vs SVM with cropped human candidates (40*24 pixels) 

 HOG feature extraction 

o Each image has 288 features 

 Dataset  

o Test set = 229 images 

o Training set = 504 images 

o Validation set = 167 images 

 Result is shown in Table 2 
 

     Table.2 Accuracy comparison on HOG + FNN and HOG + SVM algorithm 

 SVM  FNN 

Overall Accuracy 90.4%  84.6% 

 

 

2) Test on HOG + FNN vs HOG + SVM with the whole image (960*540/ 2560*1440 pixels) 

 

 

Figure.3 HOG + FNN test on self-taken aerial images 

 

 



 

Figure.4 HOG + FNN test on online aerial images 

 

 

Table.2 Accuracy comparison on HOG + FNN and HOG + SVM algorithm 

 
Image category HOG+SVM  HOG+FNN 

Online images (20) 65.6%  66.7% 

Self-takes images (20) 61.5%  63.9% 

 

 

 

 

Challenge 
      In terms of the idea and implementation of FNN is not that difficult, because we have done 

something similar before. Also the dataset has been well prepared due to the effort we made in 

the last semester. However, one of the biggest obstacles that we faced will be the lack of training 

and testing data. We could get our own thermal and RGB camera next week. Also, because we 

change our strategy into practices on our own drone, hopefully this challenge will be overcome. 

Team Work 
      In this week, Juncheng (Henry) devoted most of his time exploring thermal images feature 

extraction and segmentation. The result turns out that Gaussian Blur before Edge detection is 



useful, and we may stick to the HOG + FNN method on thermal images as well. Karthik worked 

on improving the performance on sound detection by using the new microphone. Sumit mainly 

focused on implementing FNN on Tensorflow and find the possibility to extend it into CNN in the 

future. 

Future Work 
       Before the next progress review, I will try to integrate RGB and thermal algorithm together 

and try to figure out the possibility that we can cluster objects by using some basic algorithms. In 

this way we might be eliminate some false positives. Juncheng will explore more on tracking on 

thermal images. Sumit will develop CNN and improve bright object detection. He also will get 

GPS location of signature from image. Karthik will work on CNN for thermal and rgb and maybe 

fuse sound with the other two. 

                

 


