

Individual Lab Report #1 | October 14, 2016

SAMBUDDHA SARKAR

Team G

eXcalibR

Huan-Yang Chang

Man-ning Chen

Sambuddha Sarkar

Siddharth Raina

Yiqing Cai

1.1 Overview

In the sensors and motor control lab, I played multiple roles namely as project manager,

troubleshooter, integration specialist and in-house electronics consultant. I wanted to add

some functionality to the sensors and motors being used together hence I designed specific

housings of the sensor motor pairs. I was responsible for the following sensors and motors:

1. Sensors: Ultrasonic & Potentiometer.

2. Motors: Servo & Stepper.

Fig. 1.1, Pin map for components. Fig. 1.2, Complete circuit.

1.2 Sensors

I have used 2 analog sensors for this lab. The potentiometer output was mapped to the

servo input and the ultrasonic distance sensor’s output was mapped to the stepper input. Fig.

1.2 shows the complete circuit and highlight the part of the circuit I was directly responsible for.

Potentiometer,

Buzzer & Servo

Ultrasonic & Stepper

Push button

1.2.1 Potentiometer

The potentiometer is a passive sensor which is basically a voltage divider. The voltage is

divided between 0-5V over a resistance range of 10K ohm. It was hooked up to the ADC of the

Arduino UNO R3 on pin A0, the resolution of the ADC is 10-bit and as the knob is moved the

voltage output varies between 0-5V with higher resistance equaling higher voltage. The Servo

was operated between 0-180 degrees of rotation, so I scaled the readings of the potentiometer

from 0-1023 to 0-180 numerically. The potentiometer location is highlighted in Fig. 1.2.1.

 Fig. 1.2.1, Potentiometer

1.2.2 Ultrasonic Sensor

The ultrasonic sensor can be used in various modes and after playing around with the

different modes, I chose to use it in analog mode as in my setup it produced more or less stable

readings after applying a simple error reducing technique of averaging. (going against

conventional wisdom which says PWM mode is better than ANALOG mode). I tested median

and mode filters but it took too much memory as compared to the averaging filter and the

accuracy of all the filters were pretty similar. One thing should be noted that these filters were

software based i.e. no external hardware was used. The AN pin of the ultrasonic sensor was

hooked up to the A5 of the Arduino UNO R3 input. The output was ranged between 0-5V over

the 10-bit ADC (similar to Potentiometer in terms of the input). The sensitivity of the sensor

was given as ~ 9.8mV/in, but after the transfer function was obtained by one of my team

mates, it was discovered that the sensitivity of the sensor in the setup was about ~9.1364mV/in

which helped in improving our ultrasonic sensor performance. The output of the sensor was

mapped to the stepper motor and buzzer. This was basically a mock-up of the reverse parking

sensor in automobiles. As the distance of the object from the ultrasonic sensor reduced the

speed of the stepper motor decreased and the frequency with which the buzzer beeped

increased. So basically, the ultrasonic sensor output was mapped inversely to stepper motor

rotation speed and directly to the time between subsequent beeps from the buzzer. It is

important to note that the range of the ultrasonic sensor is from about 7 to 254 inches,

meaning that for any obstacle placed between 0-7 inches from the sensor would give the same

output. The ultrasonic sensor location is highlighted in Fig. 1.2.2.

Fig. 1.2.2, Ultrasonic sensor

1.3 Motors

I was primarily responsible for two motors: Servo and Stepper. The servo was controlled

using the built-in Arduino library but for the stepper rotation and speed control, I wrote my

function.

1.3.1 Servo

 The servo was input was mapped from the potentiometer output and the rotation is

limited between 0-180. A simple knob control was implemented, in which when the

potentiometer is rotated from the 0-10K ohm position the servo rotates from 0-180 degrees.

The servo is controlled using PWM, so it was hooked up to the pin 10 (PWM) of Arduino UNO

R3. Only position control was implemented. The servo location is highlighted in Fig. 1.3.1.

 Fig. 1.3.1, Servo

1.3.2 Stepper

 The stepper used in this assignment was a bi-polar stepper motor. The stepper motor

was used in a full-step mode with each step being equal to 1.8 degrees. The bi-polar stepper is

easier to control than an unipolar stepper motor. The stepper was interfaced with Arduino UNO

R3 using a Pololu high current motor driver namely the DRV-8825. The pin mapping can be seen

from Fig 1.3.2a given below.

Fig. 1.3.2a, Stepper motor drive pin-out diagram and connection suggestion.

The driver pin out is shown in Fig. 1.3.2a. The driver has 4 output pins for the coils of the

stepper and can be hooked up directly to the driver pins named B1, B2, A1 & A2. The stepper

driver has 3 inputs from the microcontroller namely the Enable pin(ENABLE), Step pin(STEP)

and Direction pin(DIR) which is hooked up to the pins 7,8 & 9 respectively of the Arduino UNO

R3. The enable pin helps switch the motor ON/OFF thus reducing the current draw during idle

time and prevent heating up of the motor. The motor was observed to heat up a lot when left

idle with the enable pin on. The enable pin is operated by inverse logic, that is when it is high

the enable pin is disabled and when low, the enable pin is enabled. The step input of the driver

accepts the number of steps (which directly governs the rotation of the motor). The direction

pin controls the direction of rotation, when it is given a logic high input it rotates in clockwise

and for logic low its rotates in an anti-clockwise direction.

Position control of stepper: The position of the stepper can be controlled by directly giving the

number of steps. Here as in full-step mode each step rotates the motor shaft by 1.8 degree, the

total steps required for complete 360 rotation is 200. The number of steps required for a

desired angular rotation can be calculated just by dividing the required rotation in degrees by

1.8.

Speed control of stepper: The speed can be controlled by simply increasing the time taken

between consecutive steps. After a bit of number crunching it can be derived that:

RPM =
300

𝑡
 ; where ‘t’ is the time in milliseconds between each consecutive step.

Hence the RPM can be given as an input to the stepper function and it will automatically

calculate the time between consecutive steps.

A custom stepper function was created to operate stepper in full-step mode. It is important to

note that the stepper motor driver’s output current setting is a bit temperamental and for the

given motor the Vref was set to 0.250 V. This helps us limit the current in each coil of the stepper

motor to 0.3A (rated current per coil is 0.33A). The stepper location is highlighted in Fig. 1.3.2b.

Fig, 1.3.2b, Stepper motor.

1.4 Miscellaneous

I used a simple push button switch to implement a state machine and buzzer to give a

sound output to signal proximity, (when paired with ultrasonic sensor).

 1.4.1 Buzzer

 A simple piezo buzzer was hooked up with the Arduino UNO R3 on pin 6. The buzzer was

simply added to give the ultrasonic sensor output an audio-visual appeal. The buzzer beeping

frequency was directly related to the distance from the ultrasonic sensor, so as the obstacle got

closer the beeping frequency increase. A simple delay between the logic HIGH and LOW output

on pin 6 did the trick. The piezo buzzer location has been highlighted in Fig. 1.4.1.

Fig. 1.4.1, Piezo buzzer.

1.4.2 Push button

 The push button from the RGB LED assignment was carried over (with a software

debounce) to this circuit. The purpose of the push button was to cycle through different states

of the circuit operation. The default state was the GUI input mode; the other states are as

follows:

 State 1: Potentiometer output mapped to the Servo.

 State 2: Ultrasonic sensor output mapped to Stepper motor and piezo buzzer.

 State 3: Force sensor output to the Servo.

 State 4: Thermistor output to the DC motor.

The push button was connected to pin 4 on the Arduino UNO R3. Fig. 1.4.2 highlights the

location of the push button.

 Fig. 1.4.2, Push button.

1.5 Integration

The integration was performed in 2 stages; first, the hardware components were

integrated then the Arduino code for different components were integrated into one seamless

code with multiple functions.

1.5.1 Hardware

 The sensors and motors had been tested and operated by different team members, so

the first task at hand was to develop a layout to accommodate all the sensors and motors. The

layout was designed to prevent any conflicts between components of the project while drawing

power from the Arduino or the independent power supply. Also, the signal wires had to be

arranged as to avoid any entanglement as this could lead to faulty connections by creating

unnecessary noise (due to various unshielded signal wires overlapping) and cross connections in

the circuit.

 The individual components where then grouped together according to the functionality

of the circuit; for example, the servo and potentiometer were housed in a single box. This

organization of sensor and motor pairs helped to debug the circuit and also eased the process

of connecting the setup to Arduino. The cables were color coded to aid the process of

connecting the sensors and motors.

The sensors and motors were tested individually by the team members on the bread

board, hence it was important to have uniformity while mounting the sensor and motor circuits

in the final setup. This was achieved by namely; color coding the cables, soldering the sensors

to the said cables with headers and applying heat shrink tubing to any exposed leads or header-

cable solders.

1.5.1 Software

 The software integration turned out to be less of a hurdle than expected. As the team

members were directed to stick to a format for writing codes for their sensors and motors, it

definitely helped to ease the task of integrating the codes. Though I had to create custom

functions for each motor which could be called at different instances of the code as needed.

 The memory taken up by variables were too large at one point and I combed through

the codes and assigned local variables where-ever possible. The different values of delay() used

in different sensor and motors’ code did conflict with the logic flow of the program sometimes

but it was rectified by simply reducing the delay() value.

 Finally, to switch the circuit between different operation modes, a state machine was

programmed (using conditional statements) into the code which enabled easier overall

operation and debugging of the code.

There were multiple challenges that I faced while working the stepper motor and the

overall integration of the circuit. These have been listed below.

2.1 Faulty solder-less bread board
 The bread board had some manufacturing defect which led to regular faults in the

circuits, specially whilst operating the motors. This was rectified by porting the circuit to a new

bread board. Sometimes, the pin holes in the bread board weren’t properly molded, rendering

those pins useless.

2.2 Stepper Motor & Stepper Driver
 The current setting on the Pololu motor driver was a bit of a challenge, the

potentiometer wasn’t operating properly on our original driver and this lead to the blowing up

of the electrolytic capacitor which lead to a chain of events which ultimately shorted the motor

driver itself. A new motor driver was chosen and then interfaced with the Arduino once again.

This rectified the problem and the current setting was achieved as per the motor rating by

setting the Vref voltage as 0.150 V.

 The stepper motor has a tendency of heating up over time if left idle for a considerable

time, this was addressed by switch the motor driver on and off using the ENABLE pin.

 Though the above problems were solved, but during the final presentation the stepper

motor drew too much power and caused a power surge leading to continuous resetting of the

circuit. Due to this the code of the servo had to be commented.

2.3 Slaving Arduino UNO to GUI
 We used processing to build the GUI and there were two ways of controlling the circuit

with the GUI. One option was to slave the Arduino to the processing environment and the other

one was to read data from the serial port of the Arduino. The former option is easier to

integrate and we tried to do that but we faced a problem with using the interrupts while the

Arduino was slaved to the processing environment. The DC motor’s encoder used interrupts to

count the pulses, but this interfered when the Arduino was slaved to the GUI. Hence we

adopted the latter option, though the interfacing was bit of a problem, but we got around it

and developed our own set of custom commands to help communicate between the Arduino

and the GUI environment. The command list has been listed in Fig. 2.3.

Fig. 2.3, Command Set.

The project work was divided among the team members and the task was assigned

according to the strengths of the team members. The task division has been listed below in

Table 3.1.

Team Member Task

Yiqing Cai GUI.

Huan-Yang Chang DC motor, PID Control, Ultrasonic sensor (PWM).

Man-ning Chen Thermistor & Audio-potentiometer.

Siddharth Raina Force Sensor, Ultrasonic Sensor Plot.

Sambuddha Sarkar Stepper, Servo, Potentiometer, Ultrasonic (AN & PWM), Buzzer &

Integration.

 Table 3.1, Task Division.

My future plans until the next progress report is to get the AEROTECH robotics arm up and

running at Oculus research. The main challenge is to get the AEROTECH arm operational is

getting used to the command set for controlling the arm and also get used to the A3200

controller. The motion planning algorithm for the arm has to be developed such that it can

position the calibration target at desired position with the least amount of jitter and in a timely

manner.

The motion of the arm of the arm has to be synchronized with the camera trigger and this can

only be done after the motion planning algorithm has been developed properly.

/*BATMAN was here......*/

/*

SENSORS

Potentiometer Out: A0

Force Sensor : A1

Thermistor : A2

Ultrasonic : A5

MOTORS

Servo: 10

DC Motor -

 encoder ch.A 2

 encoder ch.B 3

 speed 11

 direction 12

 enable 13

Stepper Motor -

 step 8

 direction 9

 enable 7

MISC

Toggle Switch: 5

State Button: 4

Buzzer 6

*/

/* TOGGLE SWITCH is for switching between GUI & Sensor control */

/* COMMANDS CHEAT SHEET

(Motor)(Degree of Rotation)(Speed of Motor)/

OR

(Sensor)(Val of Sensor)/

A- Servo

B- Stepper Forward Speed

C- Stepper Reverse Speed

D - DC Forward Speed

E - DC Reverse Speed

V - Stepper Forward Degree

X - Stepper Reverse Degree

Y - DC Forward Degree

Z - DC Reverse Degree

P-Potentionmeter

U-Ultrasonic

F-Force

T-Thermistor

 give space after character.

Val : 0-255

*/

#include <Servo.h>

#include <Timer.h>

Servo servo_1;

Timer t;

//pin allocation

//SENSORS

const int pot_knob = A0, f_sensor = A1, therm = A2, ul_sonic = A5, toggle_switch = 5;

//MOTOR

const int servo = 10; //Servo

const int ch_A = 2, ch_B = 3;// DC Encoder

const int dirPinB = 12, enablePinB = 13, speedPinB = 11; //DC Motor

const int stp_step = 8, stp_dir = 9, stp_enable = 7; // Stepper

//MISC.

const int state_chngr = 4, buzzer = 6;

//variables

int state = 0, bttn_state = 0, last_bttn_state = 0, bttn_counter = 0;

int pot_val = 0, servo_pos = 0;

int millisbetweenSteps, steps; // stepper speed, degrees

float stepper_rpm = 0;

int dist_inches = 0;

int mode =1;

//DC Motor

// rpm_parameter

int encoderValue_A = 0;

bool motor_clockwise_rpm; // GUI take this to show direction

bool motor_not_move = false;

float motor_rpm = 0; // GUI take this to show rpm

float resolution_per_circle = 180, time_period =1000, motor_deg;

// PID_rpm

long lastTime_PID;

double Input, Output,Setpoint;

double errSum, lastErr;

int errSum_count = 0;

double timeChange;

double error , dErr;

double kp = 0.5;

double ki = 1;

double kd = 0;

// PID_degree

double kp_deg = 0.3;

double ki_deg = 0.2;

double kd_deg = 0;

bool model_rpm = true;

int degree; // the gui should set the degree here!

bool degree_dir;

int deg_setpoint; // the GUI should set degree here

int model_change;

int direction_change;

int Setpoint_change;

//timer_variable

int tickEvent;

int rpm_setpoint;// the GUI should set the rpm here!

bool set_motor_clockwise; // GUI shoul change the direction here (true = clockwise, false = counter clockwise)

// everytime GUI try to change the rpm direction should stop the motor first (used stop_motor() and reset_PID())

// interrupt function

void count_rpm(void) {

 float aa = encoderValue_A;

 motor_rpm = aa/resolution_per_circle/time_period *1000*60;

 if (motor_rpm > 100){

 motor_rpm = 0;

 }

 encoderValue_A = 0;

}

void count_A() {

 encoderValue_A++;

 if(digitalRead(ch_B) == HIGH) {

 motor_clockwise_rpm = false;

 degree = degree -2;// because the encoder 180 puise per circle

 }

 else {

 motor_clockwise_rpm = true;

 degree = degree +2;

 }

}

void Compute(int z){

 // load input

 /*How long since we last calculated*/

 unsigned long now = millis();

 double timeChange = (double)(now - lastTime_PID) / 1000;

 /*Compute all the working error variables*/

 error = Setpoint - Input;

 errSum += (error * timeChange);

 dErr = (error - lastErr) / timeChange;

 /*Compute PID Output*/

 //pid_parameter_rpm

 if (z ==1){

 Output = kp * error + ki * errSum + kd * dErr;

 }

 //pid_parameter_degree

 if (z == 0){

 Output = kp_deg * error + ki_deg * errSum + kd_deg * dErr;

 }

 /*Remember some variables for next time*/

 lastErr = error;

 lastTime_PID = now;

}

void setup()

{

 pinMode(ul_sonic, INPUT), pinMode(servo, OUTPUT),pinMode(buzzer, OUTPUT), pinMode(state_chngr, INPUT), pinMode(toggle_switch,

INPUT);

 //DC & Stepper

 pinMode(pot_knob, INPUT), pinMode(f_sensor, INPUT), pinMode(therm, INPUT);

 pinMode(state_chngr, INPUT);

 //Define L298N Dual H-Bridge Motor Controller Pins

 pinMode(dirPinB,OUTPUT);

 pinMode(enablePinB,OUTPUT);

 pinMode(speedPinB,OUTPUT);

 pinMode(stp_step, OUTPUT), pinMode(stp_dir, OUTPUT);

 // encoder pin channel A = 2(interrupt) , channel B = 3(digital_read)

 pinMode(ch_A, INPUT_PULLUP);

 pinMode(ch_B, INPUT_PULLUP);

 attachInterrupt(digitalPinToInterrupt(ch_A),count_A,RISING);

 // rpm_setup

 tickEvent = t.every(time_period, count_rpm);

 servo_1.attach(10);

 Serial.begin(9600);//Serial Comm.

 Serial.flush();

}

void loop()

{

 t.update(); // let timer work

 //state =1;

 //if (analogRead(toggle_switch)== HIGH)

 mode = 1;

 if(mode ==1)

 {

 //Serial.println("Sensor Contorl");

 {

 bttn_state = digitalRead(state_chngr);

 if (bttn_state != last_bttn_state)

 {

 if (bttn_state == HIGH)

 {

 // HIGH = on

 bttn_counter++;

 state = (bttn_counter % 5);

 //Serial.print("STATE : ");

 //Serial.println(state);

 }

 delay(100);//debounce

 last_bttn_state = bttn_state;

 }

 if (state == 1) //Servo with Potentionmeter : 0-10k ohm mapped to 0-180 deg.

 {

 int servo_deg = map(analogRead(pot_knob), 0, 1023, 1, 179);

 servo_1.write(servo_deg);

 //Serial.println(servo_deg);

 Serial.print("A");Serial.print(servo_deg);Serial.print(" ");

 Serial.print("P");Serial.print(analogRead(pot_knob));Serial.print(" ");

 delay(50);

 //Serial.print("STATE : ");

 //Serial.println(state);

 }

 else if(state == 2) //Stepper with Ultrasonic : Distance inversely proportional to buzzer beep frequency & directly proportional to motor

speed

 {

 //Ultrasonic Sensor

 //filter_ul_sonic ((analogRead(ul_sonic)/2));

 dist_inches = (analogRead(ul_sonic)/2);

 stepper_rpm = (map(dist_inches, 6, 100, 0, 200)); //A 5V supply yields ~9.8mV/in, the value has to be divided by 2 to get the actual inches

 Serial.print("B");Serial.print(stepper_rpm);Serial.print(" ");

 Serial.print("U");Serial.print(dist_inches);Serial.print(" ");

 //Stepper Control

 //stepper(stepper_rpm,9000,1);

 //Serial.println(dist_inches);

 delay(50);

 //Serial.print("STATE : ");

 //Serial.println(state);

 }

 else if(state == 3) //Servo with Force sensor (rotary) : 0-7 N mapped to 0-180 deg.

 {

 int servo_deg = map(analogRead(f_sensor), 0, 300 , 0 , 179);

 servo_1.write(servo_deg);

 Serial.print("A");Serial.print(servo_deg);Serial.print(" ");

 Serial.print("F");Serial.print(analogRead(f_sensor));Serial.print(" ");

 //Serial.println(servo_deg);

 delay(50);

 //Serial.print("STATE : ");

 //Serial.println(state);

 }

 else if(state == 4) // DC with Thermistor : DC fan speed increse with temperature rise, after threshold buzzer warning.

 {

 double thermometerReading = analogRead(therm);

 double resistance = 10000.0*(1023.0-thermometerReading)/thermometerReading;

 if(resistance>8059)//30 degree

 {//"Temperature is too low";

 //DC motor doesn't work

 dc_motor(0, 1, 1);

 Serial.print("D");Serial.print(0);Serial.print(" ");

 Serial.print("T");Serial.print(analogRead(therm));Serial.print(" ");

 //Serial.println("zero speed");

 }

 else if(resistance<3605){//50 degree

 //"Temperature is too high";

 //DC motor to full speed

 dc_motor(60, 1, 1);

 Serial.print("D");Serial.print(motor_rpm);Serial.print(" ");;

 Serial.print("T");Serial.print(analogRead(therm));Serial.print(" ");

 //Serial.println("half speed");

 }

 else{

 //"Safe temperature";

 //DC motor half speed

 dc_motor(30, 1, 1);

 Serial.print("D");Serial.print(motor_rpm);Serial.print(" ");

 Serial.print("T");Serial.print(analogRead(therm));Serial.print(" ");

 //Serial.println("half speed");

 }

 delay(100);

 //Serial.print("STATE : ");

 //Serial.println(state);

 }

 else if(state == 0)

 {

 // Serial.println("[[[[[[GUIQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQGUI");

 //GUI Contorl

 //Serial.println("GUI Contorl");

 if (Serial.available() > 0) {

 String raw_read = Serial.readString();

 if (raw_read[0] == 'Y') {

 model_change = 0;

 direction_change = 1;

 Setpoint_change = raw_read.substring(1).toInt();

 degree = 0;

 }

 else if (raw_read[0] == 'D') {

 model_change = 1;

 direction_change = 1;

 Setpoint_change = raw_read.substring(1).toInt();

 degree = 0;

 }

 else if (raw_read[0] == 'E') {

 model_change = 1;

 direction_change = 0;

 Setpoint_change = raw_read.substring(1).toInt();

 degree = 0;

 }

 else if (raw_read[0] == 'Z') {

 model_change = 0;

 direction_change = 0; ;

 Setpoint_change = raw_read.substring(1).toInt();

 degree = 0;

 }

 }

 //Serial.println("EEEEE");

 //Serial.println(Setpoint_change);

 //Serial.println(direction_change);

 //Serial.println(model_change);

 //Serial.print(" ");

 dc_motor(Setpoint_change,direction_change,model_change); // Dc_motor

 if(model_change ==0) {

 if(direction_change ==0) {

 dc_motor((-Setpoint_change),direction_change,model_change); // Dc_motor in negative degree

 //Serial.println("QQQQQ");

 }

 }

 if (motor_clockwise_rpm == true) {

 Serial.print("D");Serial.print(motor_rpm);Serial.print(" ");

 }

 else {

 Serial.print("E");Serial.print(motor_rpm);Serial.print(" ");

 }

 if (direction_change == 0){

 Serial.print("Z");Serial.print(abs(degree));Serial.print(" ");

 }

 else{

 Serial.print("Y");Serial.print(abs(degree));Serial.print(" ");

 }

 }

 }

 }

 }

int filter_ul_sonic (int x)

{

 int sum = 0; //Create sum variable so it can be averaged

 int avgrange = 10; //Quantity of values to average (sample size)

 for (int i = 0; i < avgrange ; i++)

 {

 sum += x;

 delay(10);

 }

 // offset 1 inch by exeriemnt

 dist_inches = (sum / avgrange)+1;

 sum = 0;

 return dist_inches ;

}

//functions for Stepper & DC Motor;

// Stepper Motor Function

int stepper(int x, int y, int z) //speed, angle, direction

 {

 if(z == 1)//Forwward

 {

 digitalWrite(stp_dir, HIGH);

 for(int n = 0; n < y; n++)

 {

 digitalWrite(stp_step, HIGH);

 digitalWrite(stp_step, LOW);

 delay(300/x);

 }

 }

 else if(z == 0)//Reverse

 {

 digitalWrite(stp_dir, LOW);

 for(int n = 0; n < y; n++)

 {

 digitalWrite(stp_step, HIGH);

 digitalWrite(stp_step, LOW);

 delay(300/x);

 }

 }

 }

// DC Motor Function

int dc_motor(int x, int z, int w)// speed, angle, direction(+1: Clockwise, 0: counter), mode(+1: rpm, 0: degree)

{

 Compute(z);

if(w == 1) {

// the GUI should delete this line, just for arduino to use read data to control

 rpm_setpoint = x;

//delete end

Setpoint =rpm_setpoint;

Input = motor_rpm;

int value;

 if (z == 1){

 value = 255-Output-50; // -50 only for offset motor's voltage to a better place for quick start

 if (value <0) {

 value = 0;

 }

 else if (value >255){

 value = 255;

 }

 analogWrite(speedPinB, value);

 digitalWrite(dirPinB, HIGH);

 digitalWrite(enablePinB, HIGH);

 }

 else if(z == 0)

 {

 value = Output+50;// +50 only for offset motor's voltage to a better place for quick start

 if (value <0) {

 value = 0;

 }

 else if (value >255){

 value = 255;

 }

 analogWrite(speedPinB, value);

 digitalWrite(dirPinB, LOW);

 digitalWrite(enablePinB, HIGH);

 }

}

if(w == 0) {

// the GUI should delete this line, just for arduino to use read data to control

deg_setpoint = x;

//delete end

Setpoint = deg_setpoint;

Input= degree;

int value;

 if (Setpoint >Input){

 value = 255-Output-50;// -50 only for offset motor's voltage to a better place for quick start

 if (value <0) {

 value = 0;

 }

 else if (value >255){

 value = 255;

 }

 analogWrite(speedPinB, value);

 digitalWrite(dirPinB, HIGH);

 digitalWrite(enablePinB, HIGH);

 }

 else if(Setpoint <Input)

 {

 value = Output+30;// +50 only for offset motor's voltage to a better place for quick start

 if (value <0) {

 value = 0;

 }

 else if (value >255){

 value = 255;

 }

 analogWrite(speedPinB, value);

 digitalWrite(dirPinB, LOW);

 digitalWrite(enablePinB, HIGH);

 }

 else if (Setpoint == Input){

 analogWrite(speedPinB, 0);

 digitalWrite(dirPinB, LOW);

 digitalWrite(enablePinB, LOW);

 }

 // in degree model don't let motor rotate too much, set a time to stop

 delay(50);

 analogWrite(speedPinB, 0);

 digitalWrite(dirPinB, LOW);

 digitalWrite(enablePinB, LOW);

}

}

// PID function mode(+1: rpm 0: degree)

void reset_PID() {

 lastTime_PID = millis();

 errSum, lastErr= 0 ,0;

 error , dErr= 0 ,0;

}

void stop_motor() {

 analogWrite(speedPinB, 0);

 digitalWrite(dirPinB, LOW);

 digitalWrite(enablePinB, LOW);

 delay(200);

}

// reset_all

void reset_all() {

 stop_motor();

 reset_PID();

 delay(100);// let motor really stop

 Output = 0;

 encoderValue_A = 0;

 degree = 0;

}

