
 

Yiqing Cai 

Team G: The Excalibr 

Teammates:  
Huan-Yang Chang 

Man-Ning Chen 
Siddharth Raina 

Sambuddha Sarka 

ILR01 
Oct. 14, 2016 

EXCALIBR



Individual Progress 

Overview 
For the Sensors and Motors lab, I was primarily responsible for developing the Graphical User 
Interface (GUI) for the system. And because the GUI plays an important role in connecting the 
whole system and transferring data between the computer and the Arduino board, I also 
worked on the integration work of the sensors and motors. We decided a vague structure of 
the GUI and functionality of the whole system at the beginning, and made some slight changes 
and improvements during the entire work process.  

The layout of the whole circuit is as follows ( see Figure 1) : 

!    
Figure 1. The final circuit for sensor and motor 

EXCALIBR



In the end, our GUI is able to carried out specific functional requirements as follows. 

   1. Provide both text areas and sliders/knobs for setting control values for the motor. 
   2. Provide switches and buttons for state switches, working mode switches and independent 
control. 
   3. Display all sensor readings, motor speed, positions, and current status in real time. 
  4. Use colors and sliders/knobs to indicate the sensor input and motor information within a 
certain range. 

Implementation 
I chose to develop the GUI on processing, because it is easy to communicate with Arduino 
through serial port to get data, and there are libraries allowing direct control of Arduino without 
writing Arduino code. I chose to use the controlP5 library of processing, by which I can design 
the GUI layout and its functionalities entirely from java code. Previously I have experiences in 
designing GUI on Visual Studio MFC using C++ code and on Matlab GUI toolbox using Matlab 
code. Although java and Processing is entirely new to me, I think learning to use a new tool 
with a new platform is fun and I should be able to implement it with my previous knowledges in 
developing GUI. 

The first step to development the GUI is to design the layout and all the functionality we need to 
perform and display. Sambuddha and I discussed to decide the string format used for data 
transmission, and all the flags for indicating states and all the variables we need to be 
controlled or displayed. 

String format:  (Sensor - a capital letter)(ReadingValue - an integer)(“ “ - indicate the end) 
                       (Motor - a capital letter)(ReadingValue - an integer)(“ “ - indicate the end) 

A capital letter stands for a certain type of sensor or motor with its unique parameter, and a 
number following it indicates the value of the reading, a space will indicate the end of the string. 
The data for read and the data for write through the serial port should be in the same format. 

Besides, all the input from the GUI for motor control instructions would be an integer in a 
certain ranges, and all the values to displayed on the motor information and sensor input on the 

EXCALIBR



GUI would be a float or double. I need to do a series of calculation in the processing before 
displaying on the GUI and sending back to the Arduino board. 

To enable the serial port and Arduino control from the Processing, I installed several libraries 
and studied the format of calling corresponding functions (see Figure 2). 

Figure 2. Import the necessary library in processing 

  
And then I need to define and set up all the layouts and define the functionality of each element 
on the GUI by defining functions which will be implemented when calling an event. 

For indicating states, I need to design the functions for the corresponding event calling. For 
distinguishing from different control instructions, I set flag to be different values; and for states 
and modes changes, I used the combinations of toggles and buttons to switch on/off. Besides, 
the buttons can be used to change directions of DC motor and stepper motor. 

In order to give intuitive display of the sensor input and motor information, I used colors and 
sliders/knobs to indicate that. The values can be set within a certain range corresponds to a 
specific sensor, and the values of color and slider/knob with be changed in realtime.  

Also for the GUI motor control part, we can either give instructions by entering a value in the 
textfield or by changing the value of sliders/knobs. The toggle button is to control the direction 
of the motor, and the motor set button is an indication of giving slider/knob instructions. 



The final GUI is displayed as follows (see Figure 3) : 

Figure 3. The final GUI for sensor and motor 

The left section is for motor control, which acts as inputs and the right section is for sensor and 
motor reading, which acts as outputs. The sliders and knobs on the left are used for input 
control and the sliders and knobs on the right are just for parameter displaying. Toggles are 
used for direction control and mode switches. 



Challenges 

The main challenges I faced during this task were: 

1. Integrating code and all the functionalities. As each group member defined their input and 
output and designed their own functionality, it is hard to combine all of them onto one board 
due to limit of ports and space. When we tried to combining the circuit and the code, we spent 
a lot of time deciding the final functionality of our system and what to display on the GUI. And 
because all the data were transferred through the serial port, we need to set many flags to 
indicate the correspondence between inputs and outputs, and also state machines to indicate 
which functionality is to carried out, in order to make the GUI more interactive. 

2. Hardware I/O library of Processing can only work on the Raspberry Pi and other Linux-based 
computers, but not on our Arduino board. So we cannot write all the code on Processing and 
directly control the Arduino board as we wished because then we wouldn't be able to use 
Interrupt for PID control for the DC motor. Instead, we finally changed plans and wrote all the 
functional code on Arduino and all the layout of GUI on processing, and relied on the serial port 
for communication between Arduino and Processing.  

Teamwork 
Our group use four different sensors to control three different motors, and we develop a GUI 
based on Processing. Work undertaken by each team member is as follows ( see Table 1):  

Table 1. Team co-work 

Member Tasks

Huan-Yang Chang Ultrasonic Sensor, DC Motor Control and System Integration

Man-Ning Chen Potentiometer, Thermometer and Circuit Integration

Yiqing Cai GUI Development and System Integration

Sambuddha Sardar Stepper Motor, Servo Motor Control and System Integration

Siddharth Raina Force Sensor and Circuit Integration



The team worked with great coordination during execution of the entire task. Each one of us 
completed their own part of designing and testing and then integrated all the parts. We 
communicated during the entire task and solved problems together when different parts 
weren't not compatible and when the Arduino functionality didn't perform as we wish on the 
processing. Finally, Sid and Mandy worked on the circuit integration and Me and Peter and 
Sam worked on the code integration. We faced many difficulties but we worked them out 
eventually as a group. 

Future Plans 
From now on, our team will work on two main areas of our project: 

Calibration Process:  
As we have finished setting up the robotic arm and the multi-camera capturing system, we will 
begin to collect image data and positional information of the robotic arm with the calibration 
target fixed on it. We need to firstly implement the Fixed Pattern Noise (FPN) calibration, which 
should precede all the other calibration procedures. Then we will design the method to 
compensate for vignette patterns which is caused by photometric staff and lens artifacts. After 
that, we can calibrate camera responses (photometric) and correct lens distortion (geometric),  
and estimate the extrinsic parameters between all cameras. 

Aerotech Control and Motion planning:  
We need to program to control the robotic arm to move in a certain pattern, the PSO output, 
and to trigger multi cameras to capture images when the robotic arm give a pause. 


