

Individual lab report #7
Feb, 15, 2017

Xiaoyang Liu

Team F Rescue Rangers

Juncheng Zhang (Henry)

Karthik Ramachandran

Sumit Saxena

Individual Progress
 Developed a Feedforward Neural Network in MATLAB.

 Test on the revised RGB-based human detection algorithms.

Developed a Feedforward Neural Network in MATLAB

1) Initialization

In the initialization process, I used the normalized initialization. The reason why I choose

to use it is listed as below

 The standard initialization that we have used

gives rise to variance with the following property:

where n is the layer number. This will cause the variance of the back-propagated

gradient to be dependent on the layer (and decreasing).

 The normalization factor may therefore be important when initializing deep

networks because of the multiplicative effect through layers, and we suggest the

following initialization procedure to approximately satisfy our objectives of

maintaining activation variances and back-propagated gradients variance as one

moves up or down the network. We call it the normalized initialization:

Figure.1 The Feedforward Neural Network

2) Using SGD for training the backpropagation

In terms of number of epochs, SGD is faster to be trained if we don’t need to go through

all samples in the sample set, otherwise the training time is almost the same. In terms of

number of iterations, SGD is faster to be trained, because in each iteration, only one

sample should be used to update the parameters in SGD compared to BGD which needs

to use all samples in one iteration.

3) Using ReLu for training the backpropagation

With the extracted features, I plan to build a basic feedforward neural network next. I did

some research on the activation functions, and finally choose to use ReLU.

The reason is that there are two major benefits of ReLUs. First of all, it has a sparsity and

a reduced likelihood of vanishing gradient. The definition of a ReLU is

h=max(0,a)h=max(0,a) where a=Wx+ba=Wx+b. So,

 The reduced likelihood of the gradient to vanish. This arises when a>0a>0. In this

regime, the gradient has a constant value. In contrast, the gradient of sigmoid

becomes increasingly small as the absolute value of x increases. The constant gradient

of ReLU results in faster learning.

 Sparsity arises when a≤0a≤0. The more such units that exist in a layer the sparser

the resulting representation. Sigmoid on the other hand are always likely to generate

some non-zero value resulting in dense representations. Sparse representations seem

to be more beneficial than dense representations.

4) Configuration settings

 Learning rate 0.001

Figure.2 The confusion matrix of test images before and after the modification

As you can see in figure.2, with the same number of epoch time, the training loss with a

learning rate of 0.001 is decreasing continuously. However even if the training accuracy

corresponding with a learning rate of the is 0.01 is extremely high(nearly 100%), the loss

of its validation set is increasing very fast after 10 epochs.

 Layers: [288 200 150 2]

 Training epochs: 50

Test on the revised RGB-based human detection algorithms.

1) Test on FNN vs SVM with cropped human candidates (40*24 pixels)

 HOG feature extraction

o Each image has 288 features

 Dataset

o Test set = 229 images

o Training set = 504 images

o Validation set = 167 images

 Result is shown in Table 2

 Table.2 Accuracy comparison on HOG + FNN and HOG + SVM algorithm

 SVM FNN

Overall Accuracy 90.4% 84.6%

2) Test on HOG + FNN vs HOG + SVM with the whole image (960*540/ 2560*1440 pixels)

Figure.3 HOG + FNN test on self-taken aerial images

Figure.4 HOG + FNN test on online aerial images

Table.2 Accuracy comparison on HOG + FNN and HOG + SVM algorithm

Image category HOG+SVM HOG+FNN

Online images (20) 65.6% 66.7%

Self-takes images (20) 61.5% 63.9%

Challenge
 In terms of the idea and implementation of FNN is not that difficult, because we have done

something similar before. Also the dataset has been well prepared due to the effort we made in

the last semester. However, one of the biggest obstacles that we faced will be the lack of training

and testing data. We could get our own thermal and RGB camera next week. Also, because we

change our strategy into practices on our own drone, hopefully this challenge will be overcome.

Team Work
 In this week, Juncheng (Henry) devoted most of his time exploring thermal images feature

extraction and segmentation. The result turns out that Gaussian Blur before Edge detection is

useful, and we may stick to the HOG + FNN method on thermal images as well. Karthik worked

on improving the performance on sound detection by using the new microphone. Sumit mainly

focused on implementing FNN on Tensorflow and find the possibility to extend it into CNN in the

future.

Future Work
 Before the next progress review, I will try to integrate RGB and thermal algorithm together

and try to figure out the possibility that we can cluster objects by using some basic algorithms. In

this way we might be eliminate some false positives. Juncheng will explore more on tracking on

thermal images. Sumit will develop CNN and improve bright object detection. He also will get

GPS location of signature from image. Karthik will work on CNN for thermal and rgb and maybe

fuse sound with the other two.

