
	
	

16-682 - MRSD Project II | ILR #10
Individual Lab Report #10 |April 6, 2017

SAMBUDDHA SARKAR

Team G

eXcalibR

Huan-Yang Chang
Man-ning Chen

Sambuddha Sarkar
Siddharth Raina

Yiqing Cai
	
	
	

	
	

1. INDIVIDUAL PROGRESS

1.1 Overview

In this ILR I have tried to show tangible visuals or results for the work I have
being doing. As of now, the Image generation pipeline with data
import/export capabilities is ready and ahead of schedule.
 The virtual environment is being modeled in an open source platform:
Blender 3D 7.68a. It is a Maya based platform and is programmable by
Python 3.

Topics covered have been listed below for a quick overview.

1.2 Visualizing the planes of patterns
1.3 Importing data in Blender (Camera, Trajectory, Object)
1.4 Automated Image Generation
1.5 Blender Render Pipeline Status

1.2 Visualizing the planes of the patterns

The process of marking the geometric locations of the face patterns
involves the assignment of a local reference frame on the calibration
target (any one vertex of the target), then assigning each face of the
target a local reference frame and finally relating all these frames to the
world frame. The reference frame for each individual face is set
according to some parameters relating to the geometry of the calibration
target itself. The Z axis is aligned along the face normal, the X-Y axes are
chosen such that each face’s geometric pattern can be described using
just on single description file. The description file output (with custom .dsc,
.calib extensions) was explained in ILR#09. In figure 1.2.1 One can see a
scene in blender where only the calibration target. Now in figure 1.2.2 one
can visualize the reference frames of the faces as well as the calibration
target with the script that I have written. This script stores the required data
for exporting inside the blender environment and its data blocks, this
means that everything is contained inside a very small sized blender file
(.blend extension) and can be generated on demand on any computer
or terminal.

	
	

Fig. 1.2.1, Calibration Target without mappings.

	
	

Fig. 1.2.2, Mappings on Calibration Target Visualized (with & without target)

In figure 1.2.2 one can clearly see the axes of different faces in a right-hand
coordinate description. The left-hand side of the image gives a peek into the
script for axes data and map data generation & storing. The right-hand side of
the image depicts the coordinate transform data stored in the blender
environment named in an ordered manner. To clarify ‘Empty.000’ stored the
data for face id = 000 and so on, whereas ‘Empty.Icosphere’ stores data for the
whole target.

	
	

1.3 Importing data in Blender (Camera, Trajectory, Object)

The Camera Data and Trajectory Data for the objects are imported into blender
using a predefined CSV. I have just the screen shots of different stages as I
explained the mechanics in the blender pipeline section.

The figures follow this convention:
Left-hand side :Scirpt
Center: Output/ Visualization
Right-hand side: Data blocks relating to the generated objects

1.3.1 Camera Generation: Fig. 1.3.1.a and 1.3.1.b

Fig. 1.3.1.a, Scene without Cameras

Fig. 1.3.1b, Scene with Cameras

	
	

1.3.2 Trajectory Data: Fig. 1.3.2.a and 1.3.2.b (The yellow lines represent keyframe insertion
i.e. animation data for the trajectory and trigger points for the camera to capture images.)

Fig. 1.3.2a, Sample Visualization of the Path

Fig. 1.3.2b, Sample Visualization of the Path & Importing Animation
Data

	
	

1.4 Automated Image Generation

The rendering for all the cameras can be pushed into the render stack by using
a click of a button (as demonstrated in the PR#11). I have included a screen
shot of such a test a performed while writing this ILR. Figures from 1.4.1 to 1.4.3
show the different stages of the live test. I used 3 cameras with terrible render
settings just to demonstrate that the pipeline is actually functional. The output is
shown via a diagnostic snippet I wrote to monitor the status of the render
pipeline. This diagnostic tool can be activated in the blender environment on
MAC/Windows/Linux with ease is compatible with Terminal/Command Promt.

Fig. 1.4.1, Start of the render process (note the time at the top)

	
	

Fig. 1.4.2, End of the render process (note the time at the top)

	
	

1.5 Blender Render pipeline

The blender rendering pipeline (Fig 1.5.1) developed to aide semi-
autonomous generation of image data sets for the geometric calibration
algorithm. The calibration pipeline illustrated is self-explanatory. The

Fig. 1.4.3, Final output tagged according to camera and keyframe number.

	
	

pipeline loads in camera data (intrinsics & extrinsics), object data
(calibration target), required configuration and the number of the
cameras and the render settings. It spews out Images and other mesh
data using the cycles render engine and bpy module. The current
progress, that is all the modules for the pipeline have been completed is
shown in Fig. 1.5.2,

Fig. 1.5.1, Overall Pipeline.

Fig. 1.5.2, Current progress on the pipeline.

	
	

2. CHALLENGES
The main challenge right now is rendering images from all 141 cameras in our
virtual test environment. There are about 700 images per camera per scene, so
in one scene one image per camera takes up a time of 1 min on an average
(averaged over a set of 100 images). So, for all 700 images on each of the 141
cameras to render, it would take approximately two months. This is estimate is
based on the current GPU configuration at Oculus, so the render time can be
cut short a lot just by using render farms i.e. online servers dedicated to
rendering outputs for blender projects. The discussion related logistics are
underway with Oculus as the blender files do contain sensitive data pertaining
to the calibration pattern.

3. TEAM WORK
The project work was divided among the team members and the task was
assigned according to the strengths of the team members. The task division has
been listed below in Table 3. The divided tasks can be completed in parallel;
hence others can pitch in when some team members fall behind in their work.

Team Member Task
Huan-Yang Chang

ABB robot operation in real-time to capture

images.

Siddarth Raina Sensor Noise.

Man-nig Chen Color Calibration: Mapping function.

Yiqing Cai Multiple Camera Model: Validating Scoring
heuristics for the original path.

Sambuddha Sarkar

Blender Render pipeline and Geometric
Calibration tests.

 Table 3, Task Division.

	
	

4. FUTURE PLANS
My future plans until the next progress report is to reduce the render time
for the image generation and test geometric calibration results with
different image data sets generated from Blender 3D.

