

Yiqing Cai

Team G: The ExcalibR

Teammates:
Huan-Yang Chang

Man-Ning Chen
Siddharth Raina

Sambuddha Sarka

ILR04
Nov. 11, 2016

EXCALIBR

Individual Progress

Overview
For this stage of project, I was primarily responsible for the photometric calibration (calculating
the camera response function). In the last progress review, I was facing serious memory
problems with the method for calculating camera response function. Then I moved on to look
for other methods and now I am able to deal with large number of full resolution images.
Besides, in order to make the code efficient, I translate the Matlab Code to C++ code. We used
the emergent vision technology HR-12000 cameras and AEROTECH linear actuator (act as the
robot arm) in this stage of work.

Implementation
The camera response is determined as a function per pixel, and we want to figure out the true
pixel color irrespective of the exposure time.

Because the algorithm we implemented (referred as method 1) in the last stage would take a lot
of memories, so we could only do the calculation based on no more than 20 images and need
to down-sample the images when executing the Matlab code. This would end up with rank
deficiency problems when solving SVD, and the code took really long time to give out the
solution. Besides, the data we got is obviously not smooth enough due to the rank deficiency
and memory problems.

In order to solve the problem, I implemented another method (referred as method 2) introduced
by the paper “ Engel J, Usenko V, Cremers D. A photometrically calibrated benchmark for
monocular visual odometry[J]. arXiv preprint arXiv:1607.02555, 2016. ” The main idea is to
minimize the following Maximum-Likelihood energy formulation:

EXCALIBR

where U is the inverse response function, I(x) is the pixel value we get, t is the exposure time
and B’(x) is the irradiance of a specific pixel.
As a result, we can solve the inverse response function U and the irradiance map B’ through
specific number of iterations in order to make the error function stable. That leads to the
following equations :

To initialize the irradiance map B’, I took the mean of all the images taken at different exposure
time t, I could then took the initialized B’ to calculate U, then took the U to calculate B’ again.
After several iterations, the Maximum-Likelihood energy formulation will become stable at a
specific small number, now the U is what we want as the inverse response function.

Firstly I wrote the algorithm on Matlab, but if I took large number of images (for example, 1000
images), the algorithm would take several days to run. So I translated the code from Matlab to
C++ to make it more efficient. After some testing and optimization, finally we can get the results
within 20 minutes if we use 1000 images and take 20 iterations.

The comparison of method 1 and method 2 is shown in Figure 1.

By theory, more images should give out better results and the inverse response function curve
should be smoother. So I tested the algorithms on 50 images and 1000 images, what I got is
shown in Figure 2, the curve is definitely smoother.

Another way to solve the problem occurred in method 1 is to randomly select pixels in each
images and do the optimized calculation in C++ also. We can not test on full resolution images,
but it can also give out the inverse response function. In the following stages we will use the
inverse response function got by two methods to calibrate images and see which one is better
in practice. The curse is also given in Figure 3.

EXCALIBR

Figure 1. Comparison of 2 methods on 1000 images

Figure 2. Comparison of method 2 on 50 images and 1000 images

Figure 3. The optimized method 1 on 50 images and 1000 images

Challenges

The main challenges I faced during this task were:

1. The photometric calibration process is based on large amount of calculation, so it is not
suitable to use Matlab and we need to use C++ and OpenCV, which is also good for building
the pipeline and integration of all different parts of the whole projects.

2. When gathering image data for testing, it is hard to obtain 100% static scenes of different
exposure time because of the wobbling of camera and change of environment light. That will
ends up with rubbish pixel values of the image data and might lead to the calculation mistakes.
In order to solve the problem, we might need to use a light box and a stable tripod to fix the
camera.

Teamwork
Work undertaken by each team member is as follows (see Table 1):

Table 1. Team co-work

Our team worked with great coordination during execution of the second stage of this project.
We communicated during the entire task and solved problems together. Sam was working on
the Robot (AEROTECH - 3 Prismatic Joint) Robot arm trajectory generation and velocity
profiling, Peter was working on implementing the geometric calibration code and confirming the
evaluation method, Mandy was working on translating the FPN code to C++ and also part of
the photometric calibration experiments, I was working on testing and implementing different
methods of photometric calibration and collecting static images with large dynamic range, Sid
is working on implementing the FPN correction and photometric calibration on images for
geometric input. We faced many difficulties but we worked them out eventually as a team.

Future Plans
From now on, my task will be focused on building the calibration pipeline and connecting
photometric calibration part with FPN correction and geometric calibration. We need to discuss
and agree on a fixed format to store the calibration parameters and a good way to integrate all
the functions and codes in C++. Also, we should integrate the multi-camera image capturing
procedure with the whole calibration pipeline, I will be working on the light box to collect better
data and generating CRF for multi-cameras.

Member Tasks

Huan-Yang Chang Implement geometric code and confirm the way of evaluation

Man-Ning Chen Optimize FPN code and conduct photometric calibration experiments

Yiqing Cai Test and Implement different methods and generate the inverse CRF curve

Sambuddha Sardar Robot arm trajectory generation and velocity profiling

Siddharth Raina Implement FPN correction and photometric calibration for geometric input

