
ILR 1 Sensors and Motors
Team Name: F
Team Members: Karthik, Sumit, Xiaoyang, Juncheng
Individual: Karthik

Overview
Goal of the project was to demonstrate the capability to operate and control 3 different motors through 3
different sensors and be able to override the controls using a UI. The following high level
components/modules were used for this project:

1. DC motor & Potentiometer
2. Servo motor & Ultrasonic sensor
3. Stepper motor & infrared sensor
4. Arduino Uno microcontroller
5. Processing based UI

Individual Deliverables

Introduction
Following were the two individual deliverables:

1. Servo motor control through a ultrasonic sensor
2. Implement the infrastructure code to bring all sensors and motors together and interface with the UI

Servo motor control
For this project, a Hitech servo was used. Pins of a servo are connected as shown in Figure 1. Two

of the pins are connected to the ground and 5V supply of arduino. The third pin is connected to one of the
digital pins of arduino that can provide the pwn signal to the servo.

Figure 1.Hitech servo connection with Arduino
Uno [1]

Ultrasonic sensor
The LV Max sonar ultrasonic sensor was used to control the servo motor. This sensor has a scale factor of
Vcc/512. Since a voltage of 5V was used, the volts per inch was around 9mV/inch. Also, since the voltage

for the sonar was being read through the Analog to digital pin of the Arduino, which has a range of 1024, the
final distance in inches was computed as Voltage/2

Figure 2. LV Max Sonar connection with
Arduino Uno [2]

Software
Github : http://github.com/karamach/rescue_rangers

Individual deliverable for software was to write modules to control the servo using distances obtained from
ultrasonic sensor and to write glue code to bring all components together. Key pieces of the software is
explained below. The complete code is pasted in the Appendix.

Ultrasonic based Servo Motor control

The logic for computing the distance based on the ultrasound. As can be seen, the reading is obtained as an
average of 5 samples and then halved to get the actual distance, to account for the fact that the analog pin
generates an output between 0 to 1023 while the scale factor of the Ultrasonic sensor is Vcc/512.

The logic for computing the angle for the servo based on the distance is shown below. The servo is set at 0
degrees for distances less than 12 inches. For distances between 12 and 48 inches, it is linearly scaled to
an angle between 0 and 180 degrees. For distances beyond 48 inches, it is set at 180 degrees.

http://github.com/karamach/rescue_rangers

Glue code
The glue code interfaces with the UI and the drives the components based on input from the UI. The format
used for interaction between the UI and the glue code is shown below:

UI Command :
<begin_marker>,<motor_type>,<on/off>,<position>,<direction>,<velocity>,<end_marker>

Status message:
<begin_marker>,<on/off>,<position>,<direction>,<velocity>,<on/off>, …. <end_marker>
Note: the status is sent for each motor and sensor and the order is agreed upon.

The glue code is attached as an appendix.

Challenges
One of the key challenges in this deliverable was in implementing the glue code in a way that it could
integrate control codes of different components with the UI. The control code for each of the components
were written and designed independently and so had different semantics in terms of how they controlled the
state. In hindsight, a better approach would have been for one team member to write most of the code
except for very specific functions required for each motor. That would have brought in a lot more consistency
in the overall code and would have resulted in far less integration time.

Progress
The MRSD project involves building an Autonomous Aerial System for assisting Search and Rescue
Operations. The immediate deliverables for the milestone after finishing the CODR is pasted below:

Status of tasks is listed below:

● Project Continuity
○ Procure parts

■ In discussion with Sponsor to get the Matrice 600 quadcopter and figure out
logistics of operating it (at Sponsor place or at CMU)

● Autonomous Flight System
○ Ramp up on Hexcoter operability

■ Individual deliverable in progress:
1. Have started looking at the various options of interacting with the DJI

simulator (available only windows) and ROS based DJI API (available for
Linux). Going through documentation and getting familiarized with the
SDK.

● Sensing
○ Finalize type and model of sensors - Team has narrowed down 3 types of sensors to be

used namely: thermal, RGB and sound.
■ Individual deliverables in progress:

1. Evaluate exact range and sensitivity needed for the sound sensor so that
the model and type can be decided on.

2. Do some basic evaluation of how easy or difficult it is to do Voice Activity
Detection from sound samples similar to ones that will be encountered in
Aerial search and rescue scenarios.

References
[1] http://www.robotshop.com/blog/en/arduino-5-minute-tutorials-lesson-5-servo-motors-3636
[2] http://www.maxbotix.com/Ultrasonic_Sensors/MB1010.htm

Appendix

1-Servo Motor & Ultrasonic sensor code

svo_motor.h

http://www.maxbotix.com/Ultrasonic_Sensors/MB1010.htm

#ifndef _SERVO_MOTOR_DRIVER_H_
#define _SERVO_MOTOR_DRIVER_H_

#include <Servo.h>

struct UltraSoundState {
 int MAX_DIST;
 int MIN_DIST;
 int pin;
 int dist;
 int on;
};

struct ServoState {
 int svo_pos;
 int on;
};

void setupServo();
void driveServo(int angle);
void driveServo();
void updateUSSensorState(int on);
void updateServoState(int on);

extern UltraSoundState ultraSoundState;
extern ServoState servoState;

#endif

svo_motor.cpp

#include "Arduino.h"
#include "svo_motor_driver.h"

Servo svo;
ServoState servoState;
UltraSoundState ultraSoundState;

// Setup
void setupServoUltrasound() {
 // Setup servo
 svo.attach(13);
 servoState.svo_pos = 0;
 servoState.on = 1;

 // Setup ultrasound
 ultraSoundState.MAX_DIST = 256;
 ultraSoundState.MIN_DIST = 6;
 ultraSoundState.pin = A3;
 ultraSoundState.dist = 0;

 ultraSoundState.on = 1;

}

// Servo state update
void updateServoState(int on) {
 servoState.on = on;
}

// Ultrasound state update
void updateUSSensorState(int on) {
 ultraSoundState.on = on;
}

// Get distance from Ultrasound
void updateDistance() {
 int sum = 0;
 int numSamples = 5;
 for (int i = 0; i < numSamples ; i++) {
 int volt = analogRead(ultraSoundState.pin);
 sum += volt;
 delay(5);
 }
 ultraSoundState.dist = (sum/numSamples) * 0.5;
}

// Drive servo to specified angle
void driveServo(int angle){
 if (servoState.on) {
 int currAngle = svo.read();
 if (currAngle > angle) {
 for (int svo_pos = currAngle; svo_pos >= angle; svo_pos -= 1) {
 svo.write(svo_pos);
 }
 } else {
 for (int svo_pos = currAngle; svo_pos <= angle; svo_pos += 1) {
 svo.write(svo_pos);
 }
 }
 delay(20);
 servoState.svo_pos = angle;
 }
}

// Compute servo angle.
// Servo is set to 0 for less than 12 inches
// Servo is set to a position determined as a linear function of distance between 12 and 48 inches
// Servo is set to 180 beyond 48 inches.
int computeAngle(int dist) {
 if (dist < 12) {

 return 0;
 } else if (dist > 48) {
 return 180;
 } else {
 return 5*(dist-12);
 }
}

// Drive servo based on distance.
void driveServo() {
 updateDistance();
 if ((servoState.on == 1) && (ultraSoundState.on == 1)) {
 driveServo(computeAngle(ultraSoundState.dist));
 }
}

2- Glue interface code
TeamF_Task7.ino

#include "svo_motor_driver.h"
#include "stepper_motor_driver.h"
#include "dc_motor_driver.h"

bool sensorMode;

void setup() {

 // Global mode
 sensorMode = false;

 // Setup motors
 DC_Initial();
 setupStepper();
 setupServo();

 // Initialize serial
 Serial.begin(9600);
 Serial.println("Ready");
}

// Servo, Stepper, DCMotor, US, IR, F
// State, Reading, Direction (0 F, 1 R), RPM (only for DC),
void writeStatus() {
 String statusMsg = "bom,";

 // Servo status
 statusMsg = statusMsg + servoState.on + "," + servoState.svo_pos + ",na,na,";

 // Stepper status

 statusMsg = statusMsg + stepperStatus.on_off + "," + stepperStatus.angle + ",na,na,";

 // DC status
 DC_Motor_Status dc_status;
 get_Motor_Status(dc_status);
 statusMsg = statusMsg + dc_status.onoff + "," + dc_status.degree + "," + dc_status.dir + "," + dc_status.vel + ",";

 // UltrasoundSensor status
 statusMsg = statusMsg + ultraSoundState.on + "," + ultraSoundState.dist + ",na,na,";

 // InfraredSensor status
 statusMsg = statusMsg + irSensorStatus.on_off + "," + irSensorStatus.Distance + ",na,na,";

 // Potentio,eter status
 statusMsg = statusMsg + "1," + dc_status.sensorValue + ",na,na," ;

 // Print msg
 if (sensorMode == true)
 statusMsg += "1";
 else
 statusMsg += "0";
 statusMsg += ",eom";
 Serial.println(statusMsg);
}

void processCommand(String commands[20], int numCommands) {
 if (numCommands == 0)
 return;

 if (commands[0].equals("sensor-based")) {
 sensorMode = true;
 return;
 } else if (commands[0].equals("gui-based")) {
 sensorMode = false;
 updateState(0, 0, 0, 0);
 return;
 } else {
 if (!sensorMode) {
 if (commands[0].equals("m_dcm")) {
 // bom,m_dcm,1,90,na,na,eom
 String on = commands[1];
 String deg = commands[2];
 String dir = commands[3];
 String vel = commands[4];
 if (on.toInt() == 1) {
 if (vel.equals("na"))
 updateState(3, 0, dir.toInt(), deg.toInt());
 else
 updateState(2, vel.toInt(), dir.toInt(), 0);
 } else {

 updateState(0, 0, 0, 0);
 }
 driveDCMotor();
 } else if (commands[0].equals("m_stp")) {
 // bom,m_stp,1,90,1,na,eom
 // bom,m_stp,1,90,0,na,eom
 int angle = commands[2].toInt();
 int dir = commands[3].toInt() == 1 ? 1: -1;
 updateStepperState(angle*dir, 200, 1);
 driveStepper();

 } else if (commands[0].equals("m_ser")) {
 // bom,m_ser,1,90,na,na,eom
 int on = commands[1].toInt();
 updateServoState(on);
 if (on == 1) {
 int angle = commands[2].toInt();
 driveServo(angle);
 }
 } else if (commands[0].equals("s_isr")) {
 int on = commands[1].toInt();
 irSensorStatus.on_off = on;
 } else if (commands[0].equals("s_usr")) {
 int on = commands[1].toInt();
 updateUSSensorState(on);
 }
 }
 }
}

int readCommand(String commands[20]) {
 int count = 0;
 if (Serial.available() > 0) {
 String input = Serial.readString();
 Serial.println("log.." + input);
 if (!input.startsWith("bom") || !input.endsWith("eom\n"))
 return 0;
 input.trim();
 //Serial.println("log.." + input);

 String currString = "";
 int currPos = input.indexOf(',', 0) + 1;
 while (!currString.equals("eom")) {
 int pos = input.indexOf(',', currPos);
 if (pos != -1) {
 currString = input.substring(currPos, pos);
 commands[count++] = currString;
 currPos = pos+1;
 } else
 break;

 }
 }
 return count;
}

void loop() {

 // Check UI override
 String commands[20];
 int numCommands = readCommand(commands);
 if (numCommands > 0)
 processCommand(commands, numCommands);

 // Check individual motors
 if (sensorMode) {

 // DC Motor
 updateState(1, 0, 0, 0);
 driveDCMotor();

 // Stepper Motor
 updateStepperState(0, 200, 1);
 updateIRSensorState(1);
 IRSensorAndStepper();

 // Enable Ultrasonic and Servo Motor
 updateUSSensorState(1);
 driveServo();
 } else {
 DC_Motor_Status dc_status;
 get_Motor_Status(dc_status);
 //Serial.println(dc_status.state);
 driveDCMotor();
 }
 writeStatus();
 delay(50);
}

/*
 * TEST CASES
 *
 * bom,sensor-based,eom
 * bom,m_ser,1,0,na,na,eom
 * bom,m_stp,1,0,na,na,eom
 * bom,m_dcm,1,0,na,0,eom
 * bom,s_usr,1,0,na,na,eom
 * bom,s_isr,1,0,na,na,eom

 * bom,s_for,1,0,na,na,eom
 * bom,m_ser,0,0,na,na,eom
 * bom,m_ser,1,0,na,na,eom
 * bom,m_stp,0,0,na,na,eom
 * bom,m_stp,1,0,na,na,eom
 * bom,m_dcm,0,0,na,na,eom
 * bom,m_dcm,1,0,na,na,eom
 * bom,s_usr,0,0,na,na,eom
 * bom,s_usr,1,0,na,na,eom
 * bom,s_irs,0,0,na,na,eom
 * bom,s_irs,1,0,na,na,eom
 * bom,s_for,0,0,na,na,eom
 * bom,s_for,1,0,na,na,eom
 * bom,s_for,0,0,na,na,eom
 * bom,gui-based,eom
 * bom,m_ser,1,0,na,na,eom
 * bom,m_stp,1,0,na,na,eom
 * bom,m_dcm,1,0,na,0,eom
 * bom,s_usr,1,0,na,na,eom
 * bom,s_isr,1,0,na,na,eom
 * bom,s_for,1,0,na,na,eom
 * bom,m_ser,1,20,0,na,eom
 * bom,m_ser,1,20,1,na,eom
 * bom,m_stp,1,30,0,na,eom
 * bom,m_stp,1,30,1,na,eom
 * bom,m_dcm,1,na,0,400,eom
 * bom,m_dcm,1,na,1,400,eom
 * bom,m_dcm,1,39,1,na,eom
 * bom,m_dcm,1,39,0,na,eom
 */

